Files
clang-p2996/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Christian Sigg fac349a169 Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc75.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

1361 lines
61 KiB
C++

//===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include <memory>
#include <type_traits>
namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOSTANDARD
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
enum class AbsFn { abs, sqrt, rsqrt };
// Returns the absolute value, its square root or its reciprocal square root.
Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf,
ImplicitLocOpBuilder &b, AbsFn fn = AbsFn::abs) {
Value one = b.create<arith::ConstantOp>(real.getType(),
b.getFloatAttr(real.getType(), 1.0));
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value max = b.create<arith::MaximumFOp>(absReal, absImag, fmf);
Value min = b.create<arith::MinimumFOp>(absReal, absImag, fmf);
Value ratio = b.create<arith::DivFOp>(min, max, fmf);
Value ratioSq = b.create<arith::MulFOp>(ratio, ratio, fmf);
Value ratioSqPlusOne = b.create<arith::AddFOp>(ratioSq, one, fmf);
Value result;
if (fn == AbsFn::rsqrt) {
ratioSqPlusOne = b.create<math::RsqrtOp>(ratioSqPlusOne, fmf);
min = b.create<math::RsqrtOp>(min, fmf);
max = b.create<math::RsqrtOp>(max, fmf);
}
if (fn == AbsFn::sqrt) {
Value quarter = b.create<arith::ConstantOp>(
real.getType(), b.getFloatAttr(real.getType(), 0.25));
// sqrt(sqrt(a*b)) would avoid the pow, but will overflow more easily.
Value sqrt = b.create<math::SqrtOp>(max, fmf);
Value p025 = b.create<math::PowFOp>(ratioSqPlusOne, quarter, fmf);
result = b.create<arith::MulFOp>(sqrt, p025, fmf);
} else {
Value sqrt = b.create<math::SqrtOp>(ratioSqPlusOne, fmf);
result = b.create<arith::MulFOp>(max, sqrt, fmf);
}
Value isNaN =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, result, result, fmf);
return b.create<arith::SelectOp>(isNaN, min, result);
}
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
Value real = b.create<complex::ReOp>(adaptor.getComplex());
Value imag = b.create<complex::ImOp>(adaptor.getComplex());
rewriter.replaceOp(op, computeAbs(real, imag, fmf, b));
return success();
}
};
// atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2))
struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> {
using OpConversionPattern<complex::Atan2Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(op.getType());
Type elementType = type.getElementType();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value lhs = adaptor.getLhs();
Value rhs = adaptor.getRhs();
Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs, fmf);
Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs, fmf);
Value rhsSquaredPlusLhsSquared =
b.create<complex::AddOp>(type, rhsSquared, lhsSquared, fmf);
Value sqrtOfRhsSquaredPlusLhsSquared =
b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared, fmf);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value i = b.create<complex::CreateOp>(type, zero, one);
Value iTimesLhs = b.create<complex::MulOp>(i, lhs, fmf);
Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs, fmf);
Value divResult = b.create<complex::DivOp>(
rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared, fmf);
Value logResult = b.create<complex::LogOp>(divResult, fmf);
Value negativeOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1));
Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne);
rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult, fmf);
return success();
}
};
template <typename ComparisonOp, arith::CmpFPredicate p>
struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
using OpConversionPattern<ComparisonOp>::OpConversionPattern;
using ResultCombiner =
std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value,
arith::AndIOp, arith::OrIOp>;
LogicalResult
matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getLhs().getType()).getElementType();
Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs());
Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs());
Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs());
Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs());
Value realComparison =
rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs);
Value imagComparison =
rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs);
rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison,
imagComparison);
return success();
}
};
// Default conversion which applies the BinaryStandardOp separately on the real
// and imaginary parts. Can for example be used for complex::AddOp and
// complex::SubOp.
template <typename BinaryComplexOp, typename BinaryStandardOp>
struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> {
using OpConversionPattern<BinaryComplexOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value resultReal = b.create<BinaryStandardOp>(elementType, realLhs, realRhs,
fmf.getValue());
Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value resultImag = b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs,
fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
template <typename TrigonometricOp>
struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> {
using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor;
using OpConversionPattern<TrigonometricOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
// Trigonometric ops use a set of common building blocks to convert to real
// ops. Here we create these building blocks and call into an op-specific
// implementation in the subclass to combine them.
Value half = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 0.5));
Value exp = rewriter.create<math::ExpOp>(loc, imag, fmf);
Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp, fmf);
Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp, fmf);
Value sin = rewriter.create<math::SinOp>(loc, real, fmf);
Value cos = rewriter.create<math::CosOp>(loc, real, fmf);
auto resultPair =
combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter, fmf);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first,
resultPair.second);
return success();
}
virtual std::pair<Value, Value>
combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
Value cos, ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const = 0;
};
struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> {
using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion;
std::pair<Value, Value> combine(Location loc, Value scaledExp,
Value reciprocalExp, Value sin, Value cos,
ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const override {
// Complex cosine is defined as;
// cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x
// Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x
Value sum =
rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp, fmf);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos, fmf);
Value diff =
rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp, fmf);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin, fmf);
return {resultReal, resultImag};
}
};
struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
using OpConversionPattern<complex::DivOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::DivOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value lhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs());
Value lhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs());
Value rhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs());
Value rhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs());
// Smith's algorithm to divide complex numbers. It is just a bit smarter
// way to compute the following formula:
// (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
// = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
// ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
// = ((lhsReal * rhsReal + lhsImag * rhsImag) +
// (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
//
// Depending on whether |rhsReal| < |rhsImag| we compute either
// rhsRealImagRatio = rhsReal / rhsImag
// rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
// resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
// resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
//
// or
//
// rhsImagRealRatio = rhsImag / rhsReal
// rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
// resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
// resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
//
// See https://dl.acm.org/citation.cfm?id=368661 for more details.
Value rhsRealImagRatio =
rewriter.create<arith::DivFOp>(loc, rhsReal, rhsImag, fmf);
Value rhsRealImagDenom = rewriter.create<arith::AddFOp>(
loc, rhsImag,
rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsReal, fmf),
fmf);
Value realNumerator1 = rewriter.create<arith::AddFOp>(
loc,
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealImagRatio, fmf),
lhsImag, fmf);
Value resultReal1 = rewriter.create<arith::DivFOp>(loc, realNumerator1,
rhsRealImagDenom, fmf);
Value imagNumerator1 = rewriter.create<arith::SubFOp>(
loc,
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealImagRatio, fmf),
lhsReal, fmf);
Value resultImag1 = rewriter.create<arith::DivFOp>(loc, imagNumerator1,
rhsRealImagDenom, fmf);
Value rhsImagRealRatio =
rewriter.create<arith::DivFOp>(loc, rhsImag, rhsReal, fmf);
Value rhsImagRealDenom = rewriter.create<arith::AddFOp>(
loc, rhsReal,
rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsImag, fmf),
fmf);
Value realNumerator2 = rewriter.create<arith::AddFOp>(
loc, lhsReal,
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagRealRatio, fmf),
fmf);
Value resultReal2 = rewriter.create<arith::DivFOp>(loc, realNumerator2,
rhsImagRealDenom, fmf);
Value imagNumerator2 = rewriter.create<arith::SubFOp>(
loc, lhsImag,
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagRealRatio, fmf),
fmf);
Value resultImag2 = rewriter.create<arith::DivFOp>(loc, imagNumerator2,
rhsImagRealDenom, fmf);
// Consider corner cases.
// Case 1. Zero denominator, numerator contains at most one NaN value.
Value zero = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getZeroAttr(elementType));
Value rhsRealAbs = rewriter.create<math::AbsFOp>(loc, rhsReal, fmf);
Value rhsRealIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero);
Value rhsImagAbs = rewriter.create<math::AbsFOp>(loc, rhsImag, fmf);
Value rhsImagIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero);
Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsReal, zero);
Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsImag, zero);
Value lhsContainsNotNaNValue =
rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
Value resultIsInfinity = rewriter.create<arith::AndIOp>(
loc, lhsContainsNotNaNValue,
rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero));
Value inf = rewriter.create<arith::ConstantOp>(
loc, elementType,
rewriter.getFloatAttr(
elementType, APFloat::getInf(elementType.getFloatSemantics())));
Value infWithSignOfRhsReal =
rewriter.create<math::CopySignOp>(loc, inf, rhsReal);
Value infinityResultReal =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsReal, fmf);
Value infinityResultImag =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsImag, fmf);
// Case 2. Infinite numerator, finite denominator.
Value rhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf);
Value rhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf);
Value rhsFinite =
rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite);
Value lhsRealAbs = rewriter.create<math::AbsFOp>(loc, lhsReal, fmf);
Value lhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagAbs = rewriter.create<math::AbsFOp>(loc, lhsImag, fmf);
Value lhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsInfinite =
rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite);
Value infNumFiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite);
Value one = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 1));
Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero),
lhsReal);
Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero),
lhsImag);
Value lhsRealIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsReal, fmf);
Value lhsImagIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsImag, fmf);
Value resultReal3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
lhsImagIsInfWithSignTimesRhsImag, fmf),
fmf);
Value lhsRealIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsImag, fmf);
Value lhsImagIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsReal, fmf);
Value resultImag3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
lhsRealIsInfWithSignTimesRhsImag, fmf),
fmf);
// Case 3: Finite numerator, infinite denominator.
Value lhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf);
Value lhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf);
Value lhsFinite =
rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite);
Value rhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsInfinite =
rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite);
Value finiteNumInfiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite);
Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero),
rhsReal);
Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero),
rhsImag);
Value rhsRealIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealIsInfWithSign, fmf);
Value rhsImagIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagIsInfWithSign, fmf);
Value resultReal4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
rhsImagIsInfWithSignTimesLhsImag, fmf),
fmf);
Value rhsRealIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealIsInfWithSign, fmf);
Value rhsImagIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagIsInfWithSign, fmf);
Value resultImag4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
rhsImagIsInfWithSignTimesLhsReal, fmf),
fmf);
Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
Value resultReal = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2);
Value resultImag = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2);
Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultReal4, resultReal);
Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultImag4, resultImag);
Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);
Value resultRealIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultReal, zero);
Value resultImagIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultImag, zero);
Value resultIsNaN =
rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN);
Value resultRealWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultRealSpecialCase1, resultReal);
Value resultImagWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultImagSpecialCase1, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(
op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
return success();
}
};
struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> {
using OpConversionPattern<complex::ExpOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value expReal = rewriter.create<math::ExpOp>(loc, real, fmf.getValue());
Value cosImag = rewriter.create<math::CosOp>(loc, imag, fmf.getValue());
Value resultReal =
rewriter.create<arith::MulFOp>(loc, expReal, cosImag, fmf.getValue());
Value sinImag = rewriter.create<math::SinOp>(loc, imag, fmf.getValue());
Value resultImag =
rewriter.create<arith::MulFOp>(loc, expReal, sinImag, fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> {
using OpConversionPattern<complex::Expm1Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value exp = b.create<complex::ExpOp>(adaptor.getComplex(), fmf.getValue());
Value real = b.create<complex::ReOp>(elementType, exp);
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realMinusOne = b.create<arith::SubFOp>(real, one, fmf.getValue());
Value imag = b.create<complex::ImOp>(elementType, exp);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realMinusOne,
imag);
return success();
}
};
struct LogOpConversion : public OpConversionPattern<complex::LogOp> {
using OpConversionPattern<complex::LogOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::LogOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(),
fmf.getValue());
Value resultReal = b.create<math::LogOp>(elementType, abs, fmf.getValue());
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value resultImag =
b.create<math::Atan2Op>(elementType, imag, real, fmf.getValue());
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> {
using OpConversionPattern<complex::Log1pOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value real = b.create<complex::ReOp>(adaptor.getComplex());
Value imag = b.create<complex::ImOp>(adaptor.getComplex());
Value half = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 0.5));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf);
Value absRealPlusOne = b.create<math::AbsFOp>(realPlusOne, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value maxAbs = b.create<arith::MaximumFOp>(absRealPlusOne, absImag, fmf);
Value minAbs = b.create<arith::MinimumFOp>(absRealPlusOne, absImag, fmf);
Value useReal = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT,
realPlusOne, absImag, fmf);
Value maxMinusOne = b.create<arith::SubFOp>(maxAbs, one, fmf);
Value maxAbsOfRealPlusOneAndImagMinusOne =
b.create<arith::SelectOp>(useReal, real, maxMinusOne);
Value minMaxRatio = b.create<arith::DivFOp>(minAbs, maxAbs, fmf);
Value logOfMaxAbsOfRealPlusOneAndImag =
b.create<math::Log1pOp>(maxAbsOfRealPlusOneAndImagMinusOne, fmf);
Value logOfSqrtPart = b.create<math::Log1pOp>(
b.create<arith::MulFOp>(minMaxRatio, minMaxRatio, fmf), fmf);
Value r = b.create<arith::AddFOp>(
b.create<arith::MulFOp>(half, logOfSqrtPart, fmf),
logOfMaxAbsOfRealPlusOneAndImag, fmf);
Value resultReal = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, r, r, fmf), minAbs,
r);
Value resultImag = b.create<math::Atan2Op>(imag, realPlusOne, fmf);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct MulOpConversion : public OpConversionPattern<complex::MulOp> {
using OpConversionPattern<complex::MulOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::MulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
auto fmfValue = fmf.getValue();
Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value lhsRealAbs = b.create<math::AbsFOp>(lhsReal, fmfValue);
Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value lhsImagAbs = b.create<math::AbsFOp>(lhsImag, fmfValue);
Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value rhsRealAbs = b.create<math::AbsFOp>(rhsReal, fmfValue);
Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value rhsImagAbs = b.create<math::AbsFOp>(rhsImag, fmfValue);
Value lhsRealTimesRhsReal =
b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
Value lhsRealTimesRhsRealAbs =
b.create<math::AbsFOp>(lhsRealTimesRhsReal, fmfValue);
Value lhsImagTimesRhsImag =
b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
Value lhsImagTimesRhsImagAbs =
b.create<math::AbsFOp>(lhsImagTimesRhsImag, fmfValue);
Value real = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
lhsImagTimesRhsImag, fmfValue);
Value lhsImagTimesRhsReal =
b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
Value lhsImagTimesRhsRealAbs =
b.create<math::AbsFOp>(lhsImagTimesRhsReal, fmfValue);
Value lhsRealTimesRhsImag =
b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
Value lhsRealTimesRhsImagAbs =
b.create<math::AbsFOp>(lhsRealTimesRhsImag, fmfValue);
Value imag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
lhsRealTimesRhsImag, fmfValue);
// Handle cases where the "naive" calculation results in NaN values.
Value realIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real);
Value imagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, imag, imag);
Value isNan = b.create<arith::AndIOp>(realIsNan, imagIsNan);
Value inf = b.create<arith::ConstantOp>(
elementType,
b.getFloatAttr(elementType,
APFloat::getInf(elementType.getFloatSemantics())));
// Case 1. `lhsReal` or `lhsImag` are infinite.
Value lhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsIsInf = b.create<arith::OrIOp>(lhsRealIsInf, lhsImagIsInf);
Value rhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsReal, rhsReal);
Value rhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsImag, rhsImag);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value lhsRealIsInfFloat =
b.create<arith::SelectOp>(lhsRealIsInf, one, zero);
lhsReal = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsRealIsInfFloat, lhsReal),
lhsReal);
Value lhsImagIsInfFloat =
b.create<arith::SelectOp>(lhsImagIsInf, one, zero);
lhsImag = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsImagIsInfFloat, lhsImag),
lhsImag);
Value lhsIsInfAndRhsRealIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
lhsIsInfAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value lhsIsInfAndRhsImagIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
lhsIsInfAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
// Case 2. `rhsReal` or `rhsImag` are infinite.
Value rhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsIsInf = b.create<arith::OrIOp>(rhsRealIsInf, rhsImagIsInf);
Value lhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsReal, lhsReal);
Value lhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsImag, lhsImag);
Value rhsRealIsInfFloat =
b.create<arith::SelectOp>(rhsRealIsInf, one, zero);
rhsReal = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsRealIsInfFloat, rhsReal),
rhsReal);
Value rhsImagIsInfFloat =
b.create<arith::SelectOp>(rhsImagIsInf, one, zero);
rhsImag = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsImagIsInfFloat, rhsImag),
rhsImag);
Value rhsIsInfAndLhsRealIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
rhsIsInfAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value rhsIsInfAndLhsImagIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
rhsIsInfAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value recalc = b.create<arith::OrIOp>(lhsIsInf, rhsIsInf);
// Case 3. One of the pairwise products of left hand side with right hand
// side is infinite.
Value lhsRealTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsRealAbs, inf);
Value lhsImagTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsImagAbs, inf);
Value isSpecialCase = b.create<arith::OrIOp>(lhsRealTimesRhsRealIsInf,
lhsImagTimesRhsImagIsInf);
Value lhsRealTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsImagAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsRealTimesRhsImagIsInf);
Value lhsImagTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsRealAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsImagTimesRhsRealIsInf);
Type i1Type = b.getI1Type();
Value notRecalc = b.create<arith::XOrIOp>(
recalc,
b.create<arith::ConstantOp>(i1Type, b.getIntegerAttr(i1Type, 1)));
isSpecialCase = b.create<arith::AndIOp>(isSpecialCase, notRecalc);
Value isSpecialCaseAndLhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value isSpecialCaseAndLhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value isSpecialCaseAndRhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value isSpecialCaseAndRhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
recalc = b.create<arith::OrIOp>(recalc, isSpecialCase);
recalc = b.create<arith::AndIOp>(isNan, recalc);
// Recalculate real part.
lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
Value newReal = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
lhsImagTimesRhsImag, fmfValue);
real = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newReal, fmfValue), real);
// Recalculate imag part.
lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
Value newImag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
lhsRealTimesRhsImag, fmfValue);
imag = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newImag, fmfValue), imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag);
return success();
}
};
struct NegOpConversion : public OpConversionPattern<complex::NegOp> {
using OpConversionPattern<complex::NegOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::NegOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negReal = rewriter.create<arith::NegFOp>(loc, real);
Value negImag = rewriter.create<arith::NegFOp>(loc, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag);
return success();
}
};
struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> {
using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion;
std::pair<Value, Value> combine(Location loc, Value scaledExp,
Value reciprocalExp, Value sin, Value cos,
ConversionPatternRewriter &rewriter,
arith::FastMathFlagsAttr fmf) const override {
// Complex sine is defined as;
// sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x
// Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x
Value sum =
rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp, fmf);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin, fmf);
Value diff =
rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp, fmf);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos, fmf);
return {resultReal, resultImag};
}
};
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> {
using OpConversionPattern<complex::SqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(op.getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
const auto &floatSemantics = elementType.getFloatSemantics();
Value zero = cst(APFloat::getZero(floatSemantics));
Value half = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 0.5));
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value absSqrt = computeAbs(real, imag, fmf, b, AbsFn::sqrt);
Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
Value sqrtArg = b.create<arith::MulFOp>(argArg, half, fmf);
Value cos = b.create<math::CosOp>(sqrtArg, fmf);
Value sin = b.create<math::SinOp>(sqrtArg, fmf);
// sin(atan2(0, inf)) = 0, sqrt(abs(inf)) = inf, but we can't multiply
// 0 * inf.
Value sinIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, sin, zero, fmf);
Value resultReal = b.create<arith::MulFOp>(absSqrt, cos, fmf);
Value resultImag = b.create<arith::SelectOp>(
sinIsZero, zero, b.create<arith::MulFOp>(absSqrt, sin, fmf));
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value inf = cst(APFloat::getInf(floatSemantics));
Value negInf = cst(APFloat::getInf(floatSemantics, true));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value absImag = b.create<math::AbsFOp>(elementType, imag, fmf);
Value absImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
Value absImagIsNotInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, absImag, inf, fmf);
Value realIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, inf, fmf);
Value realIsNegInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, negInf, fmf);
resultReal = b.create<arith::SelectOp>(
b.create<arith::AndIOp>(realIsNegInf, absImagIsNotInf), zero,
resultReal);
resultReal = b.create<arith::SelectOp>(
b.create<arith::OrIOp>(absImagIsInf, realIsInf), inf, resultReal);
Value imagSignInf = b.create<math::CopySignOp>(inf, imag, fmf);
resultImag = b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, absSqrt, absSqrt),
nan, resultImag);
resultImag = b.create<arith::SelectOp>(
b.create<arith::OrIOp>(absImagIsInf, realIsNegInf), imagSignInf,
resultImag);
}
Value resultIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absSqrt, zero, fmf);
resultReal = b.create<arith::SelectOp>(resultIsZero, zero, resultReal);
resultImag = b.create<arith::SelectOp>(resultIsZero, zero, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct SignOpConversion : public OpConversionPattern<complex::SignOp> {
using OpConversionPattern<complex::SignOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SignOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero);
auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), fmf);
Value realSign = b.create<arith::DivFOp>(real, abs, fmf);
Value imagSign = b.create<arith::DivFOp>(imag, abs, fmf);
Value sign = b.create<complex::CreateOp>(type, realSign, imagSign);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero,
adaptor.getComplex(), sign);
return success();
}
};
struct TanOpConversion : public OpConversionPattern<complex::TanOp> {
using OpConversionPattern<complex::TanOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::TanOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value cos = rewriter.create<complex::CosOp>(loc, adaptor.getComplex(), fmf);
Value sin = rewriter.create<complex::SinOp>(loc, adaptor.getComplex(), fmf);
rewriter.replaceOpWithNewOp<complex::DivOp>(op, sin, cos, fmf);
return success();
}
};
struct TanhOpConversion : public OpConversionPattern<complex::TanhOp> {
using OpConversionPattern<complex::TanhOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::TanhOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
const auto &floatSemantics = elementType.getFloatSemantics();
Value real =
b.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
b.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
Value inf = cst(APFloat::getInf(floatSemantics));
Value negOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1.0));
Value four = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 4.0));
Value twoReal = b.create<arith::AddFOp>(real, real, fmf);
Value negTwoReal = b.create<arith::MulFOp>(negOne, twoReal, fmf);
Value expTwoRealMinusOne = b.create<math::ExpM1Op>(twoReal, fmf);
Value expNegTwoRealMinusOne = b.create<math::ExpM1Op>(negTwoReal, fmf);
Value realNum =
b.create<arith::SubFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);
Value cosImag = b.create<math::CosOp>(imag, fmf);
Value cosImagSq = b.create<arith::MulFOp>(cosImag, cosImag, fmf);
Value twoCosTwoImagPlusOne = b.create<arith::MulFOp>(cosImagSq, four, fmf);
Value sinImag = b.create<math::SinOp>(imag, fmf);
Value imagNum = b.create<arith::MulFOp>(
four, b.create<arith::MulFOp>(cosImag, sinImag, fmf), fmf);
Value expSumMinusTwo =
b.create<arith::AddFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);
Value denom =
b.create<arith::AddFOp>(expSumMinusTwo, twoCosTwoImagPlusOne, fmf);
Value isInf = b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
expSumMinusTwo, inf, fmf);
Value realLimit = b.create<math::CopySignOp>(negOne, real, fmf);
Value resultReal = b.create<arith::SelectOp>(
isInf, realLimit, b.create<arith::DivFOp>(realNum, denom, fmf));
Value resultImag = b.create<arith::DivFOp>(imagNum, denom, fmf);
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value zero = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, 0.0));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value absRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
Value absRealIsNotInf = b.create<arith::XOrIOp>(
absRealIsInf, b.create<arith::ConstantIntOp>(true, /*width=*/1));
Value imagNumIsNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO,
imagNum, imagNum, fmf);
Value resultRealIsNaN =
b.create<arith::AndIOp>(imagNumIsNaN, absRealIsNotInf);
Value resultImagIsZero = b.create<arith::OrIOp>(
imagIsZero, b.create<arith::AndIOp>(absRealIsInf, imagNumIsNaN));
resultReal = b.create<arith::SelectOp>(resultRealIsNaN, nan, resultReal);
resultImag =
b.create<arith::SelectOp>(resultImagIsZero, zero, resultImag);
}
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> {
using OpConversionPattern<complex::ConjOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag);
return success();
}
};
/// Converts lhs^y = (a+bi)^(c+di) to
/// (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)),
/// where q = c*atan2(b,a)+0.5d*ln(a*a+b*b)
static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder,
ComplexType type, Value lhs, Value c, Value d,
arith::FastMathFlags fmf) {
auto elementType = cast<FloatType>(type.getElementType());
Value a = builder.create<complex::ReOp>(lhs);
Value b = builder.create<complex::ImOp>(lhs);
Value abs = builder.create<complex::AbsOp>(lhs, fmf);
Value absToC = builder.create<math::PowFOp>(abs, c, fmf);
Value negD = builder.create<arith::NegFOp>(d, fmf);
Value argLhs = builder.create<math::Atan2Op>(b, a, fmf);
Value negDArgLhs = builder.create<arith::MulFOp>(negD, argLhs, fmf);
Value expNegDArgLhs = builder.create<math::ExpOp>(negDArgLhs, fmf);
Value coeff = builder.create<arith::MulFOp>(absToC, expNegDArgLhs, fmf);
Value lnAbs = builder.create<math::LogOp>(abs, fmf);
Value cArgLhs = builder.create<arith::MulFOp>(c, argLhs, fmf);
Value dLnAbs = builder.create<arith::MulFOp>(d, lnAbs, fmf);
Value q = builder.create<arith::AddFOp>(cArgLhs, dLnAbs, fmf);
Value cosQ = builder.create<math::CosOp>(q, fmf);
Value sinQ = builder.create<math::SinOp>(q, fmf);
Value inf = builder.create<arith::ConstantOp>(
elementType,
builder.getFloatAttr(elementType,
APFloat::getInf(elementType.getFloatSemantics())));
Value zero = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 0.0));
Value one = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 1.0));
Value complexOne = builder.create<complex::CreateOp>(type, one, zero);
Value complexZero = builder.create<complex::CreateOp>(type, zero, zero);
Value complexInf = builder.create<complex::CreateOp>(type, inf, zero);
// Case 0:
// d^c is 0 if d is 0 and c > 0. 0^0 is defined to be 1.0, see
// Branch Cuts for Complex Elementary Functions or Much Ado About
// Nothing's Sign Bit, W. Kahan, Section 10.
Value absEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, abs, zero, fmf);
Value dEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero, fmf);
Value cEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero, fmf);
Value bEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, b, zero, fmf);
Value zeroLeC =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLE, zero, c, fmf);
Value coeffCosQ = builder.create<arith::MulFOp>(coeff, cosQ, fmf);
Value coeffSinQ = builder.create<arith::MulFOp>(coeff, sinQ, fmf);
Value complexOneOrZero =
builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero);
Value coeffCosSin =
builder.create<complex::CreateOp>(type, coeffCosQ, coeffSinQ);
Value cutoff0 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(
builder.create<arith::AndIOp>(absEqZero, dEqZero), zeroLeC),
complexOneOrZero, coeffCosSin);
// Case 1:
// x^0 is defined to be 1 for any x, see
// Branch Cuts for Complex Elementary Functions or Much Ado About
// Nothing's Sign Bit, W. Kahan, Section 10.
Value rhsEqZero = builder.create<arith::AndIOp>(cEqZero, dEqZero);
Value cutoff1 =
builder.create<arith::SelectOp>(rhsEqZero, complexOne, cutoff0);
// Case 2:
// 1^(c + d*i) = 1 + 0*i
Value lhsEqOne = builder.create<arith::AndIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, one, fmf),
bEqZero);
Value cutoff2 =
builder.create<arith::SelectOp>(lhsEqOne, complexOne, cutoff1);
// Case 3:
// inf^(c + 0*i) = inf + 0*i, c > 0
Value lhsEqInf = builder.create<arith::AndIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, inf, fmf),
bEqZero);
Value rhsGt0 = builder.create<arith::AndIOp>(
dEqZero,
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, c, zero, fmf));
Value cutoff3 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(lhsEqInf, rhsGt0), complexInf, cutoff2);
// Case 4:
// inf^(c + 0*i) = 0 + 0*i, c < 0
Value rhsLt0 = builder.create<arith::AndIOp>(
dEqZero,
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, c, zero, fmf));
Value cutoff4 = builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(lhsEqInf, rhsLt0), complexZero, cutoff3);
return cutoff4;
}
struct PowOpConversion : public OpConversionPattern<complex::PowOp> {
using OpConversionPattern<complex::PowOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::PowOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getLhs().getType());
auto elementType = cast<FloatType>(type.getElementType());
Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs());
Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs());
rewriter.replaceOp(op, {powOpConversionImpl(builder, type, adaptor.getLhs(),
c, d, op.getFastmath())});
return success();
}
};
struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> {
using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
auto cst = [&](APFloat v) {
return b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, v));
};
const auto &floatSemantics = elementType.getFloatSemantics();
Value zero = cst(APFloat::getZero(floatSemantics));
Value inf = cst(APFloat::getInf(floatSemantics));
Value negHalf = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -0.5));
Value nan = cst(APFloat::getNaN(floatSemantics));
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value absRsqrt = computeAbs(real, imag, fmf, b, AbsFn::rsqrt);
Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
Value rsqrtArg = b.create<arith::MulFOp>(argArg, negHalf, fmf);
Value cos = b.create<math::CosOp>(rsqrtArg, fmf);
Value sin = b.create<math::SinOp>(rsqrtArg, fmf);
Value resultReal = b.create<arith::MulFOp>(absRsqrt, cos, fmf);
Value resultImag = b.create<arith::MulFOp>(absRsqrt, sin, fmf);
if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
arith::FastMathFlags::ninf)) {
Value negOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1));
Value realSignedZero = b.create<math::CopySignOp>(zero, real, fmf);
Value imagSignedZero = b.create<math::CopySignOp>(zero, imag, fmf);
Value negImagSignedZero =
b.create<arith::MulFOp>(negOne, imagSignedZero, fmf);
Value absReal = b.create<math::AbsFOp>(real, fmf);
Value absImag = b.create<math::AbsFOp>(imag, fmf);
Value absImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
Value realIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real, fmf);
Value realIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
Value inIsNanInf = b.create<arith::AndIOp>(absImagIsInf, realIsNan);
Value resultIsZero = b.create<arith::OrIOp>(inIsNanInf, realIsInf);
resultReal =
b.create<arith::SelectOp>(resultIsZero, realSignedZero, resultReal);
resultImag = b.create<arith::SelectOp>(resultIsZero, negImagSignedZero,
resultImag);
}
Value isRealZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero, fmf);
Value isImagZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
Value isZero = b.create<arith::AndIOp>(isRealZero, isImagZero);
resultReal = b.create<arith::SelectOp>(isZero, inf, resultReal);
resultImag = b.create<arith::SelectOp>(isZero, nan, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> {
using OpConversionPattern<complex::AngleOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real, fmf);
return success();
}
};
} // namespace
void mlir::populateComplexToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AbsOpConversion,
AngleOpConversion,
Atan2OpConversion,
BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>,
BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>,
ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>,
ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>,
ConjOpConversion,
CosOpConversion,
DivOpConversion,
ExpOpConversion,
Expm1OpConversion,
Log1pOpConversion,
LogOpConversion,
MulOpConversion,
NegOpConversion,
SignOpConversion,
SinOpConversion,
SqrtOpConversion,
TanOpConversion,
TanhOpConversion,
PowOpConversion,
RsqrtOpConversion
>(patterns.getContext());
// clang-format on
}
namespace {
struct ConvertComplexToStandardPass
: public impl::ConvertComplexToStandardBase<ConvertComplexToStandardPass> {
void runOnOperation() override;
};
void ConvertComplexToStandardPass::runOnOperation() {
// Convert to the Standard dialect using the converter defined above.
RewritePatternSet patterns(&getContext());
populateComplexToStandardConversionPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithDialect, math::MathDialect>();
target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>();
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
} // namespace
std::unique_ptr<Pass> mlir::createConvertComplexToStandardPass() {
return std::make_unique<ConvertComplexToStandardPass>();
}