Files
clang-p2996/llvm/lib/Target/ARM/MVEVPTOptimisationsPass.cpp
David Green 3f571be1c0 [ARM] Make t2DoLoopStartTP a terminator
Although this was something that I was hoping we would not have to do,
this patch makes t2DoLoopStartTP a terminator in order to keep it at the
end of it's block, so not allowing extra MVE instruction between it and
the end. With t2DoLoopStartTP's also starting tail predication regions,
it also marks them as having side effects. The t2DoLoopStart is still
not a terminator, giving it the extra scheduling freedom that can be
helpful, but now that we have a TP version they can be treated
differently.

Differential Revision: https://reviews.llvm.org/D91887
2020-12-11 09:23:57 +00:00

891 lines
32 KiB
C++

//===-- MVEVPTOptimisationsPass.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass does a few optimisations related to Tail predicated loops
/// and MVE VPT blocks before register allocation is performed. For VPT blocks
/// the goal is to maximize the sizes of the blocks that will be created by the
/// MVE VPT Block Insertion pass (which runs after register allocation). For
/// tail predicated loops we transform the loop into something that will
/// hopefully make the backend ARMLowOverheadLoops pass's job easier.
///
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MVETailPredUtils.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "arm-mve-vpt-opts"
static cl::opt<bool>
MergeEndDec("arm-enable-merge-loopenddec", cl::Hidden,
cl::desc("Enable merging Loop End and Dec instructions."),
cl::init(true));
namespace {
class MVEVPTOptimisations : public MachineFunctionPass {
public:
static char ID;
const Thumb2InstrInfo *TII;
MachineRegisterInfo *MRI;
MVEVPTOptimisations() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &Fn) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return "ARM MVE TailPred and VPT Optimisation Pass";
}
private:
bool MergeLoopEnd(MachineLoop *ML);
bool ConvertTailPredLoop(MachineLoop *ML, MachineDominatorTree *DT);
MachineInstr &ReplaceRegisterUseWithVPNOT(MachineBasicBlock &MBB,
MachineInstr &Instr,
MachineOperand &User,
Register Target);
bool ReduceOldVCCRValueUses(MachineBasicBlock &MBB);
bool ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB);
bool ReplaceConstByVPNOTs(MachineBasicBlock &MBB, MachineDominatorTree *DT);
bool ConvertVPSEL(MachineBasicBlock &MBB);
};
char MVEVPTOptimisations::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(MVEVPTOptimisations, DEBUG_TYPE,
"ARM MVE TailPred and VPT Optimisations pass", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(MVEVPTOptimisations, DEBUG_TYPE,
"ARM MVE TailPred and VPT Optimisations pass", false, false)
static MachineInstr *LookThroughCOPY(MachineInstr *MI,
MachineRegisterInfo *MRI) {
while (MI && MI->getOpcode() == TargetOpcode::COPY &&
MI->getOperand(1).getReg().isVirtual())
MI = MRI->getVRegDef(MI->getOperand(1).getReg());
return MI;
}
// Given a loop ML, this attempts to find the t2LoopEnd, t2LoopDec and
// corresponding PHI that make up a low overhead loop. Only handles 'do' loops
// at the moment, returning a t2DoLoopStart in LoopStart.
static bool findLoopComponents(MachineLoop *ML, MachineRegisterInfo *MRI,
MachineInstr *&LoopStart, MachineInstr *&LoopPhi,
MachineInstr *&LoopDec, MachineInstr *&LoopEnd) {
MachineBasicBlock *Header = ML->getHeader();
MachineBasicBlock *Latch = ML->getLoopLatch();
if (!Header || !Latch) {
LLVM_DEBUG(dbgs() << " no Loop Latch or Header\n");
return false;
}
// Find the loop end from the terminators.
LoopEnd = nullptr;
for (auto &T : Latch->terminators()) {
if (T.getOpcode() == ARM::t2LoopEnd && T.getOperand(1).getMBB() == Header) {
LoopEnd = &T;
break;
}
if (T.getOpcode() == ARM::t2LoopEndDec &&
T.getOperand(2).getMBB() == Header) {
LoopEnd = &T;
break;
}
}
if (!LoopEnd) {
LLVM_DEBUG(dbgs() << " no LoopEnd\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop end: " << *LoopEnd);
// Find the dec from the use of the end. There may be copies between
// instructions. We expect the loop to loop like:
// $vs = t2DoLoopStart ...
// loop:
// $vp = phi [ $vs ], [ $vd ]
// ...
// $vd = t2LoopDec $vp
// ...
// t2LoopEnd $vd, loop
if (LoopEnd->getOpcode() == ARM::t2LoopEndDec)
LoopDec = LoopEnd;
else {
LoopDec =
LookThroughCOPY(MRI->getVRegDef(LoopEnd->getOperand(0).getReg()), MRI);
if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) {
LLVM_DEBUG(dbgs() << " didn't find LoopDec where we expected!\n");
return false;
}
}
LLVM_DEBUG(dbgs() << " found loop dec: " << *LoopDec);
LoopPhi =
LookThroughCOPY(MRI->getVRegDef(LoopDec->getOperand(1).getReg()), MRI);
if (!LoopPhi || LoopPhi->getOpcode() != TargetOpcode::PHI ||
LoopPhi->getNumOperands() != 5 ||
(LoopPhi->getOperand(2).getMBB() != Latch &&
LoopPhi->getOperand(4).getMBB() != Latch)) {
LLVM_DEBUG(dbgs() << " didn't find PHI where we expected!\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop phi: " << *LoopPhi);
Register StartReg = LoopPhi->getOperand(2).getMBB() == Latch
? LoopPhi->getOperand(3).getReg()
: LoopPhi->getOperand(1).getReg();
LoopStart = LookThroughCOPY(MRI->getVRegDef(StartReg), MRI);
if (!LoopStart || LoopStart->getOpcode() != ARM::t2DoLoopStart) {
LLVM_DEBUG(dbgs() << " didn't find Start where we expected!\n");
return false;
}
LLVM_DEBUG(dbgs() << " found loop start: " << *LoopStart);
return true;
}
// This function converts loops with t2LoopEnd and t2LoopEnd instructions into
// a single t2LoopEndDec instruction. To do that it needs to make sure that LR
// will be valid to be used for the low overhead loop, which means nothing else
// is using LR (especially calls) and there are no superfluous copies in the
// loop. The t2LoopEndDec is a branching terminator that produces a value (the
// decrement) around the loop edge, which means we need to be careful that they
// will be valid to allocate without any spilling.
bool MVEVPTOptimisations::MergeLoopEnd(MachineLoop *ML) {
if (!MergeEndDec)
return false;
LLVM_DEBUG(dbgs() << "MergeLoopEnd on loop " << ML->getHeader()->getName()
<< "\n");
MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
return false;
// Check if there is an illegal instruction (a call) in the low overhead loop
// and if so revert it now before we get any further.
for (MachineBasicBlock *MBB : ML->blocks()) {
for (MachineInstr &MI : *MBB) {
if (MI.isCall()) {
LLVM_DEBUG(dbgs() << "Found call in loop, reverting: " << MI);
RevertDoLoopStart(LoopStart, TII);
RevertLoopDec(LoopDec, TII);
RevertLoopEnd(LoopEnd, TII);
return true;
}
}
}
// Remove any copies from the loop, to ensure the phi that remains is both
// simpler and contains no extra uses. Because t2LoopEndDec is a terminator
// that cannot spill, we need to be careful what remains in the loop.
Register PhiReg = LoopPhi->getOperand(0).getReg();
Register DecReg = LoopDec->getOperand(0).getReg();
Register StartReg = LoopStart->getOperand(0).getReg();
// Ensure the uses are expected, and collect any copies we want to remove.
SmallVector<MachineInstr *, 4> Copies;
auto CheckUsers = [&Copies](Register BaseReg,
ArrayRef<MachineInstr *> ExpectedUsers,
MachineRegisterInfo *MRI) {
SmallVector<Register, 4> Worklist;
Worklist.push_back(BaseReg);
while (!Worklist.empty()) {
Register Reg = Worklist.pop_back_val();
for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
if (count(ExpectedUsers, &MI))
continue;
if (MI.getOpcode() != TargetOpcode::COPY ||
!MI.getOperand(0).getReg().isVirtual()) {
LLVM_DEBUG(dbgs() << "Extra users of register found: " << MI);
return false;
}
Worklist.push_back(MI.getOperand(0).getReg());
Copies.push_back(&MI);
}
}
return true;
};
if (!CheckUsers(PhiReg, {LoopDec}, MRI) ||
!CheckUsers(DecReg, {LoopPhi, LoopEnd}, MRI) ||
!CheckUsers(StartReg, {LoopPhi}, MRI))
return false;
MRI->constrainRegClass(StartReg, &ARM::GPRlrRegClass);
MRI->constrainRegClass(PhiReg, &ARM::GPRlrRegClass);
MRI->constrainRegClass(DecReg, &ARM::GPRlrRegClass);
if (LoopPhi->getOperand(2).getMBB() == ML->getLoopLatch()) {
LoopPhi->getOperand(3).setReg(StartReg);
LoopPhi->getOperand(1).setReg(DecReg);
} else {
LoopPhi->getOperand(1).setReg(StartReg);
LoopPhi->getOperand(3).setReg(DecReg);
}
// Replace the loop dec and loop end as a single instruction.
MachineInstrBuilder MI =
BuildMI(*LoopEnd->getParent(), *LoopEnd, LoopEnd->getDebugLoc(),
TII->get(ARM::t2LoopEndDec), DecReg)
.addReg(PhiReg)
.add(LoopEnd->getOperand(1));
(void)MI;
LLVM_DEBUG(dbgs() << "Merged LoopDec and End into: " << *MI.getInstr());
LoopDec->eraseFromParent();
LoopEnd->eraseFromParent();
for (auto *MI : Copies)
MI->eraseFromParent();
return true;
}
// Convert t2DoLoopStart to t2DoLoopStartTP if the loop contains VCTP
// instructions. This keeps the VCTP count reg operand on the t2DoLoopStartTP
// instruction, making the backend ARMLowOverheadLoops passes job of finding the
// VCTP operand much simpler.
bool MVEVPTOptimisations::ConvertTailPredLoop(MachineLoop *ML,
MachineDominatorTree *DT) {
LLVM_DEBUG(dbgs() << "ConvertTailPredLoop on loop "
<< ML->getHeader()->getName() << "\n");
// Find some loop components including the LoopEnd/Dec/Start, and any VCTP's
// in the loop.
MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
return false;
if (LoopDec != LoopEnd)
return false;
SmallVector<MachineInstr *, 4> VCTPs;
for (MachineBasicBlock *BB : ML->blocks())
for (MachineInstr &MI : *BB)
if (isVCTP(&MI))
VCTPs.push_back(&MI);
if (VCTPs.empty()) {
LLVM_DEBUG(dbgs() << " no VCTPs\n");
return false;
}
// Check all VCTPs are the same.
MachineInstr *FirstVCTP = *VCTPs.begin();
for (MachineInstr *VCTP : VCTPs) {
LLVM_DEBUG(dbgs() << " with VCTP " << *VCTP);
if (VCTP->getOpcode() != FirstVCTP->getOpcode() ||
VCTP->getOperand(0).getReg() != FirstVCTP->getOperand(0).getReg()) {
LLVM_DEBUG(dbgs() << " VCTP's are not identical\n");
return false;
}
}
// Check for the register being used can be setup before the loop. We expect
// this to be:
// $vx = ...
// loop:
// $vp = PHI [ $vx ], [ $vd ]
// ..
// $vpr = VCTP $vp
// ..
// $vd = t2SUBri $vp, #n
// ..
Register CountReg = FirstVCTP->getOperand(1).getReg();
if (!CountReg.isVirtual()) {
LLVM_DEBUG(dbgs() << " cannot determine VCTP PHI\n");
return false;
}
MachineInstr *Phi = LookThroughCOPY(MRI->getVRegDef(CountReg), MRI);
if (!Phi || Phi->getOpcode() != TargetOpcode::PHI ||
Phi->getNumOperands() != 5 ||
(Phi->getOperand(2).getMBB() != ML->getLoopLatch() &&
Phi->getOperand(4).getMBB() != ML->getLoopLatch())) {
LLVM_DEBUG(dbgs() << " cannot determine VCTP Count\n");
return false;
}
CountReg = Phi->getOperand(2).getMBB() == ML->getLoopLatch()
? Phi->getOperand(3).getReg()
: Phi->getOperand(1).getReg();
// Replace the t2DoLoopStart with the t2DoLoopStartTP, move it to the end of
// the preheader and add the new CountReg to it. We attempt to place it late
// in the preheader, but may need to move that earlier based on uses.
MachineBasicBlock *MBB = LoopStart->getParent();
MachineBasicBlock::iterator InsertPt = MBB->getFirstTerminator();
for (MachineInstr &Use :
MRI->use_instructions(LoopStart->getOperand(0).getReg()))
if ((InsertPt != MBB->end() && !DT->dominates(&*InsertPt, &Use)) ||
!DT->dominates(ML->getHeader(), Use.getParent())) {
LLVM_DEBUG(dbgs() << " InsertPt could not be a terminator!\n");
return false;
}
MachineInstrBuilder MI = BuildMI(*MBB, InsertPt, LoopStart->getDebugLoc(),
TII->get(ARM::t2DoLoopStartTP))
.add(LoopStart->getOperand(0))
.add(LoopStart->getOperand(1))
.addReg(CountReg);
(void)MI;
LLVM_DEBUG(dbgs() << "Replacing " << *LoopStart << " with "
<< *MI.getInstr());
MRI->constrainRegClass(CountReg, &ARM::rGPRRegClass);
LoopStart->eraseFromParent();
return true;
}
// Returns true if Opcode is any VCMP Opcode.
static bool IsVCMP(unsigned Opcode) { return VCMPOpcodeToVPT(Opcode) != 0; }
// Returns true if a VCMP with this Opcode can have its operands swapped.
// There is 2 kind of VCMP that can't have their operands swapped: Float VCMPs,
// and VCMPr instructions (since the r is always on the right).
static bool CanHaveSwappedOperands(unsigned Opcode) {
switch (Opcode) {
default:
return true;
case ARM::MVE_VCMPf32:
case ARM::MVE_VCMPf16:
case ARM::MVE_VCMPf32r:
case ARM::MVE_VCMPf16r:
case ARM::MVE_VCMPi8r:
case ARM::MVE_VCMPi16r:
case ARM::MVE_VCMPi32r:
case ARM::MVE_VCMPu8r:
case ARM::MVE_VCMPu16r:
case ARM::MVE_VCMPu32r:
case ARM::MVE_VCMPs8r:
case ARM::MVE_VCMPs16r:
case ARM::MVE_VCMPs32r:
return false;
}
}
// Returns the CondCode of a VCMP Instruction.
static ARMCC::CondCodes GetCondCode(MachineInstr &Instr) {
assert(IsVCMP(Instr.getOpcode()) && "Inst must be a VCMP");
return ARMCC::CondCodes(Instr.getOperand(3).getImm());
}
// Returns true if Cond is equivalent to a VPNOT instruction on the result of
// Prev. Cond and Prev must be VCMPs.
static bool IsVPNOTEquivalent(MachineInstr &Cond, MachineInstr &Prev) {
assert(IsVCMP(Cond.getOpcode()) && IsVCMP(Prev.getOpcode()));
// Opcodes must match.
if (Cond.getOpcode() != Prev.getOpcode())
return false;
MachineOperand &CondOP1 = Cond.getOperand(1), &CondOP2 = Cond.getOperand(2);
MachineOperand &PrevOP1 = Prev.getOperand(1), &PrevOP2 = Prev.getOperand(2);
// If the VCMP has the opposite condition with the same operands, we can
// replace it with a VPNOT
ARMCC::CondCodes ExpectedCode = GetCondCode(Cond);
ExpectedCode = ARMCC::getOppositeCondition(ExpectedCode);
if (ExpectedCode == GetCondCode(Prev))
if (CondOP1.isIdenticalTo(PrevOP1) && CondOP2.isIdenticalTo(PrevOP2))
return true;
// Check again with operands swapped if possible
if (!CanHaveSwappedOperands(Cond.getOpcode()))
return false;
ExpectedCode = ARMCC::getSwappedCondition(ExpectedCode);
return ExpectedCode == GetCondCode(Prev) && CondOP1.isIdenticalTo(PrevOP2) &&
CondOP2.isIdenticalTo(PrevOP1);
}
// Returns true if Instr writes to VCCR.
static bool IsWritingToVCCR(MachineInstr &Instr) {
if (Instr.getNumOperands() == 0)
return false;
MachineOperand &Dst = Instr.getOperand(0);
if (!Dst.isReg())
return false;
Register DstReg = Dst.getReg();
if (!DstReg.isVirtual())
return false;
MachineRegisterInfo &RegInfo = Instr.getMF()->getRegInfo();
const TargetRegisterClass *RegClass = RegInfo.getRegClassOrNull(DstReg);
return RegClass && (RegClass->getID() == ARM::VCCRRegClassID);
}
// Transforms
// <Instr that uses %A ('User' Operand)>
// Into
// %K = VPNOT %Target
// <Instr that uses %K ('User' Operand)>
// And returns the newly inserted VPNOT.
// This optimization is done in the hopes of preventing spills/reloads of VPR by
// reducing the number of VCCR values with overlapping lifetimes.
MachineInstr &MVEVPTOptimisations::ReplaceRegisterUseWithVPNOT(
MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User,
Register Target) {
Register NewResult = MRI->createVirtualRegister(MRI->getRegClass(Target));
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
.addDef(NewResult)
.addReg(Target);
addUnpredicatedMveVpredNOp(MIBuilder);
// Make the user use NewResult instead, and clear its kill flag.
User.setReg(NewResult);
User.setIsKill(false);
LLVM_DEBUG(dbgs() << " Inserting VPNOT (for spill prevention): ";
MIBuilder.getInstr()->dump());
return *MIBuilder.getInstr();
}
// Moves a VPNOT before its first user if an instruction that uses Reg is found
// in-between the VPNOT and its user.
// Returns true if there is at least one user of the VPNOT in the block.
static bool MoveVPNOTBeforeFirstUser(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Iter,
Register Reg) {
assert(Iter->getOpcode() == ARM::MVE_VPNOT && "Not a VPNOT!");
assert(getVPTInstrPredicate(*Iter) == ARMVCC::None &&
"The VPNOT cannot be predicated");
MachineInstr &VPNOT = *Iter;
Register VPNOTResult = VPNOT.getOperand(0).getReg();
Register VPNOTOperand = VPNOT.getOperand(1).getReg();
// Whether the VPNOT will need to be moved, and whether we found a user of the
// VPNOT.
bool MustMove = false, HasUser = false;
MachineOperand *VPNOTOperandKiller = nullptr;
for (; Iter != MBB.end(); ++Iter) {
if (MachineOperand *MO =
Iter->findRegisterUseOperand(VPNOTOperand, /*isKill*/ true)) {
// If we find the operand that kills the VPNOTOperand's result, save it.
VPNOTOperandKiller = MO;
}
if (Iter->findRegisterUseOperandIdx(Reg) != -1) {
MustMove = true;
continue;
}
if (Iter->findRegisterUseOperandIdx(VPNOTResult) == -1)
continue;
HasUser = true;
if (!MustMove)
break;
// Move the VPNOT right before Iter
LLVM_DEBUG(dbgs() << "Moving: "; VPNOT.dump(); dbgs() << " Before: ";
Iter->dump());
MBB.splice(Iter, &MBB, VPNOT.getIterator());
// If we move the instr, and its operand was killed earlier, remove the kill
// flag.
if (VPNOTOperandKiller)
VPNOTOperandKiller->setIsKill(false);
break;
}
return HasUser;
}
// This optimisation attempts to reduce the number of overlapping lifetimes of
// VCCR values by replacing uses of old VCCR values with VPNOTs. For example,
// this replaces
// %A:vccr = (something)
// %B:vccr = VPNOT %A
// %Foo = (some op that uses %B)
// %Bar = (some op that uses %A)
// With
// %A:vccr = (something)
// %B:vccr = VPNOT %A
// %Foo = (some op that uses %B)
// %TMP2:vccr = VPNOT %B
// %Bar = (some op that uses %A)
bool MVEVPTOptimisations::ReduceOldVCCRValueUses(MachineBasicBlock &MBB) {
MachineBasicBlock::iterator Iter = MBB.begin(), End = MBB.end();
SmallVector<MachineInstr *, 4> DeadInstructions;
bool Modified = false;
while (Iter != End) {
Register VCCRValue, OppositeVCCRValue;
// The first loop looks for 2 unpredicated instructions:
// %A:vccr = (instr) ; A is stored in VCCRValue
// %B:vccr = VPNOT %A ; B is stored in OppositeVCCRValue
for (; Iter != End; ++Iter) {
// We're only interested in unpredicated instructions that write to VCCR.
if (!IsWritingToVCCR(*Iter) ||
getVPTInstrPredicate(*Iter) != ARMVCC::None)
continue;
Register Dst = Iter->getOperand(0).getReg();
// If we already have a VCCRValue, and this is a VPNOT on VCCRValue, we've
// found what we were looking for.
if (VCCRValue && Iter->getOpcode() == ARM::MVE_VPNOT &&
Iter->findRegisterUseOperandIdx(VCCRValue) != -1) {
// Move the VPNOT closer to its first user if needed, and ignore if it
// has no users.
if (!MoveVPNOTBeforeFirstUser(MBB, Iter, VCCRValue))
continue;
OppositeVCCRValue = Dst;
++Iter;
break;
}
// Else, just set VCCRValue.
VCCRValue = Dst;
}
// If the first inner loop didn't find anything, stop here.
if (Iter == End)
break;
assert(VCCRValue && OppositeVCCRValue &&
"VCCRValue and OppositeVCCRValue shouldn't be empty if the loop "
"stopped before the end of the block!");
assert(VCCRValue != OppositeVCCRValue &&
"VCCRValue should not be equal to OppositeVCCRValue!");
// LastVPNOTResult always contains the same value as OppositeVCCRValue.
Register LastVPNOTResult = OppositeVCCRValue;
// This second loop tries to optimize the remaining instructions.
for (; Iter != End; ++Iter) {
bool IsInteresting = false;
if (MachineOperand *MO = Iter->findRegisterUseOperand(VCCRValue)) {
IsInteresting = true;
// - If the instruction is a VPNOT, it can be removed, and we can just
// replace its uses with LastVPNOTResult.
// - Else, insert a new VPNOT on LastVPNOTResult to recompute VCCRValue.
if (Iter->getOpcode() == ARM::MVE_VPNOT) {
Register Result = Iter->getOperand(0).getReg();
MRI->replaceRegWith(Result, LastVPNOTResult);
DeadInstructions.push_back(&*Iter);
Modified = true;
LLVM_DEBUG(dbgs()
<< "Replacing all uses of '" << printReg(Result)
<< "' with '" << printReg(LastVPNOTResult) << "'\n");
} else {
MachineInstr &VPNOT =
ReplaceRegisterUseWithVPNOT(MBB, *Iter, *MO, LastVPNOTResult);
Modified = true;
LastVPNOTResult = VPNOT.getOperand(0).getReg();
std::swap(VCCRValue, OppositeVCCRValue);
LLVM_DEBUG(dbgs() << "Replacing use of '" << printReg(VCCRValue)
<< "' with '" << printReg(LastVPNOTResult)
<< "' in instr: " << *Iter);
}
} else {
// If the instr uses OppositeVCCRValue, make it use LastVPNOTResult
// instead as they contain the same value.
if (MachineOperand *MO =
Iter->findRegisterUseOperand(OppositeVCCRValue)) {
IsInteresting = true;
// This is pointless if LastVPNOTResult == OppositeVCCRValue.
if (LastVPNOTResult != OppositeVCCRValue) {
LLVM_DEBUG(dbgs() << "Replacing usage of '"
<< printReg(OppositeVCCRValue) << "' with '"
<< printReg(LastVPNOTResult) << " for instr: ";
Iter->dump());
MO->setReg(LastVPNOTResult);
Modified = true;
}
MO->setIsKill(false);
}
// If this is an unpredicated VPNOT on
// LastVPNOTResult/OppositeVCCRValue, we can act like we inserted it.
if (Iter->getOpcode() == ARM::MVE_VPNOT &&
getVPTInstrPredicate(*Iter) == ARMVCC::None) {
Register VPNOTOperand = Iter->getOperand(1).getReg();
if (VPNOTOperand == LastVPNOTResult ||
VPNOTOperand == OppositeVCCRValue) {
IsInteresting = true;
std::swap(VCCRValue, OppositeVCCRValue);
LastVPNOTResult = Iter->getOperand(0).getReg();
}
}
}
// If this instruction was not interesting, and it writes to VCCR, stop.
if (!IsInteresting && IsWritingToVCCR(*Iter))
break;
}
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return Modified;
}
// This optimisation replaces VCMPs with VPNOTs when they are equivalent.
bool MVEVPTOptimisations::ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB) {
SmallVector<MachineInstr *, 4> DeadInstructions;
// The last VCMP that we have seen and that couldn't be replaced.
// This is reset when an instruction that writes to VCCR/VPR is found, or when
// a VCMP is replaced with a VPNOT.
// We'll only replace VCMPs with VPNOTs when this is not null, and when the
// current VCMP is the opposite of PrevVCMP.
MachineInstr *PrevVCMP = nullptr;
// If we find an instruction that kills the result of PrevVCMP, we save the
// operand here to remove the kill flag in case we need to use PrevVCMP's
// result.
MachineOperand *PrevVCMPResultKiller = nullptr;
for (MachineInstr &Instr : MBB.instrs()) {
if (PrevVCMP) {
if (MachineOperand *MO = Instr.findRegisterUseOperand(
PrevVCMP->getOperand(0).getReg(), /*isKill*/ true)) {
// If we come accross the instr that kills PrevVCMP's result, record it
// so we can remove the kill flag later if we need to.
PrevVCMPResultKiller = MO;
}
}
// Ignore predicated instructions.
if (getVPTInstrPredicate(Instr) != ARMVCC::None)
continue;
// Only look at VCMPs
if (!IsVCMP(Instr.getOpcode())) {
// If the instruction writes to VCCR, forget the previous VCMP.
if (IsWritingToVCCR(Instr))
PrevVCMP = nullptr;
continue;
}
if (!PrevVCMP || !IsVPNOTEquivalent(Instr, *PrevVCMP)) {
PrevVCMP = &Instr;
continue;
}
// The register containing the result of the VCMP that we're going to
// replace.
Register PrevVCMPResultReg = PrevVCMP->getOperand(0).getReg();
// Build a VPNOT to replace the VCMP, reusing its operands.
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
.add(Instr.getOperand(0))
.addReg(PrevVCMPResultReg);
addUnpredicatedMveVpredNOp(MIBuilder);
LLVM_DEBUG(dbgs() << "Inserting VPNOT (to replace VCMP): ";
MIBuilder.getInstr()->dump(); dbgs() << " Removed VCMP: ";
Instr.dump());
// If we found an instruction that uses, and kills PrevVCMP's result,
// remove the kill flag.
if (PrevVCMPResultKiller)
PrevVCMPResultKiller->setIsKill(false);
// Finally, mark the old VCMP for removal and reset
// PrevVCMP/PrevVCMPResultKiller.
DeadInstructions.push_back(&Instr);
PrevVCMP = nullptr;
PrevVCMPResultKiller = nullptr;
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return !DeadInstructions.empty();
}
bool MVEVPTOptimisations::ReplaceConstByVPNOTs(MachineBasicBlock &MBB,
MachineDominatorTree *DT) {
// Scan through the block, looking for instructions that use constants moves
// into VPR that are the negative of one another. These are expected to be
// COPY's to VCCRRegClass, from a t2MOVi or t2MOVi16. The last seen constant
// mask is kept it or and VPNOT's of it are added or reused as we scan through
// the function.
unsigned LastVPTImm = 0;
Register LastVPTReg = 0;
SmallSet<MachineInstr *, 4> DeadInstructions;
for (MachineInstr &Instr : MBB.instrs()) {
// Look for predicated MVE instructions.
int PIdx = llvm::findFirstVPTPredOperandIdx(Instr);
if (PIdx == -1)
continue;
Register VPR = Instr.getOperand(PIdx + 1).getReg();
if (!VPR.isVirtual())
continue;
// From that we are looking for an instruction like %11:vccr = COPY %9:rgpr.
MachineInstr *Copy = MRI->getVRegDef(VPR);
if (!Copy || Copy->getOpcode() != TargetOpcode::COPY ||
!Copy->getOperand(1).getReg().isVirtual() ||
MRI->getRegClass(Copy->getOperand(1).getReg()) == &ARM::VCCRRegClass) {
LastVPTReg = 0;
continue;
}
Register GPR = Copy->getOperand(1).getReg();
// Find the Immediate used by the copy.
auto getImm = [&](Register GPR) -> unsigned {
MachineInstr *Def = MRI->getVRegDef(GPR);
if (Def && (Def->getOpcode() == ARM::t2MOVi ||
Def->getOpcode() == ARM::t2MOVi16))
return Def->getOperand(1).getImm();
return -1U;
};
unsigned Imm = getImm(GPR);
if (Imm == -1U) {
LastVPTReg = 0;
continue;
}
unsigned NotImm = ~Imm & 0xffff;
if (LastVPTReg != 0 && LastVPTReg != VPR && LastVPTImm == Imm) {
Instr.getOperand(PIdx + 1).setReg(LastVPTReg);
if (MRI->use_empty(VPR)) {
DeadInstructions.insert(Copy);
if (MRI->hasOneUse(GPR))
DeadInstructions.insert(MRI->getVRegDef(GPR));
}
LLVM_DEBUG(dbgs() << "Reusing predicate: in " << Instr);
} else if (LastVPTReg != 0 && LastVPTImm == NotImm) {
// We have found the not of a previous constant. Create a VPNot of the
// earlier predicate reg and use it instead of the copy.
Register NewVPR = MRI->createVirtualRegister(&ARM::VCCRRegClass);
auto VPNot = BuildMI(MBB, &Instr, Instr.getDebugLoc(),
TII->get(ARM::MVE_VPNOT), NewVPR)
.addReg(LastVPTReg);
addUnpredicatedMveVpredNOp(VPNot);
// Use the new register and check if the def is now dead.
Instr.getOperand(PIdx + 1).setReg(NewVPR);
if (MRI->use_empty(VPR)) {
DeadInstructions.insert(Copy);
if (MRI->hasOneUse(GPR))
DeadInstructions.insert(MRI->getVRegDef(GPR));
}
LLVM_DEBUG(dbgs() << "Adding VPNot: " << *VPNot << " to replace use at "
<< Instr);
VPR = NewVPR;
}
LastVPTImm = Imm;
LastVPTReg = VPR;
}
for (MachineInstr *DI : DeadInstructions)
DI->eraseFromParent();
return !DeadInstructions.empty();
}
// Replace VPSEL with a predicated VMOV in blocks with a VCTP. This is a
// somewhat blunt approximation to allow tail predicated with vpsel
// instructions. We turn a vselect into a VPSEL in ISEL, but they have slightly
// different semantics under tail predication. Until that is modelled we just
// convert to a VMOVT (via a predicated VORR) instead.
bool MVEVPTOptimisations::ConvertVPSEL(MachineBasicBlock &MBB) {
bool HasVCTP = false;
SmallVector<MachineInstr *, 4> DeadInstructions;
for (MachineInstr &MI : MBB.instrs()) {
if (isVCTP(&MI)) {
HasVCTP = true;
continue;
}
if (!HasVCTP || MI.getOpcode() != ARM::MVE_VPSEL)
continue;
MachineInstrBuilder MIBuilder =
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(ARM::MVE_VORR))
.add(MI.getOperand(0))
.add(MI.getOperand(1))
.add(MI.getOperand(1))
.addImm(ARMVCC::Then)
.add(MI.getOperand(4))
.add(MI.getOperand(2));
// Silence unused variable warning in release builds.
(void)MIBuilder;
LLVM_DEBUG(dbgs() << "Replacing VPSEL: "; MI.dump();
dbgs() << " with VMOVT: "; MIBuilder.getInstr()->dump());
DeadInstructions.push_back(&MI);
}
for (MachineInstr *DeadInstruction : DeadInstructions)
DeadInstruction->eraseFromParent();
return !DeadInstructions.empty();
}
bool MVEVPTOptimisations::runOnMachineFunction(MachineFunction &Fn) {
const ARMSubtarget &STI =
static_cast<const ARMSubtarget &>(Fn.getSubtarget());
if (!STI.isThumb2() || !STI.hasLOB())
return false;
TII = static_cast<const Thumb2InstrInfo *>(STI.getInstrInfo());
MRI = &Fn.getRegInfo();
MachineLoopInfo *MLI = &getAnalysis<MachineLoopInfo>();
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
LLVM_DEBUG(dbgs() << "********** ARM MVE VPT Optimisations **********\n"
<< "********** Function: " << Fn.getName() << '\n');
bool Modified = false;
for (MachineLoop *ML : MLI->getBase().getLoopsInPreorder()) {
Modified |= MergeLoopEnd(ML);
Modified |= ConvertTailPredLoop(ML, DT);
}
for (MachineBasicBlock &MBB : Fn) {
Modified |= ReplaceConstByVPNOTs(MBB, DT);
Modified |= ReplaceVCMPsByVPNOTs(MBB);
Modified |= ReduceOldVCCRValueUses(MBB);
Modified |= ConvertVPSEL(MBB);
}
LLVM_DEBUG(dbgs() << "**************************************\n");
return Modified;
}
/// createMVEVPTOptimisationsPass
FunctionPass *llvm::createMVEVPTOptimisationsPass() {
return new MVEVPTOptimisations();
}