The SCEV code for constructing GEP expressions currently assumes that the addition of the base and all the offsets is nsw if the GEP is inbounds. While the addition of the offsets is indeed nsw, the addition to the base address is not, as the base address is interpreted as an unsigned value. Fix the GEP expression code to not assume nsw for the base+offset calculation. However, do assume nuw if we know that the offset is non-negative. With this, we use the same behavior as the construction of GEP addrecs does. (Modulo the fact that we disregard SCEV unification, as the pre-existing FIXME points out). Differential Revision: https://reviews.llvm.org/D90648
430 lines
18 KiB
LLVM
430 lines
18 KiB
LLVM
; RUN: opt -basic-aa -loop-accesses -analyze -enable-new-pm=0 < %s | FileCheck %s -check-prefix=LAA
|
|
; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA
|
|
; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV
|
|
|
|
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
|
|
|
|
; For this loop:
|
|
; unsigned index = 0;
|
|
; for (int i = 0; i < n; i++) {
|
|
; A[2 * index] = A[2 * index] + B[i];
|
|
; index++;
|
|
; }
|
|
;
|
|
; SCEV is unable to prove that A[2 * i] does not overflow.
|
|
;
|
|
; Analyzing the IR does not help us because the GEPs are not
|
|
; affine AddRecExprs. However, we can turn them into AddRecExprs
|
|
; using SCEV Predicates.
|
|
;
|
|
; Once we have an affine expression we need to add an additional NUSW
|
|
; to check that the pointers don't wrap since the GEPs are not
|
|
; inbound.
|
|
|
|
; LAA-LABEL: f1
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
|
|
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; (zext i32 {0,+,2}<%for.body> to i64)
|
|
; We have added the nusw flag to turn this expression into the SCEV expression:
|
|
; i64 {0,+,2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a)
|
|
; LAA-NEXT: --> {%a,+,4}<%for.body>
|
|
|
|
|
|
; LV-LABEL: f1
|
|
; LV-LABEL: for.body.lver.check
|
|
|
|
; LV: [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32
|
|
; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]])
|
|
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
|
|
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
|
|
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
|
|
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
|
|
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0
|
|
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
|
|
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
|
|
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
|
|
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
|
|
|
|
; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
|
|
|
|
; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
|
|
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
|
|
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
|
|
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
|
|
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
|
|
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
|
|
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
|
|
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
|
|
|
|
; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
|
|
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
|
|
define void @f1(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = zext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%inc1 = add i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; For this loop:
|
|
; unsigned index = n;
|
|
; for (int i = 0; i < n; i++) {
|
|
; A[2 * index] = A[2 * index] + B[i];
|
|
; index--;
|
|
; }
|
|
;
|
|
; the SCEV expression for 2 * index is not an AddRecExpr
|
|
; (and implictly not affine). However, we are able to make assumptions
|
|
; that will turn the expression into an affine one and continue the
|
|
; analysis.
|
|
;
|
|
; Once we have an affine expression we need to add an additional NUSW
|
|
; to check that the pointers don't wrap since the GEPs are not
|
|
; inbounds.
|
|
;
|
|
; This loop has a negative stride for A, and the nusw flag is required in
|
|
; order to properly extend the increment from i32 -4 to i64 -4.
|
|
|
|
; LAA-LABEL: f2
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
|
|
; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
|
|
; We have added the nusw flag to turn this expression into the following SCEV:
|
|
; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a)
|
|
; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64))<nuw><nsw> + %a),+,-4}<%for.body>
|
|
|
|
; LV-LABEL: f2
|
|
; LV-LABEL: for.body.lver.check
|
|
|
|
; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
|
|
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
|
|
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
|
|
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
|
|
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]]
|
|
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
|
|
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
|
|
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
|
|
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
|
|
|
|
; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
|
|
|
|
; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
|
|
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
|
|
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
|
|
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
|
|
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
|
|
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
|
|
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
|
|
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
|
|
|
|
; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
|
|
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
|
|
define void @f2(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = zext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; We replicate the tests above, but this time sign extend 2 * index instead
|
|
; of zero extending it.
|
|
|
|
; LAA-LABEL: f3
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; i64 (sext i32 {0,+,2}<%for.body> to i64)
|
|
; We have added the nssw flag to turn this expression into the following SCEV:
|
|
; i64 {0,+,2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {%a,+,4}<%for.body>
|
|
|
|
; LV-LABEL: f3
|
|
; LV-LABEL: for.body.lver.check
|
|
|
|
; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
|
|
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
|
|
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
|
|
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
|
|
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0
|
|
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
|
|
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
|
|
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
|
|
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
|
|
|
|
; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
|
|
|
|
; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
|
|
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
|
|
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
|
|
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
|
|
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
|
|
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
|
|
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
|
|
|
|
; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
|
|
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
|
|
define void @f3(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = sext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%inc1 = add i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; LAA-LABEL: f4
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; The expression for %mul_ext as analyzed by SCEV is
|
|
; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
|
|
; We have added the nssw flag to turn this expression into the following SCEV:
|
|
; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
|
|
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
|
|
|
|
; LV-LABEL: f4
|
|
; LV-LABEL: for.body.lver.check
|
|
|
|
; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
|
|
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
|
|
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
|
|
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
|
|
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
|
|
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
|
|
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
|
|
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
|
|
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
|
|
|
|
; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
|
|
|
|
; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
|
|
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
|
|
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
|
|
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
|
|
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
|
|
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
|
|
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
|
|
|
|
; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
|
|
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
|
|
define void @f4(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
%mul_ext = sext i32 %mul to i64
|
|
|
|
%arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; The following function is similar to the one above, but has the GEP
|
|
; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
|
|
; This means that the SCEV expression for %mul can wrap and we need
|
|
; a SCEV predicate to continue analysis.
|
|
;
|
|
; We can still analyze this by adding the required no wrap SCEV predicates.
|
|
|
|
; LAA-LABEL: f5
|
|
; LAA: Memory dependences are safe{{$}}
|
|
; LAA: SCEV assumptions:
|
|
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
|
|
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>
|
|
|
|
; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul:
|
|
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
|
|
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>
|
|
|
|
; LV-LABEL: f5
|
|
; LV-LABEL: for.body.lver.check
|
|
; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
|
|
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
|
|
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
|
|
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
|
|
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
|
|
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
|
|
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
|
|
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
|
|
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
|
|
|
|
; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
|
|
|
|
; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
|
|
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
|
|
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
|
|
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
|
|
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
|
|
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
|
|
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
|
|
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
|
|
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
|
|
|
|
; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
|
|
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
|
|
define void @f5(i16* noalias %a,
|
|
i16* noalias %b, i64 %N) {
|
|
entry:
|
|
%TruncN = trunc i64 %N to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
|
|
|
|
%mul = mul i32 %ind1, 2
|
|
|
|
%arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul
|
|
%loadA = load i16, i16* %arrayidxA, align 2
|
|
|
|
%arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
|
|
%loadB = load i16, i16* %arrayidxB, align 2
|
|
|
|
%add = mul i16 %loadA, %loadB
|
|
|
|
store i16 %add, i16* %arrayidxA, align 2
|
|
|
|
%inc = add nuw nsw i64 %ind, 1
|
|
%dec = sub i32 %ind1, 1
|
|
|
|
%exitcond = icmp eq i64 %inc, %N
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|