Files
clang-p2996/mlir/lib/Dialect/GPU/Transforms/AllReduceLowering.cpp
River Riddle 1b97cdf885 [mlir][IR][NFC] Move context/location parameters of builtin Type::get methods to the start of the parameter list
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.

Differential Revision: https://reviews.llvm.org/D93432
2020-12-17 13:01:36 -08:00

404 lines
16 KiB
C++

//===- AllReduceLowering.cpp - Implementation of all-reduce lowering ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements in-dialect lowering of the all-reduce op to a block of
// simpler instructions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
namespace {
struct GpuAllReduceRewriter {
using AccumulatorFactory = std::function<Value(Value, Value)>;
GpuAllReduceRewriter(gpu::GPUFuncOp funcOp_, gpu::AllReduceOp reduceOp_,
PatternRewriter &rewriter_)
: funcOp(funcOp_), reduceOp(reduceOp_), rewriter(rewriter_),
loc(reduceOp.getLoc()), valueType(reduceOp.value().getType()),
indexType(IndexType::get(reduceOp.getContext())),
int32Type(IntegerType::get(reduceOp.getContext(), /*width=*/32)) {}
/// Creates an all_reduce across the workgroup.
///
/// First reduce the elements within a subgroup. The first invocation of each
/// subgroup writes the intermediate result to workgroup memory. After
/// synchronizing the workgroup, the first subgroup reduces the values from
/// workgroup memory. The result is broadcasted to all invocations through
/// workgroup memory.
///
/// %subgroup_reduce = `createSubgroupReduce(%operand)`
/// cond_br %is_first_lane, ^then1, ^continue1
/// ^then1:
/// store %subgroup_reduce, %workgroup_buffer[%subgroup_id]
/// br ^continue1
/// ^continue1:
/// gpu.barrier
/// %is_valid_subgroup = cmpi "slt" %invocation_idx, %num_subgroups
/// cond_br %is_valid_subgroup, ^then2, ^continue2
/// ^then2:
/// %partial_reduce = load %workgroup_buffer[%invocation_idx]
/// %all_reduce = `createSubgroupReduce(%partial_reduce)`
/// store %all_reduce, %workgroup_buffer[%zero]
/// llvm.br ^continue2
/// ^continue2:
/// gpu.barrier
/// %result = load %workgroup_buffer[%zero]
/// return %result
///
void rewrite() {
rewriter.setInsertionPoint(reduceOp);
// Compute linear invocation index and workgroup size.
Value dimX = getDimOp<gpu::BlockDimOp>("x");
Value dimY = getDimOp<gpu::BlockDimOp>("y");
Value dimZ = getDimOp<gpu::BlockDimOp>("z");
Value tidX = getDimOp<gpu::ThreadIdOp>("x");
Value tidY = getDimOp<gpu::ThreadIdOp>("y");
Value tidZ = getDimOp<gpu::ThreadIdOp>("z");
Value tmp1 = create<MulIOp>(int32Type, tidZ, dimY);
Value tmp2 = create<AddIOp>(int32Type, tmp1, tidY);
Value tmp3 = create<MulIOp>(int32Type, tmp2, dimX);
Value tmp4 = create<MulIOp>(int32Type, dimX, dimY);
Value invocationIdx = create<AddIOp>(int32Type, tmp3, tidX);
Value workgroupSize = create<MulIOp>(int32Type, tmp4, dimZ);
// Compute lane id (invocation id withing the subgroup).
Value subgroupMask = create<ConstantIntOp>(kSubgroupSize - 1, int32Type);
Value laneId = create<AndOp>(invocationIdx, subgroupMask);
Value isFirstLane = create<CmpIOp>(CmpIPredicate::eq, laneId,
create<ConstantIntOp>(0, int32Type));
Value numThreadsWithSmallerSubgroupId =
create<SubIOp>(invocationIdx, laneId);
// The number of active invocations starting from the current subgroup.
// The consumers do not require the value to be clamped to the size of the
// subgroup.
Value activeWidth =
create<SubIOp>(workgroupSize, numThreadsWithSmallerSubgroupId);
// Create factory for op which accumulates to values.
AccumulatorFactory accumFactory = getFactory();
assert(accumFactory && "failed to create accumulator factory");
// Reduce elements within each subgroup to produce the intermediate results.
Value subgroupReduce = createSubgroupReduce(activeWidth, laneId,
reduceOp.value(), accumFactory);
// Add workgroup buffer to parent function for intermediate result.
Value buffer = createWorkgroupBuffer();
// Write the intermediate results to workgroup memory, using the first lane
// of each subgroup.
createPredicatedBlock(isFirstLane, [&] {
Value subgroupId = getDivideBySubgroupSize(invocationIdx);
Value index = create<IndexCastOp>(indexType, subgroupId);
create<StoreOp>(subgroupReduce, buffer, index);
});
create<gpu::BarrierOp>();
// Compute number of active subgroups.
Value biasedBlockSize =
create<AddIOp>(int32Type, workgroupSize, subgroupMask);
Value numSubgroups = getDivideBySubgroupSize(biasedBlockSize);
Value isValidSubgroup =
create<CmpIOp>(CmpIPredicate::slt, invocationIdx, numSubgroups);
// Use the first numSubgroups invocations to reduce the intermediate results
// from workgroup memory. The final result is written to workgroup memory
// again.
Value zero = create<ConstantIndexOp>(0);
createPredicatedBlock(isValidSubgroup, [&] {
Value index = create<IndexCastOp>(indexType, invocationIdx);
Value value = create<LoadOp>(valueType, buffer, index);
Value result =
createSubgroupReduce(numSubgroups, laneId, value, accumFactory);
create<StoreOp>(result, buffer, zero);
});
// Synchronize workgroup and load result from workgroup memory.
create<gpu::BarrierOp>();
Value result = create<LoadOp>(valueType, buffer, zero);
rewriter.replaceOp(reduceOp, result);
}
private:
// Shortcut to create an op from rewriter using loc as the first argument.
template <typename T, typename... Args> T create(Args... args) {
return rewriter.create<T>(loc, std::forward<Args>(args)...);
}
// Creates dimension op of type T, with the result casted to int32.
template <typename T> Value getDimOp(StringRef dimension) {
Value dim = create<T>(indexType, rewriter.getStringAttr(dimension));
return create<IndexCastOp>(int32Type, dim);
}
/// Adds type to funcOp's workgroup attributions.
Value createWorkgroupBuffer() {
int workgroupMemoryAddressSpace =
gpu::GPUDialect::getWorkgroupAddressSpace();
auto bufferType =
MemRefType::get({kSubgroupSize}, valueType, ArrayRef<AffineMap>{},
workgroupMemoryAddressSpace);
return funcOp.addWorkgroupAttribution(bufferType);
}
/// Returns an accumulator factory using either the op attribute or the body
/// region.
AccumulatorFactory getFactory() {
auto &body = reduceOp.body();
if (!body.empty())
return getFactory(body);
auto opAttr = reduceOp.op();
if (opAttr)
return getFactory(*opAttr);
return AccumulatorFactory();
}
/// Returns an accumulator factory that clones the body. The body's entry
/// block is expected to have 2 arguments. The gpu.yield return the
/// accumulated value of the same type.
AccumulatorFactory getFactory(Region &body) {
return AccumulatorFactory([&](Value lhs, Value rhs) {
Block *block = rewriter.getInsertionBlock();
Block *split = rewriter.splitBlock(block, rewriter.getInsertionPoint());
// Insert accumulator body between split block.
BlockAndValueMapping mapping;
mapping.map(body.getArgument(0), lhs);
mapping.map(body.getArgument(1), rhs);
rewriter.cloneRegionBefore(body, *split->getParent(),
split->getIterator(), mapping);
// Add branch before inserted body, into body.
block = block->getNextNode();
create<BranchOp>(block, ValueRange());
// Replace all gpu.yield ops with branch out of body.
for (; block != split; block = block->getNextNode()) {
Operation *terminator = block->getTerminator();
if (!isa<gpu::YieldOp>(terminator))
continue;
rewriter.setInsertionPointToEnd(block);
rewriter.replaceOpWithNewOp<BranchOp>(
terminator, split, ValueRange(terminator->getOperand(0)));
}
// Return accumulator result.
rewriter.setInsertionPointToStart(split);
return split->addArgument(lhs.getType());
});
}
/// Returns an accumulator factory that creates an op specified by opName.
AccumulatorFactory getFactory(StringRef opName) {
bool isFloatingPoint = valueType.isa<FloatType>();
if (opName == "add")
return isFloatingPoint ? getFactory<AddFOp>() : getFactory<AddIOp>();
if (opName == "mul")
return isFloatingPoint ? getFactory<MulFOp>() : getFactory<MulIOp>();
if (opName == "and") {
return getFactory<AndOp>();
}
if (opName == "or") {
return getFactory<OrOp>();
}
if (opName == "xor") {
return getFactory<XOrOp>();
}
if (opName == "max") {
return isFloatingPoint
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::UGT>()
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ugt>();
}
if (opName == "min") {
return isFloatingPoint
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::ULT>()
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ult>();
}
return AccumulatorFactory();
}
/// Returns an accumulator factory that creates an op of type T.
template <typename T> AccumulatorFactory getFactory() {
return [&](Value lhs, Value rhs) {
return create<T>(lhs.getType(), lhs, rhs);
};
}
/// Returns an accumulator for comparison such as min, max. T is the type
/// of the compare op.
template <typename T, typename PredicateEnum, PredicateEnum predicate>
AccumulatorFactory getCmpFactory() const {
return [&](Value lhs, Value rhs) {
Value cmp = rewriter.create<T>(loc, predicate, lhs, rhs);
return rewriter.create<SelectOp>(loc, cmp, lhs, rhs);
};
}
/// Creates an if-block skeleton and calls the two factories to generate the
/// ops in the `then` and `else` block..
///
/// llvm.cond_br %condition, ^then, ^continue
/// ^then:
/// %then_operands = `thenOpsFactory()`
/// llvm.br ^continue(%then_operands)
/// ^else:
/// %else_operands = `elseOpsFactory()`
/// llvm.br ^continue(%else_operands)
/// ^continue(%block_operands):
///
template <typename ThenOpsFactory, typename ElseOpsFactory>
void createIf(Value condition, ThenOpsFactory &&thenOpsFactory,
ElseOpsFactory &&elseOpsFactory) {
Block *currentBlock = rewriter.getInsertionBlock();
auto currentPoint = rewriter.getInsertionPoint();
Block *thenBlock = rewriter.splitBlock(currentBlock, currentPoint);
Block *elseBlock = rewriter.splitBlock(thenBlock, thenBlock->begin());
Block *continueBlock = rewriter.splitBlock(elseBlock, elseBlock->begin());
rewriter.setInsertionPointToEnd(currentBlock);
create<CondBranchOp>(condition, thenBlock,
/*trueOperands=*/ArrayRef<Value>(), elseBlock,
/*falseOperands=*/ArrayRef<Value>());
rewriter.setInsertionPointToStart(thenBlock);
auto thenOperands = thenOpsFactory();
create<BranchOp>(continueBlock, thenOperands);
rewriter.setInsertionPointToStart(elseBlock);
auto elseOperands = elseOpsFactory();
create<BranchOp>(continueBlock, elseOperands);
assert(thenOperands.size() == elseOperands.size());
rewriter.setInsertionPointToStart(continueBlock);
for (auto operand : thenOperands)
continueBlock->addArgument(operand.getType());
}
/// Shortcut for createIf with empty else block and no block operands.
template <typename Factory>
void createPredicatedBlock(Value condition, Factory &&predicatedOpsFactory) {
static_assert(std::is_same<decltype(predicatedOpsFactory()), void>::value,
"predicatedOpsFactory should not return any value");
createIf(
condition,
[&] {
predicatedOpsFactory();
return ArrayRef<Value>();
},
[&] { return ArrayRef<Value>(); });
}
/// Creates a reduction across the first activeWidth lanes of a subgroup, or
/// the entire subgroup if activeWidth is larger than the subgroup width.
/// The first lane returns the result, all others return values are undefined.
Value createSubgroupReduce(Value activeWidth, Value laneId, Value operand,
AccumulatorFactory &accumFactory) {
Value subgroupSize = create<ConstantIntOp>(kSubgroupSize, int32Type);
Value isPartialSubgroup =
create<CmpIOp>(CmpIPredicate::slt, activeWidth, subgroupSize);
std::array<Type, 2> shuffleType = {valueType, rewriter.getI1Type()};
auto xorAttr = rewriter.getStringAttr("xor");
createIf(
isPartialSubgroup,
// Generate reduction over a (potentially) partial subgroup.
[&] {
Value value = operand;
// Repeatedly shuffle value from 'laneId ^ i' and accumulate if source
// lane is within the active range. The accumulated value is available
// in the first lane.
for (int i = 1; i < kSubgroupSize; i <<= 1) {
Value offset = create<ConstantIntOp>(i, int32Type);
auto shuffleOp = create<gpu::ShuffleOp>(shuffleType, value, offset,
activeWidth, xorAttr);
// Skip the accumulation if the shuffle op read from a lane outside
// of the active range.
createIf(
shuffleOp.getResult(1),
[&] {
return SmallVector<Value, 1>{
accumFactory(value, shuffleOp.getResult(0))};
},
[&] { return llvm::makeArrayRef(value); });
value = rewriter.getInsertionBlock()->getArgument(0);
}
return SmallVector<Value, 1>{value};
},
// Generate a reduction over the entire subgroup. This is a
// specialization of the above reduction with unconditional
// accumulation.
[&] {
Value value = operand;
for (int i = 1; i < kSubgroupSize; i <<= 1) {
Value offset = create<ConstantIntOp>(i, int32Type);
auto shuffleOp = create<gpu::ShuffleOp>(shuffleType, value, offset,
subgroupSize, xorAttr);
value = accumFactory(value, shuffleOp.getResult(0));
}
return SmallVector<Value, 1>{value};
});
return rewriter.getInsertionBlock()->getArgument(0);
}
/// Returns value divided by the subgroup size (i.e. 32).
Value getDivideBySubgroupSize(Value value) {
Value subgroupSize = create<ConstantIntOp>(kSubgroupSize, int32Type);
return create<SignedDivIOp>(int32Type, value, subgroupSize);
}
gpu::GPUFuncOp funcOp;
gpu::AllReduceOp reduceOp;
PatternRewriter &rewriter;
Location loc;
Type valueType;
Type indexType;
Type int32Type;
static constexpr int kSubgroupSize = 32;
};
struct GpuAllReduceConversion : public RewritePattern {
explicit GpuAllReduceConversion(MLIRContext *context)
: RewritePattern(gpu::GPUFuncOp::getOperationName(), 1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto funcOp = cast<gpu::GPUFuncOp>(op);
auto callback = [&](gpu::AllReduceOp reduceOp) {
GpuAllReduceRewriter(funcOp, reduceOp, rewriter).rewrite();
// Performing a rewrite invalidates the walk iterator. Report interrupt
// so that we can start a new walk until all all_reduce ops are replaced.
return WalkResult::interrupt();
};
while (funcOp.walk(callback).wasInterrupted()) {
}
return success();
}
};
} // namespace
void mlir::populateGpuAllReducePatterns(MLIRContext *context,
OwningRewritePatternList &patterns) {
patterns.insert<GpuAllReduceConversion>(context);
}