These utilities are more closely associated with the buffer optimizations and buffer deallocation than with the dialect conversion stuff in Bufferize.h. So move them out. This makes Bufferize.h very easy to understand and completely focused on dialect conversion. Differential Revision: https://reviews.llvm.org/D91563
531 lines
23 KiB
C++
531 lines
23 KiB
C++
//===- BufferDeallocation.cpp - the impl for buffer deallocation ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic for computing correct alloc and dealloc positions.
|
|
// Furthermore, buffer placement also adds required new alloc and copy
|
|
// operations to ensure that all buffers are deallocated. The main class is the
|
|
// BufferDeallocationPass class that implements the underlying algorithm. In
|
|
// order to put allocations and deallocations at safe positions, it is
|
|
// significantly important to put them into the correct blocks. However, the
|
|
// liveness analysis does not pay attention to aliases, which can occur due to
|
|
// branches (and their associated block arguments) in general. For this purpose,
|
|
// BufferDeallocation firstly finds all possible aliases for a single value
|
|
// (using the BufferAliasAnalysis class). Consider the following
|
|
// example:
|
|
//
|
|
// ^bb0(%arg0):
|
|
// cond_br %cond, ^bb1, ^bb2
|
|
// ^bb1:
|
|
// br ^exit(%arg0)
|
|
// ^bb2:
|
|
// %new_value = ...
|
|
// br ^exit(%new_value)
|
|
// ^exit(%arg1):
|
|
// return %arg1;
|
|
//
|
|
// We should place the dealloc for %new_value in exit. However, we have to free
|
|
// the buffer in the same block, because it cannot be freed in the post
|
|
// dominator. However, this requires a new copy buffer for %arg1 that will
|
|
// contain the actual contents. Using the class BufferAliasAnalysis, we
|
|
// will find out that %new_value has a potential alias %arg1. In order to find
|
|
// the dealloc position we have to find all potential aliases, iterate over
|
|
// their uses and find the common post-dominator block (note that additional
|
|
// copies and buffers remove potential aliases and will influence the placement
|
|
// of the deallocs). In all cases, the computed block can be safely used to free
|
|
// the %new_value buffer (may be exit or bb2) as it will die and we can use
|
|
// liveness information to determine the exact operation after which we have to
|
|
// insert the dealloc. However, the algorithm supports introducing copy buffers
|
|
// and placing deallocs in safe locations to ensure that all buffers will be
|
|
// freed in the end.
|
|
//
|
|
// TODO:
|
|
// The current implementation does not support explicit-control-flow loops and
|
|
// the resulting code will be invalid with respect to program semantics.
|
|
// However, structured control-flow loops are fully supported. Furthermore, it
|
|
// doesn't accept functions which return buffers already.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "mlir/Interfaces/LoopLikeInterface.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/BufferUtils.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Walks over all immediate return-like terminators in the given region.
|
|
template <typename FuncT>
|
|
static void walkReturnOperations(Region *region, const FuncT &func) {
|
|
for (Block &block : *region)
|
|
for (Operation &operation : block) {
|
|
// Skip non-return-like terminators.
|
|
if (operation.hasTrait<OpTrait::ReturnLike>())
|
|
func(&operation);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Backedges analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A straight-forward program analysis which detects loop backedges induced by
|
|
/// explicit control flow.
|
|
class Backedges {
|
|
public:
|
|
using BlockSetT = SmallPtrSet<Block *, 16>;
|
|
using BackedgeSetT = llvm::DenseSet<std::pair<Block *, Block *>>;
|
|
|
|
public:
|
|
/// Constructs a new backedges analysis using the op provided.
|
|
Backedges(Operation *op) { recurse(op, op->getBlock()); }
|
|
|
|
/// Returns the number of backedges formed by explicit control flow.
|
|
size_t size() const { return edgeSet.size(); }
|
|
|
|
/// Returns the start iterator to loop over all backedges.
|
|
BackedgeSetT::const_iterator begin() const { return edgeSet.begin(); }
|
|
|
|
/// Returns the end iterator to loop over all backedges.
|
|
BackedgeSetT::const_iterator end() const { return edgeSet.end(); }
|
|
|
|
private:
|
|
/// Enters the current block and inserts a backedge into the `edgeSet` if we
|
|
/// have already visited the current block. The inserted edge links the given
|
|
/// `predecessor` with the `current` block.
|
|
bool enter(Block ¤t, Block *predecessor) {
|
|
bool inserted = visited.insert(¤t).second;
|
|
if (!inserted)
|
|
edgeSet.insert(std::make_pair(predecessor, ¤t));
|
|
return inserted;
|
|
}
|
|
|
|
/// Leaves the current block.
|
|
void exit(Block ¤t) { visited.erase(¤t); }
|
|
|
|
/// Recurses into the given operation while taking all attached regions into
|
|
/// account.
|
|
void recurse(Operation *op, Block *predecessor) {
|
|
Block *current = op->getBlock();
|
|
// If the current op implements the `BranchOpInterface`, there can be
|
|
// cycles in the scope of all successor blocks.
|
|
if (isa<BranchOpInterface>(op)) {
|
|
for (Block *succ : current->getSuccessors())
|
|
recurse(*succ, current);
|
|
}
|
|
// Recurse into all distinct regions and check for explicit control-flow
|
|
// loops.
|
|
for (Region ®ion : op->getRegions())
|
|
recurse(region.front(), current);
|
|
}
|
|
|
|
/// Recurses into explicit control-flow structures that are given by
|
|
/// the successor relation defined on the block level.
|
|
void recurse(Block &block, Block *predecessor) {
|
|
// Try to enter the current block. If this is not possible, we are
|
|
// currently processing this block and can safely return here.
|
|
if (!enter(block, predecessor))
|
|
return;
|
|
|
|
// Recurse into all operations and successor blocks.
|
|
for (Operation &op : block.getOperations())
|
|
recurse(&op, predecessor);
|
|
|
|
// Leave the current block.
|
|
exit(block);
|
|
}
|
|
|
|
/// Stores all blocks that are currently visited and on the processing stack.
|
|
BlockSetT visited;
|
|
|
|
/// Stores all backedges in the format (source, target).
|
|
BackedgeSetT edgeSet;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferDeallocation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The buffer deallocation transformation which ensures that all allocs in the
|
|
/// program have a corresponding de-allocation. As a side-effect, it might also
|
|
/// introduce copies that in turn leads to additional allocs and de-allocations.
|
|
class BufferDeallocation : BufferPlacementTransformationBase {
|
|
public:
|
|
BufferDeallocation(Operation *op)
|
|
: BufferPlacementTransformationBase(op), dominators(op),
|
|
postDominators(op) {}
|
|
|
|
/// Performs the actual placement/creation of all temporary alloc, copy and
|
|
/// dealloc nodes.
|
|
void deallocate() {
|
|
// Add additional allocations and copies that are required.
|
|
introduceCopies();
|
|
// Place deallocations for all allocation entries.
|
|
placeDeallocs();
|
|
}
|
|
|
|
private:
|
|
/// Introduces required allocs and copy operations to avoid memory leaks.
|
|
void introduceCopies() {
|
|
// Initialize the set of values that require a dedicated memory free
|
|
// operation since their operands cannot be safely deallocated in a post
|
|
// dominator.
|
|
SmallPtrSet<Value, 8> valuesToFree;
|
|
llvm::SmallDenseSet<std::tuple<Value, Block *>> visitedValues;
|
|
SmallVector<std::tuple<Value, Block *>, 8> toProcess;
|
|
|
|
// Check dominance relation for proper dominance properties. If the given
|
|
// value node does not dominate an alias, we will have to create a copy in
|
|
// order to free all buffers that can potentially leak into a post
|
|
// dominator.
|
|
auto findUnsafeValues = [&](Value source, Block *definingBlock) {
|
|
auto it = aliases.find(source);
|
|
if (it == aliases.end())
|
|
return;
|
|
for (Value value : it->second) {
|
|
if (valuesToFree.count(value) > 0)
|
|
continue;
|
|
Block *parentBlock = value.getParentBlock();
|
|
// Check whether we have to free this particular block argument or
|
|
// generic value. We have to free the current alias if it is either
|
|
// defined in a non-dominated block or it is defined in the same block
|
|
// but the current value is not dominated by the source value.
|
|
if (!dominators.dominates(definingBlock, parentBlock) ||
|
|
(definingBlock == parentBlock && value.isa<BlockArgument>())) {
|
|
toProcess.emplace_back(value, parentBlock);
|
|
valuesToFree.insert(value);
|
|
} else if (visitedValues.insert(std::make_tuple(value, definingBlock))
|
|
.second)
|
|
toProcess.emplace_back(value, definingBlock);
|
|
}
|
|
};
|
|
|
|
// Detect possibly unsafe aliases starting from all allocations.
|
|
for (BufferPlacementAllocs::AllocEntry &entry : allocs) {
|
|
Value allocValue = std::get<0>(entry);
|
|
findUnsafeValues(allocValue, allocValue.getDefiningOp()->getBlock());
|
|
}
|
|
// Try to find block arguments that require an explicit free operation
|
|
// until we reach a fix point.
|
|
while (!toProcess.empty()) {
|
|
auto current = toProcess.pop_back_val();
|
|
findUnsafeValues(std::get<0>(current), std::get<1>(current));
|
|
}
|
|
|
|
// Update buffer aliases to ensure that we free all buffers and block
|
|
// arguments at the correct locations.
|
|
aliases.remove(valuesToFree);
|
|
|
|
// Add new allocs and additional copy operations.
|
|
for (Value value : valuesToFree) {
|
|
if (auto blockArg = value.dyn_cast<BlockArgument>())
|
|
introduceBlockArgCopy(blockArg);
|
|
else
|
|
introduceValueCopyForRegionResult(value);
|
|
|
|
// Register the value to require a final dealloc. Note that we do not have
|
|
// to assign a block here since we do not want to move the allocation node
|
|
// to another location.
|
|
allocs.registerAlloc(std::make_tuple(value, nullptr));
|
|
}
|
|
}
|
|
|
|
/// Introduces temporary allocs in all predecessors and copies the source
|
|
/// values into the newly allocated buffers.
|
|
void introduceBlockArgCopy(BlockArgument blockArg) {
|
|
// Allocate a buffer for the current block argument in the block of
|
|
// the associated value (which will be a predecessor block by
|
|
// definition).
|
|
Block *block = blockArg.getOwner();
|
|
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
|
|
// Get the terminator and the value that will be passed to our
|
|
// argument.
|
|
Operation *terminator = (*it)->getTerminator();
|
|
auto branchInterface = cast<BranchOpInterface>(terminator);
|
|
// Query the associated source value.
|
|
Value sourceValue =
|
|
branchInterface.getSuccessorOperands(it.getSuccessorIndex())
|
|
.getValue()[blockArg.getArgNumber()];
|
|
// Create a new alloc and copy at the current location of the terminator.
|
|
Value alloc = introduceBufferCopy(sourceValue, terminator);
|
|
// Wire new alloc and successor operand.
|
|
auto mutableOperands =
|
|
branchInterface.getMutableSuccessorOperands(it.getSuccessorIndex());
|
|
if (!mutableOperands.hasValue())
|
|
terminator->emitError() << "terminators with immutable successor "
|
|
"operands are not supported";
|
|
else
|
|
mutableOperands.getValue()
|
|
.slice(blockArg.getArgNumber(), 1)
|
|
.assign(alloc);
|
|
}
|
|
|
|
// Check whether the block argument has implicitly defined predecessors via
|
|
// the RegionBranchOpInterface. This can be the case if the current block
|
|
// argument belongs to the first block in a region and the parent operation
|
|
// implements the RegionBranchOpInterface.
|
|
Region *argRegion = block->getParent();
|
|
Operation *parentOp = argRegion->getParentOp();
|
|
RegionBranchOpInterface regionInterface;
|
|
if (!argRegion || &argRegion->front() != block ||
|
|
!(regionInterface = dyn_cast<RegionBranchOpInterface>(parentOp)))
|
|
return;
|
|
|
|
introduceCopiesForRegionSuccessors(
|
|
regionInterface, argRegion->getParentOp()->getRegions(), blockArg,
|
|
[&](RegionSuccessor &successorRegion) {
|
|
// Find a predecessor of our argRegion.
|
|
return successorRegion.getSuccessor() == argRegion;
|
|
});
|
|
|
|
// Check whether the block argument belongs to an entry region of the
|
|
// parent operation. In this case, we have to introduce an additional copy
|
|
// for buffer that is passed to the argument.
|
|
SmallVector<RegionSuccessor, 2> successorRegions;
|
|
regionInterface.getSuccessorRegions(/*index=*/llvm::None, successorRegions);
|
|
auto *it =
|
|
llvm::find_if(successorRegions, [&](RegionSuccessor &successorRegion) {
|
|
return successorRegion.getSuccessor() == argRegion;
|
|
});
|
|
if (it == successorRegions.end())
|
|
return;
|
|
|
|
// Determine the actual operand to introduce a copy for and rewire the
|
|
// operand to point to the copy instead.
|
|
Value operand =
|
|
regionInterface.getSuccessorEntryOperands(argRegion->getRegionNumber())
|
|
[llvm::find(it->getSuccessorInputs(), blockArg).getIndex()];
|
|
Value copy = introduceBufferCopy(operand, parentOp);
|
|
|
|
auto op = llvm::find(parentOp->getOperands(), operand);
|
|
assert(op != parentOp->getOperands().end() &&
|
|
"parentOp does not contain operand");
|
|
parentOp->setOperand(op.getIndex(), copy);
|
|
}
|
|
|
|
/// Introduces temporary allocs in front of all associated nested-region
|
|
/// terminators and copies the source values into the newly allocated buffers.
|
|
void introduceValueCopyForRegionResult(Value value) {
|
|
// Get the actual result index in the scope of the parent terminator.
|
|
Operation *operation = value.getDefiningOp();
|
|
auto regionInterface = cast<RegionBranchOpInterface>(operation);
|
|
// Filter successors that return to the parent operation.
|
|
auto regionPredicate = [&](RegionSuccessor &successorRegion) {
|
|
// If the RegionSuccessor has no associated successor, it will return to
|
|
// its parent operation.
|
|
return !successorRegion.getSuccessor();
|
|
};
|
|
// Introduce a copy for all region "results" that are returned to the parent
|
|
// operation. This is required since the parent's result value has been
|
|
// considered critical. Therefore, the algorithm assumes that a copy of a
|
|
// previously allocated buffer is returned by the operation (like in the
|
|
// case of a block argument).
|
|
introduceCopiesForRegionSuccessors(regionInterface, operation->getRegions(),
|
|
value, regionPredicate);
|
|
}
|
|
|
|
/// Introduces buffer copies for all terminators in the given regions. The
|
|
/// regionPredicate is applied to every successor region in order to restrict
|
|
/// the copies to specific regions.
|
|
template <typename TPredicate>
|
|
void introduceCopiesForRegionSuccessors(
|
|
RegionBranchOpInterface regionInterface, MutableArrayRef<Region> regions,
|
|
Value argValue, const TPredicate ®ionPredicate) {
|
|
for (Region ®ion : regions) {
|
|
// Query the regionInterface to get all successor regions of the current
|
|
// one.
|
|
SmallVector<RegionSuccessor, 2> successorRegions;
|
|
regionInterface.getSuccessorRegions(region.getRegionNumber(),
|
|
successorRegions);
|
|
// Try to find a matching region successor.
|
|
RegionSuccessor *regionSuccessor =
|
|
llvm::find_if(successorRegions, regionPredicate);
|
|
if (regionSuccessor == successorRegions.end())
|
|
continue;
|
|
// Get the operand index in the context of the current successor input
|
|
// bindings.
|
|
size_t operandIndex =
|
|
llvm::find(regionSuccessor->getSuccessorInputs(), argValue)
|
|
.getIndex();
|
|
|
|
// Iterate over all immediate terminator operations to introduce
|
|
// new buffer allocations. Thereby, the appropriate terminator operand
|
|
// will be adjusted to point to the newly allocated buffer instead.
|
|
walkReturnOperations(®ion, [&](Operation *terminator) {
|
|
// Extract the source value from the current terminator.
|
|
Value sourceValue = terminator->getOperand(operandIndex);
|
|
// Create a new alloc at the current location of the terminator.
|
|
Value alloc = introduceBufferCopy(sourceValue, terminator);
|
|
// Wire alloc and terminator operand.
|
|
terminator->setOperand(operandIndex, alloc);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Creates a new memory allocation for the given source value and copies
|
|
/// its content into the newly allocated buffer. The terminator operation is
|
|
/// used to insert the alloc and copy operations at the right places.
|
|
Value introduceBufferCopy(Value sourceValue, Operation *terminator) {
|
|
// Avoid multiple copies of the same source value. This can happen in the
|
|
// presence of loops when a branch acts as a backedge while also having
|
|
// another successor that returns to its parent operation. Note: that
|
|
// copying copied buffers can introduce memory leaks since the invariant of
|
|
// BufferPlacement assumes that a buffer will be only copied once into a
|
|
// temporary buffer. Hence, the construction of copy chains introduces
|
|
// additional allocations that are not tracked automatically by the
|
|
// algorithm.
|
|
if (copiedValues.contains(sourceValue))
|
|
return sourceValue;
|
|
// Create a new alloc at the current location of the terminator.
|
|
auto memRefType = sourceValue.getType().cast<MemRefType>();
|
|
OpBuilder builder(terminator);
|
|
|
|
// Extract information about dynamically shaped types by
|
|
// extracting their dynamic dimensions.
|
|
SmallVector<Value, 4> dynamicOperands;
|
|
for (auto shapeElement : llvm::enumerate(memRefType.getShape())) {
|
|
if (!ShapedType::isDynamic(shapeElement.value()))
|
|
continue;
|
|
dynamicOperands.push_back(builder.create<DimOp>(
|
|
terminator->getLoc(), sourceValue, shapeElement.index()));
|
|
}
|
|
|
|
// TODO: provide a generic interface to create dialect-specific
|
|
// Alloc and CopyOp nodes.
|
|
auto alloc = builder.create<AllocOp>(terminator->getLoc(), memRefType,
|
|
dynamicOperands);
|
|
|
|
// Create a new copy operation that copies to contents of the old
|
|
// allocation to the new one.
|
|
builder.create<linalg::CopyOp>(terminator->getLoc(), sourceValue, alloc);
|
|
|
|
// Remember the copy of original source value.
|
|
copiedValues.insert(alloc);
|
|
return alloc;
|
|
}
|
|
|
|
/// Finds correct dealloc positions according to the algorithm described at
|
|
/// the top of the file for all alloc nodes and block arguments that can be
|
|
/// handled by this analysis.
|
|
void placeDeallocs() const {
|
|
// Move or insert deallocs using the previously computed information.
|
|
// These deallocations will be linked to their associated allocation nodes
|
|
// since they don't have any aliases that can (potentially) increase their
|
|
// liveness.
|
|
for (const BufferPlacementAllocs::AllocEntry &entry : allocs) {
|
|
Value alloc = std::get<0>(entry);
|
|
auto aliasesSet = aliases.resolve(alloc);
|
|
assert(aliasesSet.size() > 0 && "must contain at least one alias");
|
|
|
|
// Determine the actual block to place the dealloc and get liveness
|
|
// information.
|
|
Block *placementBlock =
|
|
findCommonDominator(alloc, aliasesSet, postDominators);
|
|
const LivenessBlockInfo *livenessInfo =
|
|
liveness.getLiveness(placementBlock);
|
|
|
|
// We have to ensure that the dealloc will be after the last use of all
|
|
// aliases of the given value. We first assume that there are no uses in
|
|
// the placementBlock and that we can safely place the dealloc at the
|
|
// beginning.
|
|
Operation *endOperation = &placementBlock->front();
|
|
|
|
// Iterate over all aliases and ensure that the endOperation will point
|
|
// to the last operation of all potential aliases in the placementBlock.
|
|
for (Value alias : aliasesSet) {
|
|
// Ensure that the start operation is at least the defining operation of
|
|
// the current alias to avoid invalid placement of deallocs for aliases
|
|
// without any uses.
|
|
Operation *beforeOp = endOperation;
|
|
if (alias.getDefiningOp() &&
|
|
!(beforeOp = placementBlock->findAncestorOpInBlock(
|
|
*alias.getDefiningOp())))
|
|
continue;
|
|
|
|
Operation *aliasEndOperation =
|
|
livenessInfo->getEndOperation(alias, beforeOp);
|
|
// Check whether the aliasEndOperation lies in the desired block and
|
|
// whether it is behind the current endOperation. If yes, this will be
|
|
// the new endOperation.
|
|
if (aliasEndOperation->getBlock() == placementBlock &&
|
|
endOperation->isBeforeInBlock(aliasEndOperation))
|
|
endOperation = aliasEndOperation;
|
|
}
|
|
// endOperation is the last operation behind which we can safely store
|
|
// the dealloc taking all potential aliases into account.
|
|
|
|
// If there is an existing dealloc, move it to the right place.
|
|
Operation *deallocOperation = std::get<1>(entry);
|
|
if (deallocOperation) {
|
|
deallocOperation->moveAfter(endOperation);
|
|
} else {
|
|
// If the Dealloc position is at the terminator operation of the
|
|
// block, then the value should escape from a deallocation.
|
|
Operation *nextOp = endOperation->getNextNode();
|
|
if (!nextOp)
|
|
continue;
|
|
// If there is no dealloc node, insert one in the right place.
|
|
OpBuilder builder(nextOp);
|
|
builder.create<DeallocOp>(alloc.getLoc(), alloc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The dominator info to find the appropriate start operation to move the
|
|
/// allocs.
|
|
DominanceInfo dominators;
|
|
|
|
/// The post dominator info to move the dependent allocs in the right
|
|
/// position.
|
|
PostDominanceInfo postDominators;
|
|
|
|
/// Stores already copied allocations to avoid additional copies of copies.
|
|
ValueSetT copiedValues;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferDeallocationPass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The actual buffer deallocation pass that inserts and moves dealloc nodes
|
|
/// into the right positions. Furthermore, it inserts additional allocs and
|
|
/// copies if necessary. It uses the algorithm described at the top of the file.
|
|
struct BufferDeallocationPass : BufferDeallocationBase<BufferDeallocationPass> {
|
|
|
|
void runOnFunction() override {
|
|
// Ensure that there are supported loops only.
|
|
Backedges backedges(getFunction());
|
|
if (backedges.size()) {
|
|
getFunction().emitError(
|
|
"Structured control-flow loops are supported only.");
|
|
return;
|
|
}
|
|
|
|
// Place all required temporary alloc, copy and dealloc nodes.
|
|
BufferDeallocation deallocation(getFunction());
|
|
deallocation.deallocate();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferDeallocationPass construction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::unique_ptr<Pass> mlir::createBufferDeallocationPass() {
|
|
return std::make_unique<BufferDeallocationPass>();
|
|
}
|