This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = linalg.fill(%extra_alloc, %pad)
%3 = subview %view [...][...][...]
linalg.copy(%3, %alloc)
memref_cast %extra_alloc: memref<B...> to memref<A...>
scf.yield %4 : memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
195 lines
11 KiB
MLIR
195 lines
11 KiB
MLIR
// RUN: mlir-opt %s -test-vector-transfer-full-partial-split | FileCheck %s
|
|
// RUN: mlir-opt %s -test-vector-transfer-full-partial-split=use-linalg-copy | FileCheck %s --check-prefix=LINALG
|
|
|
|
// CHECK-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// CHECK-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// CHECK-DAG: #[[$map_2d_stride_1:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
|
|
// LINALG-DAG: #[[$map_p4:.*]] = affine_map<()[s0] -> (s0 + 4)>
|
|
// LINALG-DAG: #[[$map_p8:.*]] = affine_map<()[s0] -> (s0 + 8)>
|
|
// LINALG-DAG: #[[$map_2d_stride_1:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
|
|
// LINALG-DAG: #[[$map_2d_dynamic:.*]] = affine_map<(d0, d1)[s0, s1, s2] -> (d0 * s1 + s0 + d1 * s2)>
|
|
// LINALG-DAG: #[[$bounds_map_4:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 4)>
|
|
// LINALG-DAG: #[[$bounds_map_8:.*]] = affine_map<(d0, d1, d2) -> (d0 - d1, 8)>
|
|
|
|
// CHECK-LABEL: split_vector_transfer_read_2d(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// CHECK-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// CHECK-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
|
|
// LINALG-LABEL: split_vector_transfer_read_2d(
|
|
// LINALG-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// LINALG-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// LINALG-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
func @split_vector_transfer_read_2d(%A: memref<?x8xf32>, %i: index, %j: index) -> vector<4x8xf32> {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// CHECK-DAG: %[[c0:.*]] = constant 0 : index
|
|
// CHECK-DAG: %[[c8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[cst:.*]] = constant 0.000000e+00 : f32
|
|
// alloca for boundary full tile
|
|
// CHECK: %[[alloc:.*]] = alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// CHECK: %[[d0:.*]] = dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// CHECK: %[[cmp0:.*]] = cmpi "sle", %[[idx0]], %[[d0]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// CHECK: %[[cmp1:.*]] = cmpi "sle", %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// CHECK: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32>, index, index) {
|
|
// inBounds, just yield %A
|
|
// CHECK: scf.yield %[[A]], %[[i]], %[[j]] : memref<?x8xf32>, index, index
|
|
// CHECK: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
|
|
// CHECK-SAME: memref<?x8xf32>, vector<4x8xf32>
|
|
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: store %[[slow]], %[[cast_alloc]][] : memref<vector<4x8xf32>>
|
|
// CHECK: %[[yielded:.*]] = memref_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32>
|
|
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// CHECK-SAME: memref<?x8xf32>, index, index
|
|
// CHECK: }
|
|
// CHECK: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %[[cst]]
|
|
// CHECK_SAME: {masked = [false, false]} : memref<?x8xf32>, vector<4x8xf32>
|
|
|
|
// LINALG-DAG: %[[c0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[c1:.*]] = constant 1 : index
|
|
// LINALG-DAG: %[[c4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[c8:.*]] = constant 8 : index
|
|
// LINALG-DAG: %[[cst:.*]] = constant 0.000000e+00 : f32
|
|
// alloca for boundary full tile
|
|
// LINALG: %[[alloc:.*]] = alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// LINALG: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// LINALG: %[[d0:.*]] = dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// LINALG: %[[cmp0:.*]] = cmpi "sle", %[[idx0]], %[[d0]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// LINALG: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// LINALG: %[[cmp1:.*]] = cmpi "sle", %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// LINALG: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// LINALG: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32>, index, index) {
|
|
// inBounds, just yield %A
|
|
// LINALG: scf.yield %[[A]], %[[i]], %[[j]] : memref<?x8xf32>, index, index
|
|
// LINALG: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// LINALG: linalg.fill(%[[alloc]], %[[cst]]) : memref<4x8xf32>, f32
|
|
// LINALG: %[[d0:.*]] = dim %[[A]], %[[c0]] : memref<?x8xf32>
|
|
// LINALG: %[[sv0:.*]] = affine.min #[[$bounds_map_4]](%[[d0]], %[[i]], %[[c4]])
|
|
// LINALG: %[[sv1:.*]] = affine.min #[[$bounds_map_8]](%[[c8]], %[[j]], %[[c8]])
|
|
// LINALG: %[[sv:.*]] = subview %[[A]][%[[i]], %[[j]]] [%[[sv0]], %[[sv1]]] [%[[c1]], %[[c1]]]
|
|
// LINALG-SAME: memref<?x8xf32> to memref<?x?xf32, #[[$map_2d_dynamic]]>
|
|
// LINALG: linalg.copy(%[[sv]], %[[alloc]]) : memref<?x?xf32, #[[$map_2d_dynamic]]>, memref<4x8xf32>
|
|
// LINALG: %[[yielded:.*]] = memref_cast %[[alloc]] :
|
|
// LINALG-SAME: memref<4x8xf32> to memref<?x8xf32>
|
|
// LINALG: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// LINALG-SAME: memref<?x8xf32>, index, index
|
|
// LINALG: }
|
|
// LINALG: %[[res:.*]] = vector.transfer_read %[[ifres]]#0[%[[ifres]]#1, %[[ifres]]#2], %[[cst]]
|
|
// LINALG_SAME: {masked = [false, false]} : memref<?x8xf32>, vector<4x8xf32>
|
|
%1 = vector.transfer_read %A[%i, %j], %f0 : memref<?x8xf32>, vector<4x8xf32>
|
|
|
|
// LINALG: return %[[res]] : vector<4x8xf32>
|
|
return %1: vector<4x8xf32>
|
|
}
|
|
|
|
// CHECK-LABEL: split_vector_transfer_read_strided_2d(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// CHECK-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// CHECK-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
|
|
// LINALG-LABEL: split_vector_transfer_read_strided_2d(
|
|
// LINALG-SAME: %[[A:[a-zA-Z0-9]*]]: memref
|
|
// LINALG-SAME: %[[i:[a-zA-Z0-9]*]]: index
|
|
// LINALG-SAME: %[[j:[a-zA-Z0-9]*]]: index
|
|
func @split_vector_transfer_read_strided_2d(
|
|
%A: memref<7x8xf32, offset:?, strides:[?, 1]>,
|
|
%i: index, %j: index) -> vector<4x8xf32> {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// CHECK-DAG: %[[c0:.*]] = constant 0 : index
|
|
// CHECK-DAG: %[[c7:.*]] = constant 7 : index
|
|
// CHECK-DAG: %[[c8:.*]] = constant 8 : index
|
|
// CHECK-DAG: %[[cst:.*]] = constant 0.000000e+00 : f32
|
|
// alloca for boundary full tile
|
|
// CHECK: %[[alloc:.*]] = alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// CHECK: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// CHECK: %[[cmp0:.*]] = cmpi "sle", %[[idx0]], %[[c7]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// CHECK: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// CHECK: %[[cmp1:.*]] = cmpi "sle", %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// CHECK: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// CHECK: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index) {
|
|
// inBounds but not cast-compatible: yield a memref_casted form of %A
|
|
// CHECK: %[[casted:.*]] = memref_cast %arg0 :
|
|
// CHECK-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// CHECK: scf.yield %[[casted]], %[[i]], %[[j]] :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// CHECK: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// CHECK: %[[slow:.*]] = vector.transfer_read %[[A]][%[[i]], %[[j]]], %cst :
|
|
// CHECK-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
// CHECK: %[[cast_alloc:.*]] = vector.type_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<vector<4x8xf32>>
|
|
// CHECK: store %[[slow]], %[[cast_alloc]][] :
|
|
// CHECK-SAME: memref<vector<4x8xf32>>
|
|
// CHECK: %[[yielded:.*]] = memref_cast %[[alloc]] :
|
|
// CHECK-SAME: memref<4x8xf32> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// CHECK: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// CHECK: }
|
|
// CHECK: %[[res:.*]] = vector.transfer_read {{.*}} {masked = [false, false]} :
|
|
// CHECK-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
|
|
// LINALG-DAG: %[[c0:.*]] = constant 0 : index
|
|
// LINALG-DAG: %[[c1:.*]] = constant 1 : index
|
|
// LINALG-DAG: %[[c4:.*]] = constant 4 : index
|
|
// LINALG-DAG: %[[c7:.*]] = constant 7 : index
|
|
// LINALG-DAG: %[[c8:.*]] = constant 8 : index
|
|
// LINALG-DAG: %[[cst:.*]] = constant 0.000000e+00 : f32
|
|
// alloca for boundary full tile
|
|
// LINALG: %[[alloc:.*]] = alloca() {alignment = 32 : i64} : memref<4x8xf32>
|
|
// %i + 4 <= dim(%A, 0)
|
|
// LINALG: %[[idx0:.*]] = affine.apply #[[$map_p4]]()[%[[i]]]
|
|
// LINALG: %[[cmp0:.*]] = cmpi "sle", %[[idx0]], %[[c7]] : index
|
|
// %j + 8 <= dim(%A, 1)
|
|
// LINALG: %[[idx1:.*]] = affine.apply #[[$map_p8]]()[%[[j]]]
|
|
// LINALG: %[[cmp1:.*]] = cmpi "sle", %[[idx1]], %[[c8]] : index
|
|
// are both conds true
|
|
// LINALG: %[[cond:.*]] = and %[[cmp0]], %[[cmp1]] : i1
|
|
// LINALG: %[[ifres:.*]]:3 = scf.if %[[cond]] -> (memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index) {
|
|
// inBounds but not cast-compatible: yield a memref_casted form of %A
|
|
// LINALG: %[[casted:.*]] = memref_cast %arg0 :
|
|
// LINALG-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// LINALG: scf.yield %[[casted]], %[[i]], %[[j]] :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// LINALG: } else {
|
|
// slow path, fill tmp alloc and yield a memref_casted version of it
|
|
// LINALG: linalg.fill(%[[alloc]], %[[cst]]) : memref<4x8xf32>, f32
|
|
// LINALG: %[[sv0:.*]] = affine.min #[[$bounds_map_4]](%[[c7]], %[[i]], %[[c4]])
|
|
// LINALG: %[[sv1:.*]] = affine.min #[[$bounds_map_8]](%[[c8]], %[[j]], %[[c8]])
|
|
// LINALG: %[[sv:.*]] = subview %[[A]][%[[i]], %[[j]]] [%[[sv0]], %[[sv1]]] [%[[c1]], %[[c1]]]
|
|
// LINALG-SAME: memref<7x8xf32, #[[$map_2d_stride_1]]> to memref<?x?xf32, #[[$map_2d_dynamic]]>
|
|
// LINALG: linalg.copy(%[[sv]], %[[alloc]]) : memref<?x?xf32, #[[$map_2d_dynamic]]>, memref<4x8xf32>
|
|
// LINALG: %[[yielded:.*]] = memref_cast %[[alloc]] :
|
|
// LINALG-SAME: memref<4x8xf32> to memref<?x8xf32, #[[$map_2d_stride_1]]>
|
|
// LINALG: scf.yield %[[yielded]], %[[c0]], %[[c0]] :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, index, index
|
|
// LINALG: }
|
|
// LINALG: %[[res:.*]] = vector.transfer_read {{.*}} {masked = [false, false]} :
|
|
// LINALG-SAME: memref<?x8xf32, #[[$map_2d_stride_1]]>, vector<4x8xf32>
|
|
%1 = vector.transfer_read %A[%i, %j], %f0 :
|
|
memref<7x8xf32, offset:?, strides:[?, 1]>, vector<4x8xf32>
|
|
|
|
// CHECK: return %[[res]] : vector<4x8xf32>
|
|
return %1 : vector<4x8xf32>
|
|
}
|