Files
clang-p2996/llvm/test/CodeGen/AMDGPU/sgpr-control-flow.ll
Austin Kerbow da067ed569 [AMDGPU] Set most sched model resource's BufferSize to one
Using a BufferSize of one for memory ProcResources will result in better
ILP since it more accurately models the dependencies between memory ops
and their consumers on an in-order processor. After this change, the
scheduler will treat the data edges from loads as blocking so that
stalls are guaranteed when waiting for data to be retreaved from memory.
Since we don't actually track waitcnt here, this should do a better job
at modeling their behavior.

Practically, this means that the scheduler will trigger the 'STALL'
heuristic more often.

This type of change needs to be evaluated experimentally. Preliminary
results are positive.

Fixes: SWDEV-282962

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D114777
2021-12-01 22:31:28 -08:00

226 lines
7.2 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=SI %s
;
; Most SALU instructions ignore control flow, so we need to make sure
; they don't overwrite values from other blocks.
; If the branch decision is made based on a value in an SGPR then all
; threads will execute the same code paths, so we don't need to worry
; about instructions in different blocks overwriting each other.
define amdgpu_kernel void @sgpr_if_else_salu_br(i32 addrspace(1)* %out, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[8:11], s[0:1], 0xb
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dword s0, s[0:1], 0xf
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s8, 0
; SI-NEXT: s_cbranch_scc0 .LBB0_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_add_i32 s2, s11, s0
; SI-NEXT: s_cbranch_execz .LBB0_3
; SI-NEXT: s_branch .LBB0_4
; SI-NEXT: .LBB0_2:
; SI-NEXT: ; implicit-def: $sgpr2
; SI-NEXT: .LBB0_3: ; %if
; SI-NEXT: s_sub_i32 s2, s9, s10
; SI-NEXT: .LBB0_4: ; %endif
; SI-NEXT: s_add_i32 s0, s2, s8
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%0 = icmp eq i32 %a, 0
br i1 %0, label %if, label %else
if:
%1 = sub i32 %b, %c
br label %endif
else:
%2 = add i32 %d, %e
br label %endif
endif:
%3 = phi i32 [%1, %if], [%2, %else]
%4 = add i32 %3, %a
store i32 %4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_salu_br_opt(i32 addrspace(1)* %out, [8 x i32], i32 %a, [8 x i32], i32 %b, [8 x i32], i32 %c, [8 x i32], i32 %d, [8 x i32], i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br_opt:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dword s6, s[0:1], 0x13
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s6, 0
; SI-NEXT: s_cbranch_scc0 .LBB1_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_load_dword s2, s[0:1], 0x2e
; SI-NEXT: s_load_dword s3, s[0:1], 0x37
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s7, s2, s3
; SI-NEXT: s_cbranch_execz .LBB1_3
; SI-NEXT: s_branch .LBB1_4
; SI-NEXT: .LBB1_2:
; SI-NEXT: ; implicit-def: $sgpr7
; SI-NEXT: .LBB1_3: ; %if
; SI-NEXT: s_load_dword s2, s[0:1], 0x1c
; SI-NEXT: s_load_dword s0, s[0:1], 0x25
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s7, s2, s0
; SI-NEXT: .LBB1_4: ; %endif
; SI-NEXT: s_add_i32 s0, s7, s6
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%cmp0 = icmp eq i32 %a, 0
br i1 %cmp0, label %if, label %else
if:
%add0 = add i32 %b, %c
br label %endif
else:
%add1 = add i32 %d, %e
br label %endif
endif:
%phi = phi i32 [%add0, %if], [%add1, %else]
%add2 = add i32 %phi, %a
store i32 %add2, i32 addrspace(1)* %out
ret void
}
; The two S_ADD instructions should write to different registers, since
; different threads will take different control flow paths.
define amdgpu_kernel void @sgpr_if_else_valu_br(i32 addrspace(1)* %out, float %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_valu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx2 s[4:5], s[0:1], 0x9
; SI-NEXT: s_load_dwordx4 s[0:3], s[0:1], 0xc
; SI-NEXT: v_cvt_f32_u32_e32 v0, v0
; SI-NEXT: ; implicit-def: $sgpr8
; SI-NEXT: v_cmp_lg_f32_e32 vcc, 0, v0
; SI-NEXT: s_and_saveexec_b64 s[6:7], vcc
; SI-NEXT: s_xor_b64 s[6:7], exec, s[6:7]
; SI-NEXT: s_cbranch_execz .LBB2_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s8, s2, s3
; SI-NEXT: .LBB2_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[6:7]
; SI-NEXT: v_mov_b32_e32 v0, s8
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_add_i32 s0, s0, s1
; SI-NEXT: v_mov_b32_e32 v0, s0
; SI-NEXT: ; %bb.4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tid_f = uitofp i32 %tid to float
%tmp1 = fcmp ueq float %tid_f, 0.0
br i1 %tmp1, label %if, label %else
if:
%tmp2 = add i32 %b, %c
br label %endif
else:
%tmp3 = add i32 %d, %e
br label %endif
endif:
%tmp4 = phi i32 [%tmp2, %if], [%tmp3, %else]
store i32 %tmp4, i32 addrspace(1)* %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_valu_cmp_phi_br(i32 addrspace(1)* %out, i32 addrspace(1)* %a, i32 addrspace(1)* %b) {
; SI-LABEL: sgpr_if_else_valu_cmp_phi_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s2, 0
; SI-NEXT: v_cmp_ne_u32_e32 vcc, 0, v0
; SI-NEXT: ; implicit-def: $sgpr8_sgpr9
; SI-NEXT: s_and_saveexec_b64 s[10:11], vcc
; SI-NEXT: s_xor_b64 s[10:11], exec, s[10:11]
; SI-NEXT: s_cbranch_execz .LBB3_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_load_dword v0, v[0:1], s[0:3], 0 addr64
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[8:9], vcc, exec
; SI-NEXT: ; implicit-def: $vgpr0
; SI-NEXT: .LBB3_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_or_saveexec_b64 s[0:1], s[10:11]
; SI-NEXT: s_xor_b64 exec, exec, s[0:1]
; SI-NEXT: s_cbranch_execz .LBB3_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_mov_b32 s15, 0xf000
; SI-NEXT: s_mov_b32 s14, 0
; SI-NEXT: s_mov_b64 s[12:13], s[6:7]
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: buffer_load_dword v0, v[0:1], s[12:15], 0 addr64
; SI-NEXT: s_andn2_b64 s[2:3], s[8:9], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_eq_u32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[6:7], vcc, exec
; SI-NEXT: s_or_b64 s[8:9], s[2:3], s[6:7]
; SI-NEXT: .LBB3_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[0:1]
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_cndmask_b32_e64 v0, 0, -1, s[8:9]
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tmp1 = icmp eq i32 %tid, 0
br i1 %tmp1, label %if, label %else
if:
%gep.if = getelementptr i32, i32 addrspace(1)* %a, i32 %tid
%a.val = load i32, i32 addrspace(1)* %gep.if
%cmp.if = icmp eq i32 %a.val, 0
br label %endif
else:
%gep.else = getelementptr i32, i32 addrspace(1)* %b, i32 %tid
%b.val = load i32, i32 addrspace(1)* %gep.else
%cmp.else = icmp slt i32 %b.val, 0
br label %endif
endif:
%tmp4 = phi i1 [%cmp.if, %if], [%cmp.else, %else]
%ext = sext i1 %tmp4 to i32
store i32 %ext, i32 addrspace(1)* %out
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #0
attributes #0 = { readnone }