Files
clang-p2996/flang/lib/Lower/HlfirIntrinsics.cpp
Christian Sigg fac349a169 Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc75.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

447 lines
18 KiB
C++

//===-- HlfirIntrinsics.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/SmallVector.h"
#include <mlir/IR/ValueRange.h>
namespace {
class HlfirTransformationalIntrinsic {
public:
explicit HlfirTransformationalIntrinsic(fir::FirOpBuilder &builder,
mlir::Location loc)
: builder(builder), loc(loc) {}
virtual ~HlfirTransformationalIntrinsic() = default;
hlfir::EntityWithAttributes
lower(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
mlir::Value res = lowerImpl(loweredActuals, argLowering, stmtResultType);
for (const hlfir::CleanupFunction &fn : cleanupFns)
fn();
return {hlfir::EntityWithAttributes{res}};
}
protected:
fir::FirOpBuilder &builder;
mlir::Location loc;
llvm::SmallVector<hlfir::CleanupFunction, 3> cleanupFns;
virtual mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) = 0;
llvm::SmallVector<mlir::Value> getOperandVector(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering);
mlir::Type computeResultType(mlir::Value argArray, mlir::Type stmtResultType);
template <typename OP, typename... BUILD_ARGS>
inline OP createOp(BUILD_ARGS... args) {
return builder.create<OP>(loc, args...);
}
mlir::Value loadBoxAddress(
const std::optional<Fortran::lower::PreparedActualArgument> &arg);
void addCleanup(std::optional<hlfir::CleanupFunction> cleanup) {
if (cleanup)
cleanupFns.emplace_back(std::move(*cleanup));
}
};
template <typename OP, bool HAS_MASK>
class HlfirReductionIntrinsic : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
using HlfirSumLowering = HlfirReductionIntrinsic<hlfir::SumOp, true>;
using HlfirProductLowering = HlfirReductionIntrinsic<hlfir::ProductOp, true>;
using HlfirMaxvalLowering = HlfirReductionIntrinsic<hlfir::MaxvalOp, true>;
using HlfirMinvalLowering = HlfirReductionIntrinsic<hlfir::MinvalOp, true>;
using HlfirAnyLowering = HlfirReductionIntrinsic<hlfir::AnyOp, false>;
using HlfirAllLowering = HlfirReductionIntrinsic<hlfir::AllOp, false>;
template <typename OP>
class HlfirMinMaxLocIntrinsic : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
using HlfirMinlocLowering = HlfirMinMaxLocIntrinsic<hlfir::MinlocOp>;
using HlfirMaxlocLowering = HlfirMinMaxLocIntrinsic<hlfir::MaxlocOp>;
template <typename OP>
class HlfirProductIntrinsic : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
using HlfirMatmulLowering = HlfirProductIntrinsic<hlfir::MatmulOp>;
using HlfirDotProductLowering = HlfirProductIntrinsic<hlfir::DotProductOp>;
class HlfirTransposeLowering : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
class HlfirCountLowering : public HlfirTransformationalIntrinsic {
public:
using HlfirTransformationalIntrinsic::HlfirTransformationalIntrinsic;
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
};
class HlfirCharExtremumLowering : public HlfirTransformationalIntrinsic {
public:
HlfirCharExtremumLowering(fir::FirOpBuilder &builder, mlir::Location loc,
hlfir::CharExtremumPredicate pred)
: HlfirTransformationalIntrinsic(builder, loc), pred{pred} {}
protected:
mlir::Value
lowerImpl(const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) override;
protected:
hlfir::CharExtremumPredicate pred;
};
} // namespace
mlir::Value HlfirTransformationalIntrinsic::loadBoxAddress(
const std::optional<Fortran::lower::PreparedActualArgument> &arg) {
if (!arg)
return mlir::Value{};
hlfir::Entity actual = arg->getActual(loc, builder);
if (!arg->handleDynamicOptional()) {
if (actual.isMutableBox()) {
// this is a box address type but is not dynamically optional. Just load
// the box, assuming it is well formed (!fir.ref<!fir.box<...>> ->
// !fir.box<...>)
return builder.create<fir::LoadOp>(loc, actual.getBase());
}
return actual;
}
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, actual);
addCleanup(cleanup);
mlir::Value isPresent = arg->getIsPresent();
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, exv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return boxOrAbsent;
}
static mlir::Value loadOptionalValue(
mlir::Location loc, fir::FirOpBuilder &builder,
const std::optional<Fortran::lower::PreparedActualArgument> &arg,
hlfir::Entity actual) {
if (!arg->handleDynamicOptional())
return hlfir::loadTrivialScalar(loc, builder, actual);
mlir::Value isPresent = arg->getIsPresent();
mlir::Type eleType = hlfir::getFortranElementType(actual.getType());
return builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
assert(actual.isScalar() && fir::isa_trivial(eleType) &&
"must be a numerical or logical scalar");
hlfir::Entity val = hlfir::loadTrivialScalar(loc, builder, actual);
builder.create<fir::ResultOp>(loc, val);
})
.genElse([&]() {
mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0];
}
llvm::SmallVector<mlir::Value> HlfirTransformationalIntrinsic::getOperandVector(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering) {
llvm::SmallVector<mlir::Value> operands;
operands.reserve(loweredActuals.size());
for (size_t i = 0; i < loweredActuals.size(); ++i) {
std::optional<Fortran::lower::PreparedActualArgument> arg =
loweredActuals[i];
if (!arg) {
operands.emplace_back();
continue;
}
hlfir::Entity actual = arg->getActual(loc, builder);
mlir::Value valArg;
if (!argLowering) {
valArg = hlfir::loadTrivialScalar(loc, builder, actual);
} else {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, i);
if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box)
valArg = loadBoxAddress(arg);
else if (!argRules.handleDynamicOptional &&
argRules.lowerAs != fir::LowerIntrinsicArgAs::Inquired)
valArg = hlfir::derefPointersAndAllocatables(loc, builder, actual);
else if (argRules.handleDynamicOptional &&
argRules.lowerAs == fir::LowerIntrinsicArgAs::Value)
valArg = loadOptionalValue(loc, builder, arg, actual);
else if (argRules.handleDynamicOptional)
TODO(loc, "hlfir transformational intrinsic dynamically optional "
"argument without box lowering");
else
valArg = actual.getBase();
}
operands.emplace_back(valArg);
}
return operands;
}
mlir::Type
HlfirTransformationalIntrinsic::computeResultType(mlir::Value argArray,
mlir::Type stmtResultType) {
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(stmtResultType);
if (auto array = mlir::dyn_cast<fir::SequenceType>(normalisedResult)) {
hlfir::ExprType::Shape resultShape =
hlfir::ExprType::Shape{array.getShape()};
mlir::Type elementType = array.getEleTy();
return hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
/*polymorphic=*/false);
} else if (auto resCharType =
mlir::dyn_cast<fir::CharacterType>(stmtResultType)) {
normalisedResult = hlfir::ExprType::get(
builder.getContext(), hlfir::ExprType::Shape{}, resCharType, false);
}
return normalisedResult;
}
template <typename OP, bool HAS_MASK>
mlir::Value HlfirReductionIntrinsic<OP, HAS_MASK>::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
// dim, mask can be NULL if these arguments are not given
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
mlir::Type resultTy = computeResultType(array, stmtResultType);
OP op;
if constexpr (HAS_MASK)
op = createOp<OP>(resultTy, array, dim,
/*mask=*/operands[2]);
else
op = createOp<OP>(resultTy, array, dim);
return op;
}
template <typename OP>
mlir::Value HlfirMinMaxLocIntrinsic<OP>::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
mlir::Value mask = operands[2];
mlir::Value back = operands[4];
// dim, mask and back can be NULL if these arguments are not given.
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
if (back)
back = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{back});
mlir::Type resultTy = computeResultType(array, stmtResultType);
return createOp<OP>(resultTy, array, dim, mask, back);
}
template <typename OP>
mlir::Value HlfirProductIntrinsic<OP>::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Type resultType = computeResultType(operands[0], stmtResultType);
return createOp<OP>(resultType, operands[0], operands[1]);
}
mlir::Value HlfirTransposeLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
hlfir::ExprType::Shape resultShape;
mlir::Type normalisedResult =
hlfir::getFortranElementOrSequenceType(stmtResultType);
auto array = mlir::cast<fir::SequenceType>(normalisedResult);
llvm::ArrayRef<int64_t> arrayShape = array.getShape();
assert(arrayShape.size() == 2 && "arguments to transpose have a rank of 2");
mlir::Type elementType = array.getEleTy();
resultShape.push_back(arrayShape[0]);
resultShape.push_back(arrayShape[1]);
if (auto resCharType = mlir::dyn_cast<fir::CharacterType>(elementType))
if (!resCharType.hasConstantLen()) {
// The FunctionRef expression might have imprecise character
// type at this point, and we can improve it by propagating
// the constant length from the argument.
auto argCharType = mlir::dyn_cast<fir::CharacterType>(
hlfir::getFortranElementType(operands[0].getType()));
if (argCharType && argCharType.hasConstantLen())
elementType = fir::CharacterType::get(
builder.getContext(), resCharType.getFKind(), argCharType.getLen());
}
mlir::Type resultTy =
hlfir::ExprType::get(builder.getContext(), resultShape, elementType,
fir::isPolymorphicType(stmtResultType));
return createOp<hlfir::TransposeOp>(resultTy, operands[0]);
}
mlir::Value HlfirCountLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
mlir::Value array = operands[0];
mlir::Value dim = operands[1];
if (dim)
dim = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{dim});
mlir::Type resultType = computeResultType(array, stmtResultType);
return createOp<hlfir::CountOp>(resultType, array, dim);
}
mlir::Value HlfirCharExtremumLowering::lowerImpl(
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
auto operands = getOperandVector(loweredActuals, argLowering);
assert(operands.size() >= 2);
return createOp<hlfir::CharExtremumOp>(pred, mlir::ValueRange{operands});
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::lowerHlfirIntrinsic(
fir::FirOpBuilder &builder, mlir::Location loc, const std::string &name,
const Fortran::lower::PreparedActualArguments &loweredActuals,
const fir::IntrinsicArgumentLoweringRules *argLowering,
mlir::Type stmtResultType) {
// If the result is of a derived type that may need finalization,
// we have to use DestroyOp with 'finalize' attribute for the result
// of the intrinsic operation.
if (name == "sum")
return HlfirSumLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "product")
return HlfirProductLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "any")
return HlfirAnyLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "all")
return HlfirAllLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "matmul")
return HlfirMatmulLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "dot_product")
return HlfirDotProductLowering{builder, loc}.lower(
loweredActuals, argLowering, stmtResultType);
// FIXME: the result may need finalization.
if (name == "transpose")
return HlfirTransposeLowering{builder, loc}.lower(
loweredActuals, argLowering, stmtResultType);
if (name == "count")
return HlfirCountLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "maxval")
return HlfirMaxvalLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "minval")
return HlfirMinvalLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "minloc")
return HlfirMinlocLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (name == "maxloc")
return HlfirMaxlocLowering{builder, loc}.lower(loweredActuals, argLowering,
stmtResultType);
if (mlir::isa<fir::CharacterType>(stmtResultType)) {
if (name == "min")
return HlfirCharExtremumLowering{builder, loc,
hlfir::CharExtremumPredicate::min}
.lower(loweredActuals, argLowering, stmtResultType);
if (name == "max")
return HlfirCharExtremumLowering{builder, loc,
hlfir::CharExtremumPredicate::max}
.lower(loweredActuals, argLowering, stmtResultType);
}
return std::nullopt;
}