Files
clang-p2996/lld/MachO/SyntheticSections.cpp
alx32 7404685598 [lld-macho] Fix compatibility between --icf=safe_thunks and --keep-icf-stabs (#116687)
Currently when `--icf=safe_thunks` is used, `STABS` entries cannot be
generated for ICF'ed functions. This is because if ICF converts a full
function into a thunk and then we generate a `STABS` entry for the
thunk, `dsymutil` will expect to find the entire function body at the
location of the thunk. Because just a thunk will be present at the
location of the `STABS` entry - dsymutil will generate invalid debug
info for such scenarios.

With this change, if `--icf=safe_thunks` is used and `--keep-icf-stabs`
is also specified, STABS entries will be created for all functions, even
merged ones. However, the STABS entries will point at the actual (full)
function body while having the name of the thunk. This way we still get
program correctness as well as correct DWARF data. When doing this, the
debug data will be identical to the scenario where we're using
`--icf=all` and `--keep-icf-stabs`, but the actual program will also
contain thunks, which won't show up in the DWARF data.
2024-11-20 09:36:52 -08:00

2532 lines
92 KiB
C++

//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "ExportTrie.h"
#include "ICF.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/xxhash.h"
#if defined(__APPLE__)
#include <sys/mman.h>
#define COMMON_DIGEST_FOR_OPENSSL
#include <CommonCrypto/CommonDigest.h>
#else
#include "llvm/Support/SHA256.h"
#endif
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
// Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
#if defined(__APPLE__)
// FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
// for some notes on this.
CC_SHA256(data, len, output);
#else
ArrayRef<uint8_t> block(data, len);
std::array<uint8_t, 32> hash = SHA256::hash(block);
static_assert(hash.size() == CodeSignatureSection::hashSize);
memcpy(output, hash.data(), hash.size());
#endif
}
InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;
SyntheticSection::SyntheticSection(const char *segname, const char *name)
: OutputSection(SyntheticKind, name) {
std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
isec = makeSyntheticInputSection(segname, name);
isec->parent = this;
syntheticSections.push_back(this);
}
// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
: SyntheticSection(segment_names::text, section_names::header) {
// XXX: This is a hack. (See D97007)
// Setting the index to 1 to pretend that this section is the text
// section.
index = 1;
isec->isFinal = true;
}
void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
loadCommands.push_back(lc);
sizeOfCmds += lc->getSize();
}
uint64_t MachHeaderSection::getSize() const {
uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
// If we are emitting an encryptable binary, our load commands must have a
// separate (non-encrypted) page to themselves.
if (config->emitEncryptionInfo)
size = alignToPowerOf2(size, target->getPageSize());
return size;
}
static uint32_t cpuSubtype() {
uint32_t subtype = target->cpuSubtype;
if (config->outputType == MH_EXECUTE && !config->staticLink &&
target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
config->platform() == PLATFORM_MACOS &&
config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
subtype |= CPU_SUBTYPE_LIB64;
return subtype;
}
static bool hasWeakBinding() {
return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
: in.weakBinding->hasEntry();
}
static bool hasNonWeakDefinition() {
return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
: in.weakBinding->hasNonWeakDefinition();
}
void MachHeaderSection::writeTo(uint8_t *buf) const {
auto *hdr = reinterpret_cast<mach_header *>(buf);
hdr->magic = target->magic;
hdr->cputype = target->cpuType;
hdr->cpusubtype = cpuSubtype();
hdr->filetype = config->outputType;
hdr->ncmds = loadCommands.size();
hdr->sizeofcmds = sizeOfCmds;
hdr->flags = MH_DYLDLINK;
if (config->namespaceKind == NamespaceKind::twolevel)
hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
if (config->outputType == MH_DYLIB && !config->hasReexports)
hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
if (config->markDeadStrippableDylib)
hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
if (config->outputType == MH_EXECUTE && config->isPic)
hdr->flags |= MH_PIE;
if (config->outputType == MH_DYLIB && config->applicationExtension)
hdr->flags |= MH_APP_EXTENSION_SAFE;
if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
hdr->flags |= MH_WEAK_DEFINES;
if (in.exports->hasWeakSymbol || hasWeakBinding())
hdr->flags |= MH_BINDS_TO_WEAK;
for (const OutputSegment *seg : outputSegments) {
for (const OutputSection *osec : seg->getSections()) {
if (isThreadLocalVariables(osec->flags)) {
hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
break;
}
}
}
uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
for (const LoadCommand *lc : loadCommands) {
lc->writeTo(p);
p += lc->getSize();
}
}
PageZeroSection::PageZeroSection()
: SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
RebaseSection::RebaseSection()
: LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
namespace {
struct RebaseState {
uint64_t sequenceLength;
uint64_t skipLength;
};
} // namespace
static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
assert(incr != 0);
if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
(incr % target->wordSize) == 0) {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
(incr >> target->p2WordSize));
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(incr, os);
}
}
static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
assert(state.sequenceLength > 0);
if (state.skipLength == target->wordSize) {
if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
state.sequenceLength);
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
encodeULEB128(state.sequenceLength, os);
}
} else if (state.sequenceLength == 1) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
encodeULEB128(state.skipLength - target->wordSize, os);
} else {
os << static_cast<uint8_t>(
REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
encodeULEB128(state.sequenceLength, os);
encodeULEB128(state.skipLength - target->wordSize, os);
}
}
// Rebases are communicated to dyld using a bytecode, whose opcodes cause the
// memory location at a specific address to be rebased and/or the address to be
// incremented.
//
// Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
// one, encoding a series of evenly spaced addresses. This algorithm works by
// splitting up the sorted list of addresses into such chunks. If the locations
// are consecutive or the sequence consists of a single location, flushRebase
// will use a smaller, more specialized encoding.
static void encodeRebases(const OutputSegment *seg,
MutableArrayRef<Location> locations,
raw_svector_ostream &os) {
// dyld operates on segments. Translate section offsets into segment offsets.
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
// The algorithm assumes that locations are unique.
Location *end =
llvm::unique(locations, [](const Location &a, const Location &b) {
return a.offset == b.offset;
});
size_t count = end - locations.begin();
os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
assert(!locations.empty());
uint64_t offset = locations[0].offset;
encodeULEB128(offset, os);
RebaseState state{1, target->wordSize};
for (size_t i = 1; i < count; ++i) {
offset = locations[i].offset;
uint64_t skip = offset - locations[i - 1].offset;
assert(skip != 0 && "duplicate locations should have been weeded out");
if (skip == state.skipLength) {
++state.sequenceLength;
} else if (state.sequenceLength == 1) {
++state.sequenceLength;
state.skipLength = skip;
} else if (skip < state.skipLength) {
// The address is lower than what the rebase pointer would be if the last
// location would be part of a sequence. We start a new sequence from the
// previous location.
--state.sequenceLength;
flushRebase(state, os);
state.sequenceLength = 2;
state.skipLength = skip;
} else {
// The address is at some positive offset from the rebase pointer. We
// start a new sequence which begins with the current location.
flushRebase(state, os);
emitIncrement(skip - state.skipLength, os);
state.sequenceLength = 1;
state.skipLength = target->wordSize;
}
}
flushRebase(state, os);
}
void RebaseSection::finalizeContents() {
if (locations.empty())
return;
raw_svector_ostream os{contents};
os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
llvm::sort(locations, [](const Location &a, const Location &b) {
return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
});
for (size_t i = 0, count = locations.size(); i < count;) {
const OutputSegment *seg = locations[i].isec->parent->parent;
size_t j = i + 1;
while (j < count && locations[j].isec->parent->parent == seg)
++j;
encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
i = j;
}
os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}
void RebaseSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
void macho::addNonLazyBindingEntries(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
if (config->emitChainedFixups) {
if (needsBinding(sym))
in.chainedFixups->addBinding(sym, isec, offset, addend);
else if (isa<Defined>(sym))
in.chainedFixups->addRebase(isec, offset);
else
llvm_unreachable("cannot bind to an undefined symbol");
return;
}
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
in.binding->addEntry(dysym, isec, offset, addend);
if (dysym->isWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
} else if (const auto *defined = dyn_cast<Defined>(sym)) {
in.rebase->addEntry(isec, offset);
if (defined->isExternalWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
else if (defined->interposable)
in.binding->addEntry(sym, isec, offset, addend);
} else {
// Undefined symbols are filtered out in scanRelocations(); we should never
// get here
llvm_unreachable("cannot bind to an undefined symbol");
}
}
void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
assert(!sym->isInGot());
sym->gotIndex = entries.size() - 1;
addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
}
}
void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
rebase->target = targetVA & 0xf'ffff'ffff;
rebase->high8 = (targetVA >> 56);
rebase->reserved = 0;
rebase->next = 0;
rebase->bind = 0;
// The fixup format places a 64 GiB limit on the output's size.
// Should we handle this gracefully?
uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
if (encodedVA != targetVA)
error("rebase target address 0x" + Twine::utohexstr(targetVA) +
" does not fit into chained fixup. Re-link with -no_fixup_chains");
}
static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
bind->ordinal = ordinal;
bind->addend = inlineAddend;
bind->reserved = 0;
bind->next = 0;
bind->bind = 1;
}
void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
if (needsBinding(sym))
writeChainedBind(buf, sym, addend);
else
writeChainedRebase(buf, sym->getVA() + addend);
}
void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
if (config->emitChainedFixups) {
for (const auto &[i, entry] : llvm::enumerate(entries))
writeChainedFixup(&buf[i * target->wordSize], entry, 0);
} else {
for (const auto &[i, entry] : llvm::enumerate(entries))
if (auto *defined = dyn_cast<Defined>(entry))
write64le(&buf[i * target->wordSize], defined->getVA());
}
}
GotSection::GotSection()
: NonLazyPointerSectionBase(segment_names::data, section_names::got) {
flags = S_NON_LAZY_SYMBOL_POINTERS;
}
TlvPointerSection::TlvPointerSection()
: NonLazyPointerSectionBase(segment_names::data,
section_names::threadPtrs) {
flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
}
BindingSection::BindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::binding) {}
namespace {
struct Binding {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
int64_t addend = 0;
};
struct BindIR {
// Default value of 0xF0 is not valid opcode and should make the program
// scream instead of accidentally writing "valid" values.
uint8_t opcode = 0xF0;
uint64_t data = 0;
uint64_t consecutiveCount = 0;
};
} // namespace
// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
int64_t addend, Binding &lastBinding,
std::vector<BindIR> &opcodes) {
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastBinding.segment != seg) {
opcodes.push_back(
{static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index),
offset});
lastBinding.segment = seg;
lastBinding.offset = offset;
} else if (lastBinding.offset != offset) {
opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
lastBinding.offset = offset;
}
if (lastBinding.addend != addend) {
opcodes.push_back(
{BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
lastBinding.addend = addend;
}
opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
// DO_BIND causes dyld to both perform the binding and increment the offset
lastBinding.offset += target->wordSize;
}
static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
// Pass 1: Combine bind/add pairs
size_t i;
int pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
opcodes[pWrite].data = opcodes[i].data;
++i;
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 2: Compress two or more bind_add opcodes
pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
opcodes[pWrite].consecutiveCount = 2;
opcodes[pWrite].data = opcodes[i].data;
++i;
while (i < opcodes.size() &&
(opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].consecutiveCount++;
++i;
}
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 3: Use immediate encodings
// Every binding is the size of one pointer. If the next binding is a
// multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
// opcode can be scaled by wordSize into a single byte and dyld will
// expand it to the correct address.
for (auto &p : opcodes) {
// It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
// but ld64 currently does this. This could be a potential bug, but
// for now, perform the same behavior to prevent mysterious bugs.
if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
((p.data % target->wordSize) == 0)) {
p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
p.data /= target->wordSize;
}
}
}
static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
switch (opcode) {
case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
case BIND_OPCODE_ADD_ADDR_ULEB:
case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
os << op.opcode;
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_SET_ADDEND_SLEB:
os << op.opcode;
encodeSLEB128(static_cast<int64_t>(op.data), os);
break;
case BIND_OPCODE_DO_BIND:
os << op.opcode;
break;
case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
os << op.opcode;
encodeULEB128(op.consecutiveCount, os);
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
os << static_cast<uint8_t>(op.opcode | op.data);
break;
default:
llvm_unreachable("cannot bind to an unrecognized symbol");
}
}
static bool needsWeakBind(const Symbol &sym) {
if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
return dysym->isWeakDef();
if (auto *defined = dyn_cast<Defined>(&sym))
return defined->isExternalWeakDef();
return false;
}
// Non-weak bindings need to have their dylib ordinal encoded as well.
static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
assert(dysym.getFile()->isReferenced());
return dysym.getFile()->ordinal;
}
static int16_t ordinalForSymbol(const Symbol &sym) {
if (config->emitChainedFixups && needsWeakBind(sym))
return BIND_SPECIAL_DYLIB_WEAK_LOOKUP;
if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
return ordinalForDylibSymbol(*dysym);
assert(cast<Defined>(&sym)->interposable);
return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
}
static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
if (ordinal <= 0) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
(ordinal & BIND_IMMEDIATE_MASK));
} else if (ordinal <= BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
} else {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(ordinal, os);
}
}
static void encodeWeakOverride(const Defined *defined,
raw_svector_ostream &os) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
<< defined->getName() << '\0';
}
// Organize the bindings so we can encoded them with fewer opcodes.
//
// First, all bindings for a given symbol should be grouped together.
// BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
// has an associated symbol string), so we only want to emit it once per symbol.
//
// Within each group, we sort the bindings by address. Since bindings are
// delta-encoded, sorting them allows for a more compact result. Note that
// sorting by address alone ensures that bindings for the same segment / section
// are located together, minimizing the number of times we have to emit
// BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
//
// Finally, we sort the symbols by the address of their first binding, again
// to facilitate the delta-encoding process.
template <class Sym>
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
bindingsMap.begin(), bindingsMap.end());
for (auto &p : bindingsVec) {
std::vector<BindingEntry> &bindings = p.second;
llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
}
llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
return a.second[0].target.getVA() < b.second[0].target.getVA();
});
return bindingsVec;
}
// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
// * segment index (of the segment to write the symbol addresses to, typically
// the __DATA_CONST segment which contains the GOT)
// * offset within the segment, indicating the next location to write a binding
// * symbol type
// * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
// * symbol name
// * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
int16_t lastOrdinal = 0;
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym->isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
int16_t ordinal = ordinalForSymbol(*sym);
if (ordinal != lastOrdinal) {
encodeDylibOrdinal(ordinal, os);
lastOrdinal = ordinal;
}
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void BindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
WeakBindingSection::WeakBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
void WeakBindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
for (const Defined *defined : definitions)
encodeWeakOverride(defined, os);
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
<< sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty() || !definitions.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void WeakBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
StubsSection::StubsSection()
: SyntheticSection(segment_names::text, section_names::stubs) {
flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
// The stubs section comprises machine instructions, which are aligned to
// 4 bytes on the archs we care about.
align = 4;
reserved2 = target->stubSize;
}
uint64_t StubsSection::getSize() const {
return entries.size() * target->stubSize;
}
void StubsSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : entries) {
uint64_t pointerVA =
config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
target->writeStub(buf + off, *sym, pointerVA);
off += target->stubSize;
}
}
void StubsSection::finalize() { isFinal = true; }
static void addBindingsForStub(Symbol *sym) {
assert(!config->emitChainedFixups);
if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (sym->isWeakDef()) {
in.binding->addEntry(dysym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else {
in.lazyBinding->addEntry(dysym);
}
} else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isExternalWeakDef()) {
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else if (defined->interposable) {
in.lazyBinding->addEntry(sym);
} else {
llvm_unreachable("invalid stub target");
}
} else {
llvm_unreachable("invalid stub target symbol type");
}
}
void StubsSection::addEntry(Symbol *sym) {
bool inserted = entries.insert(sym);
if (inserted) {
sym->stubsIndex = entries.size() - 1;
if (config->emitChainedFixups)
in.got->addEntry(sym);
else
addBindingsForStub(sym);
}
}
StubHelperSection::StubHelperSection()
: SyntheticSection(segment_names::text, section_names::stubHelper) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = 4; // This section comprises machine instructions
}
uint64_t StubHelperSection::getSize() const {
return target->stubHelperHeaderSize +
in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}
bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
void StubHelperSection::writeTo(uint8_t *buf) const {
target->writeStubHelperHeader(buf);
size_t off = target->stubHelperHeaderSize;
for (const Symbol *sym : in.lazyBinding->getEntries()) {
target->writeStubHelperEntry(buf + off, *sym, addr + off);
off += target->stubHelperEntrySize;
}
}
void StubHelperSection::setUp() {
Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(binder))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libSystem.dylib)");
// treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
if (stubBinder == nullptr)
return;
in.got->addEntry(stubBinder);
in.imageLoaderCache->parent =
ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
addInputSection(in.imageLoaderCache);
// Since this isn't in the symbol table or in any input file, the noDeadStrip
// argument doesn't matter.
dyldPrivate =
make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
dyldPrivate->used = true;
}
llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
ObjCSelRefsHelper::methnameToSelref;
void ObjCSelRefsHelper::initialize() {
// Do not fold selrefs without ICF.
if (config->icfLevel == ICFLevel::none)
return;
// Search methnames already referenced in __objc_selrefs
// Map the name to the corresponding selref entry
// which we will reuse when creating objc stubs.
for (ConcatInputSection *isec : inputSections) {
if (isec->shouldOmitFromOutput())
continue;
if (isec->getName() != section_names::objcSelrefs)
continue;
// We expect a single relocation per selref entry to __objc_methname that
// might be aggregated.
assert(isec->relocs.size() == 1);
auto Reloc = isec->relocs[0];
if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) {
if (const auto *d = dyn_cast<Defined>(sym)) {
auto *cisec = cast<CStringInputSection>(d->isec());
auto methname = cisec->getStringRefAtOffset(d->value);
methnameToSelref[CachedHashStringRef(methname)] = isec;
}
}
}
}
void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); }
ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) {
auto methnameOffset =
in.objcMethnameSection->getStringOffset(methname).outSecOff;
size_t wordSize = target->wordSize;
uint8_t *selrefData = bAlloc().Allocate<uint8_t>(wordSize);
write64le(selrefData, methnameOffset);
ConcatInputSection *objcSelref =
makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
ArrayRef<uint8_t>{selrefData, wordSize},
/*align=*/wordSize);
assert(objcSelref->live);
objcSelref->relocs.push_back({/*type=*/target->unsignedRelocType,
/*pcrel=*/false, /*length=*/3,
/*offset=*/0,
/*addend=*/static_cast<int64_t>(methnameOffset),
/*referent=*/in.objcMethnameSection->isec});
objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref);
addInputSection(objcSelref);
objcSelref->isFinal = true;
methnameToSelref[CachedHashStringRef(methname)] = objcSelref;
return objcSelref;
}
ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) {
auto it = methnameToSelref.find(CachedHashStringRef(methname));
if (it == methnameToSelref.end())
return nullptr;
return it->second;
}
ObjCStubsSection::ObjCStubsSection()
: SyntheticSection(segment_names::text, section_names::objcStubs) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastAlignment
: target->objcStubsSmallAlignment;
}
bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) {
return sym->getName().starts_with(symbolPrefix);
}
StringRef ObjCStubsSection::getMethname(Symbol *sym) {
assert(isObjCStubSymbol(sym) && "not an objc stub");
auto name = sym->getName();
StringRef methname = name.drop_front(symbolPrefix.size());
return methname;
}
void ObjCStubsSection::addEntry(Symbol *sym) {
StringRef methname = getMethname(sym);
// We create a selref entry for each unique methname.
if (!ObjCSelRefsHelper::getSelRef(methname))
ObjCSelRefsHelper::makeSelRef(methname);
auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastSize
: target->objcStubsSmallSize;
Defined *newSym = replaceSymbol<Defined>(
sym, sym->getName(), nullptr, isec,
/*value=*/symbols.size() * stubSize,
/*size=*/stubSize,
/*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
/*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
symbols.push_back(newSym);
}
void ObjCStubsSection::setUp() {
objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(objcMsgSend))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libobjc.dylib)");
objcMsgSend->used = true;
if (config->objcStubsMode == ObjCStubsMode::fast) {
in.got->addEntry(objcMsgSend);
assert(objcMsgSend->isInGot());
} else {
assert(config->objcStubsMode == ObjCStubsMode::small);
// In line with ld64's behavior, when objc_msgSend is a direct symbol,
// we directly reference it.
// In other cases, typically when binding in libobjc.dylib,
// we generate a stub to invoke objc_msgSend.
if (!isa<Defined>(objcMsgSend))
in.stubs->addEntry(objcMsgSend);
}
}
uint64_t ObjCStubsSection::getSize() const {
auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
? target->objcStubsFastSize
: target->objcStubsSmallSize;
return stubSize * symbols.size();
}
void ObjCStubsSection::writeTo(uint8_t *buf) const {
uint64_t stubOffset = 0;
for (size_t i = 0, n = symbols.size(); i < n; ++i) {
Defined *sym = symbols[i];
auto methname = getMethname(sym);
InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
assert(selRef != nullptr && "no selref for methname");
auto selrefAddr = selRef->getVA(0);
target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
stubOffset, selrefAddr, objcMsgSend);
}
}
LazyPointerSection::LazyPointerSection()
: SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
align = target->wordSize;
flags = S_LAZY_SYMBOL_POINTERS;
}
uint64_t LazyPointerSection::getSize() const {
return in.stubs->getEntries().size() * target->wordSize;
}
bool LazyPointerSection::isNeeded() const {
return !in.stubs->getEntries().empty();
}
void LazyPointerSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : in.stubs->getEntries()) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->hasStubsHelper()) {
uint64_t stubHelperOffset =
target->stubHelperHeaderSize +
dysym->stubsHelperIndex * target->stubHelperEntrySize;
write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
}
} else {
write64le(buf + off, sym->getVA());
}
off += target->wordSize;
}
}
LazyBindingSection::LazyBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
void LazyBindingSection::finalizeContents() {
// TODO: Just precompute output size here instead of writing to a temporary
// buffer
for (Symbol *sym : entries)
sym->lazyBindOffset = encode(*sym);
}
void LazyBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
void LazyBindingSection::addEntry(Symbol *sym) {
assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
if (entries.insert(sym)) {
sym->stubsHelperIndex = entries.size() - 1;
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
}
}
// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const Symbol &sym) {
uint32_t opstreamOffset = contents.size();
OutputSegment *dataSeg = in.lazyPointers->parent;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
dataSeg->index);
uint64_t offset =
in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
encodeULEB128(offset, os);
encodeDylibOrdinal(ordinalForSymbol(sym), os);
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym.isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym.getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
<< static_cast<uint8_t>(BIND_OPCODE_DONE);
return opstreamOffset;
}
ExportSection::ExportSection()
: LinkEditSection(segment_names::linkEdit, section_names::export_) {}
void ExportSection::finalizeContents() {
trieBuilder.setImageBase(in.header->addr);
for (const Symbol *sym : symtab->getSymbols()) {
if (const auto *defined = dyn_cast<Defined>(sym)) {
if (defined->privateExtern || !defined->isLive())
continue;
trieBuilder.addSymbol(*defined);
hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->shouldReexport)
trieBuilder.addSymbol(*dysym);
}
}
size = trieBuilder.build();
}
void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
DataInCodeSection::DataInCodeSection()
: LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
template <class LP>
static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
std::vector<MachO::data_in_code_entry> dataInCodeEntries;
for (const InputFile *inputFile : inputFiles) {
if (!isa<ObjFile>(inputFile))
continue;
const ObjFile *objFile = cast<ObjFile>(inputFile);
ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
if (entries.empty())
continue;
std::vector<MachO::data_in_code_entry> sortedEntries;
sortedEntries.assign(entries.begin(), entries.end());
llvm::sort(sortedEntries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
});
// For each code subsection find 'data in code' entries residing in it.
// Compute the new offset values as
// <offset within subsection> + <subsection address> - <__TEXT address>.
for (const Section *section : objFile->sections) {
for (const Subsection &subsec : section->subsections) {
const InputSection *isec = subsec.isec;
if (!isCodeSection(isec))
continue;
if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
continue;
const uint64_t beginAddr = section->addr + subsec.offset;
auto it = llvm::lower_bound(
sortedEntries, beginAddr,
[](const MachO::data_in_code_entry &entry, uint64_t addr) {
return entry.offset < addr;
});
const uint64_t endAddr = beginAddr + isec->getSize();
for (const auto end = sortedEntries.end();
it != end && it->offset + it->length <= endAddr; ++it)
dataInCodeEntries.push_back(
{static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
in.header->addr),
it->length, it->kind});
}
}
}
// ld64 emits the table in sorted order too.
llvm::sort(dataInCodeEntries,
[](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
});
return dataInCodeEntries;
}
void DataInCodeSection::finalizeContents() {
entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
: collectDataInCodeEntries<ILP32>();
}
void DataInCodeSection::writeTo(uint8_t *buf) const {
if (!entries.empty())
memcpy(buf, entries.data(), getRawSize());
}
FunctionStartsSection::FunctionStartsSection()
: LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
void FunctionStartsSection::finalizeContents() {
raw_svector_ostream os{contents};
std::vector<uint64_t> addrs;
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (const Symbol *sym : objFile->symbols) {
if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (!defined->isec() || !isCodeSection(defined->isec()) ||
!defined->isLive())
continue;
addrs.push_back(defined->getVA());
}
}
}
}
llvm::sort(addrs);
uint64_t addr = in.header->addr;
for (uint64_t nextAddr : addrs) {
uint64_t delta = nextAddr - addr;
if (delta == 0)
continue;
encodeULEB128(delta, os);
addr = nextAddr;
}
os << '\0';
}
void FunctionStartsSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
stringTableSection(stringTableSection) {}
void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
StabsEntry stab(N_SO);
stab.strx = stringTableSection.addString(saver().save(sourceFile));
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndSourceStab() {
StabsEntry stab(N_SO);
stab.sect = 1;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitObjectFileStab(ObjFile *file) {
StabsEntry stab(N_OSO);
stab.sect = target->cpuSubtype;
SmallString<261> path(!file->archiveName.empty() ? file->archiveName
: file->getName());
std::error_code ec = sys::fs::make_absolute(path);
if (ec)
fatal("failed to get absolute path for " + path);
if (!file->archiveName.empty())
path.append({"(", file->getName(), ")"});
StringRef adjustedPath = saver().save(path.str());
adjustedPath.consume_front(config->osoPrefix);
stab.strx = stringTableSection.addString(adjustedPath);
stab.desc = 1;
stab.value = file->modTime;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndFunStab(Defined *defined) {
StabsEntry stab(N_FUN);
stab.value = defined->size;
stabs.emplace_back(std::move(stab));
}
// Given a pointer to a function symbol, return the symbol that points to the
// actual function body that will go in the final binary. Generally this is the
// symbol itself, but if the symbol was folded using a thunk, we retrieve the
// target function body from the thunk.
Defined *SymtabSection::getFuncBodySym(Defined *originalSym) {
if (originalSym->identicalCodeFoldingKind == Symbol::ICFFoldKind::None ||
originalSym->identicalCodeFoldingKind == Symbol::ICFFoldKind::Body)
return originalSym;
return macho::getBodyForThunkFoldedSym(originalSym);
}
void SymtabSection::emitStabs() {
if (config->omitDebugInfo)
return;
for (const std::string &s : config->astPaths) {
StabsEntry astStab(N_AST);
astStab.strx = stringTableSection.addString(s);
stabs.emplace_back(std::move(astStab));
}
// Cache the file ID for each symbol in an std::pair for faster sorting.
using SortingPair = std::pair<Defined *, int>;
std::vector<SortingPair> symbolsNeedingStabs;
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols)) {
Symbol *sym = entry.sym;
assert(sym->isLive() &&
"dead symbols should not be in localSymbols, externalSymbols");
if (auto *defined = dyn_cast<Defined>(sym)) {
// Excluded symbols should have been filtered out in finalizeContents().
assert(defined->includeInSymtab);
if (defined->isAbsolute())
continue;
// Constant-folded symbols go in the executable's symbol table, but don't
// get a stabs entry unless --keep-icf-stabs flag is specified.
if (!config->keepICFStabs &&
defined->identicalCodeFoldingKind != Symbol::ICFFoldKind::None)
continue;
ObjFile *file = defined->getObjectFile();
if (!file || !file->compileUnit)
continue;
// We use 'originalIsec' to get the file id of the symbol since 'isec()'
// might point to the merged ICF symbol's file
symbolsNeedingStabs.emplace_back(
defined, getFuncBodySym(defined)->originalIsec->getFile()->id);
}
}
llvm::stable_sort(symbolsNeedingStabs,
[&](const SortingPair &a, const SortingPair &b) {
return a.second < b.second;
});
// Emit STABS symbols so that dsymutil and/or the debugger can map address
// regions in the final binary to the source and object files from which they
// originated.
InputFile *lastFile = nullptr;
for (SortingPair &pair : symbolsNeedingStabs) {
Defined *defined = pair.first;
// We use 'originalIsec' of the symbol since we care about the actual origin
// of the symbol, not the canonical location returned by `isec()`.
Defined *funcBodySym = getFuncBodySym(defined);
InputSection *isec = funcBodySym->originalIsec;
ObjFile *file = cast<ObjFile>(isec->getFile());
if (lastFile == nullptr || lastFile != file) {
if (lastFile != nullptr)
emitEndSourceStab();
lastFile = file;
emitBeginSourceStab(file->sourceFile());
emitObjectFileStab(file);
}
StabsEntry symStab;
symStab.sect = isec->parent->index;
symStab.strx = stringTableSection.addString(defined->getName());
symStab.value = funcBodySym->getVA();
if (isCodeSection(isec)) {
symStab.type = N_FUN;
stabs.emplace_back(std::move(symStab));
emitEndFunStab(funcBodySym);
} else {
symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
stabs.emplace_back(std::move(symStab));
}
}
if (!stabs.empty())
emitEndSourceStab();
}
void SymtabSection::finalizeContents() {
auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
uint32_t strx = stringTableSection.addString(sym->getName());
symbols.push_back({sym, strx});
};
std::function<void(Symbol *)> localSymbolsHandler;
switch (config->localSymbolsPresence) {
case SymtabPresence::All:
localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
break;
case SymtabPresence::None:
localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
break;
case SymtabPresence::SelectivelyIncluded:
localSymbolsHandler = [&](Symbol *sym) {
if (config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
case SymtabPresence::SelectivelyExcluded:
localSymbolsHandler = [&](Symbol *sym) {
if (!config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
}
// Local symbols aren't in the SymbolTable, so we walk the list of object
// files to gather them.
// But if `-x` is set, then we don't need to. localSymbolsHandler() will do
// the right thing regardless, but this check is a perf optimization because
// iterating through all the input files and their symbols is expensive.
if (config->localSymbolsPresence != SymtabPresence::None) {
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (Symbol *sym : objFile->symbols) {
if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (defined->isExternal() || !defined->isLive() ||
!defined->includeInSymtab)
continue;
localSymbolsHandler(sym);
}
}
}
}
}
// __dyld_private is a local symbol too. It's linker-created and doesn't
// exist in any object file.
if (in.stubHelper && in.stubHelper->dyldPrivate)
localSymbolsHandler(in.stubHelper->dyldPrivate);
for (Symbol *sym : symtab->getSymbols()) {
if (!sym->isLive())
continue;
if (auto *defined = dyn_cast<Defined>(sym)) {
if (!defined->includeInSymtab)
continue;
assert(defined->isExternal());
if (defined->privateExtern)
localSymbolsHandler(defined);
else
addSymbol(externalSymbols, defined);
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->isReferenced())
addSymbol(undefinedSymbols, sym);
}
}
emitStabs();
uint32_t symtabIndex = stabs.size();
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
entry.sym->symtabIndex = symtabIndex++;
}
}
uint32_t SymtabSection::getNumSymbols() const {
return stabs.size() + localSymbols.size() + externalSymbols.size() +
undefinedSymbols.size();
}
// This serves to hide (type-erase) the template parameter from SymtabSection.
template <class LP> class SymtabSectionImpl final : public SymtabSection {
public:
SymtabSectionImpl(StringTableSection &stringTableSection)
: SymtabSection(stringTableSection) {}
uint64_t getRawSize() const override;
void writeTo(uint8_t *buf) const override;
};
template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
return getNumSymbols() * sizeof(typename LP::nlist);
}
template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
// Emit the stabs entries before the "real" symbols. We cannot emit them
// after as that would render Symbol::symtabIndex inaccurate.
for (const StabsEntry &entry : stabs) {
nList->n_strx = entry.strx;
nList->n_type = entry.type;
nList->n_sect = entry.sect;
nList->n_desc = entry.desc;
nList->n_value = entry.value;
++nList;
}
for (const SymtabEntry &entry : concat<const SymtabEntry>(
localSymbols, externalSymbols, undefinedSymbols)) {
nList->n_strx = entry.strx;
// TODO populate n_desc with more flags
if (auto *defined = dyn_cast<Defined>(entry.sym)) {
uint8_t scope = 0;
if (defined->privateExtern) {
// Private external -- dylib scoped symbol.
// Promote to non-external at link time.
scope = N_PEXT;
} else if (defined->isExternal()) {
// Normal global symbol.
scope = N_EXT;
} else {
// TU-local symbol from localSymbols.
scope = 0;
}
if (defined->isAbsolute()) {
nList->n_type = scope | N_ABS;
nList->n_sect = NO_SECT;
nList->n_value = defined->value;
} else {
nList->n_type = scope | N_SECT;
nList->n_sect = defined->isec()->parent->index;
// For the N_SECT symbol type, n_value is the address of the symbol
nList->n_value = defined->getVA();
}
nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
nList->n_desc |=
defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
} else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
uint16_t n_desc = nList->n_desc;
int16_t ordinal = ordinalForDylibSymbol(*dysym);
if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
else {
assert(ordinal > 0);
SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
}
nList->n_type = N_EXT;
n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
nList->n_desc = n_desc;
}
++nList;
}
}
template <class LP>
SymtabSection *
macho::makeSymtabSection(StringTableSection &stringTableSection) {
return make<SymtabSectionImpl<LP>>(stringTableSection);
}
IndirectSymtabSection::IndirectSymtabSection()
: LinkEditSection(segment_names::linkEdit,
section_names::indirectSymbolTable) {}
uint32_t IndirectSymtabSection::getNumSymbols() const {
uint32_t size = in.got->getEntries().size() +
in.tlvPointers->getEntries().size() +
in.stubs->getEntries().size();
if (!config->emitChainedFixups)
size += in.stubs->getEntries().size();
return size;
}
bool IndirectSymtabSection::isNeeded() const {
return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
in.stubs->isNeeded();
}
void IndirectSymtabSection::finalizeContents() {
uint32_t off = 0;
in.got->reserved1 = off;
off += in.got->getEntries().size();
in.tlvPointers->reserved1 = off;
off += in.tlvPointers->getEntries().size();
in.stubs->reserved1 = off;
if (in.lazyPointers) {
off += in.stubs->getEntries().size();
in.lazyPointers->reserved1 = off;
}
}
static uint32_t indirectValue(const Symbol *sym) {
if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym))
return INDIRECT_SYMBOL_LOCAL;
return sym->symtabIndex;
}
void IndirectSymtabSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (const Symbol *sym : in.got->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.tlvPointers->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
if (in.lazyPointers) {
// There is a 1:1 correspondence between stubs and LazyPointerSection
// entries. But giving __stubs and __la_symbol_ptr the same reserved1
// (the offset into the indirect symbol table) so that they both refer
// to the same range of offsets confuses `strip`, so write the stubs
// symbol table offsets a second time.
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
}
}
StringTableSection::StringTableSection()
: LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
uint32_t StringTableSection::addString(StringRef str) {
uint32_t strx = size;
strings.push_back(str); // TODO: consider deduplicating strings
size += str.size() + 1; // account for null terminator
return strx;
}
void StringTableSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (StringRef str : strings) {
memcpy(buf + off, str.data(), str.size());
off += str.size() + 1; // account for null terminator
}
}
static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
CodeSignatureSection::CodeSignatureSection()
: LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
align = 16; // required by libstuff
// XXX: This mimics LD64, where it uses the install-name as codesign
// identifier, if available.
if (!config->installName.empty())
fileName = config->installName;
else
// FIXME: Consider using finalOutput instead of outputFile.
fileName = config->outputFile;
size_t slashIndex = fileName.rfind("/");
if (slashIndex != std::string::npos)
fileName = fileName.drop_front(slashIndex + 1);
// NOTE: Any changes to these calculations should be repeated
// in llvm-objcopy's MachOLayoutBuilder::layoutTail.
allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
}
uint32_t CodeSignatureSection::getBlockCount() const {
return (fileOff + blockSize - 1) / blockSize;
}
uint64_t CodeSignatureSection::getRawSize() const {
return allHeadersSize + getBlockCount() * hashSize;
}
void CodeSignatureSection::writeHashes(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint8_t *hashes = buf + fileOff + allHeadersSize;
parallelFor(0, getBlockCount(), [&](size_t i) {
sha256(buf + i * blockSize,
std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
hashes + i * hashSize);
});
#if defined(__APPLE__)
// This is macOS-specific work-around and makes no sense for any
// other host OS. See https://openradar.appspot.com/FB8914231
//
// The macOS kernel maintains a signature-verification cache to
// quickly validate applications at time of execve(2). The trouble
// is that for the kernel creates the cache entry at the time of the
// mmap(2) call, before we have a chance to write either the code to
// sign or the signature header+hashes. The fix is to invalidate
// all cached data associated with the output file, thus discarding
// the bogus prematurely-cached signature.
msync(buf, fileOff + getSize(), MS_INVALIDATE);
#endif
}
void CodeSignatureSection::writeTo(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint32_t signatureSize = static_cast<uint32_t>(getSize());
auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
write32be(&superBlob->length, signatureSize);
write32be(&superBlob->count, 1);
auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
write32be(&blobIndex->offset, blobHeadersSize);
auto *codeDirectory =
reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
write32be(&codeDirectory->hashOffset,
sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
codeDirectory->nSpecialSlots = 0;
write32be(&codeDirectory->nCodeSlots, getBlockCount());
write32be(&codeDirectory->codeLimit, fileOff);
codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
codeDirectory->hashType = kSecCodeSignatureHashSHA256;
codeDirectory->platform = 0;
codeDirectory->pageSize = blockSizeShift;
codeDirectory->spare2 = 0;
codeDirectory->scatterOffset = 0;
codeDirectory->teamOffset = 0;
codeDirectory->spare3 = 0;
codeDirectory->codeLimit64 = 0;
OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
write64be(&codeDirectory->execSegBase, textSeg->fileOff);
write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
write64be(&codeDirectory->execSegFlags,
config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
memcpy(id, fileName.begin(), fileName.size());
memset(id + fileName.size(), 0, fileNamePad);
}
CStringSection::CStringSection(const char *name)
: SyntheticSection(segment_names::text, name) {
flags = S_CSTRING_LITERALS;
}
void CStringSection::addInput(CStringInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
if (isec->align > align)
align = isec->align;
}
void CStringSection::writeTo(uint8_t *buf) const {
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
StringRef string = isec->getStringRef(i);
memcpy(buf + piece.outSecOff, string.data(), string.size());
}
}
}
void CStringSection::finalizeContents() {
uint64_t offset = 0;
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
// See comment above DeduplicatedCStringSection for how alignment is
// handled.
uint32_t pieceAlign = 1
<< llvm::countr_zero(isec->align | piece.inSecOff);
offset = alignToPowerOf2(offset, pieceAlign);
piece.outSecOff = offset;
isec->isFinal = true;
StringRef string = isec->getStringRef(i);
offset += string.size() + 1; // account for null terminator
}
}
size = offset;
}
// Mergeable cstring literals are found under the __TEXT,__cstring section. In
// contrast to ELF, which puts strings that need different alignments into
// different sections, clang's Mach-O backend puts them all in one section.
// Strings that need to be aligned have the .p2align directive emitted before
// them, which simply translates into zero padding in the object file. In other
// words, we have to infer the desired alignment of these cstrings from their
// addresses.
//
// We differ slightly from ld64 in how we've chosen to align these cstrings.
// Both LLD and ld64 preserve the number of trailing zeros in each cstring's
// address in the input object files. When deduplicating identical cstrings,
// both linkers pick the cstring whose address has more trailing zeros, and
// preserve the alignment of that address in the final binary. However, ld64
// goes a step further and also preserves the offset of the cstring from the
// last section-aligned address. I.e. if a cstring is at offset 18 in the
// input, with a section alignment of 16, then both LLD and ld64 will ensure the
// final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
// ensure that the final address is of the form 16 * k + 2 for some k.
//
// Note that ld64's heuristic means that a dedup'ed cstring's final address is
// dependent on the order of the input object files. E.g. if in addition to the
// cstring at offset 18 above, we have a duplicate one in another file with a
// `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
// the cstring from the object file earlier on the command line (since both have
// the same number of trailing zeros in their address). So the final cstring may
// either be at some address `16 * k + 2` or at some address `2 * k`.
//
// I've opted not to follow this behavior primarily for implementation
// simplicity, and secondarily to save a few more bytes. It's not clear to me
// that preserving the section alignment + offset is ever necessary, and there
// are many cases that are clearly redundant. In particular, if an x86_64 object
// file contains some strings that are accessed via SIMD instructions, then the
// .cstring section in the object file will be 16-byte-aligned (since SIMD
// requires its operand addresses to be 16-byte aligned). However, there will
// typically also be other cstrings in the same file that aren't used via SIMD
// and don't need this alignment. They will be emitted at some arbitrary address
// `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
// % A`.
void DeduplicatedCStringSection::finalizeContents() {
// Find the largest alignment required for each string.
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
assert(isec->align != 0);
uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
auto it = stringOffsetMap.insert(
std::make_pair(s, StringOffset(trailingZeros)));
if (!it.second && it.first->second.trailingZeros < trailingZeros)
it.first->second.trailingZeros = trailingZeros;
}
}
// Assign an offset for each string and save it to the corresponding
// StringPieces for easy access.
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
auto it = stringOffsetMap.find(s);
assert(it != stringOffsetMap.end());
StringOffset &offsetInfo = it->second;
if (offsetInfo.outSecOff == UINT64_MAX) {
offsetInfo.outSecOff =
alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
size =
offsetInfo.outSecOff + s.size() + 1; // account for null terminator
}
piece.outSecOff = offsetInfo.outSecOff;
}
isec->isFinal = true;
}
}
void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
for (const auto &p : stringOffsetMap) {
StringRef data = p.first.val();
uint64_t off = p.second.outSecOff;
if (!data.empty())
memcpy(buf + off, data.data(), data.size());
}
}
DeduplicatedCStringSection::StringOffset
DeduplicatedCStringSection::getStringOffset(StringRef str) const {
// StringPiece uses 31 bits to store the hashes, so we replicate that
uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
assert(offset != stringOffsetMap.end() &&
"Looked-up strings should always exist in section");
return offset->second;
}
// This section is actually emitted as __TEXT,__const by ld64, but clang may
// emit input sections of that name, and LLD doesn't currently support mixing
// synthetic and concat-type OutputSections. To work around this, I've given
// our merged-literals section a different name.
WordLiteralSection::WordLiteralSection()
: SyntheticSection(segment_names::text, section_names::literals) {
align = 16;
}
void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
}
void WordLiteralSection::finalizeContents() {
for (WordLiteralInputSection *isec : inputs) {
// We do all processing of the InputSection here, so it will be effectively
// finalized.
isec->isFinal = true;
const uint8_t *buf = isec->data.data();
switch (sectionType(isec->getFlags())) {
case S_4BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
if (!isec->isLive(off))
continue;
uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
literal4Map.emplace(value, literal4Map.size());
}
break;
}
case S_8BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
if (!isec->isLive(off))
continue;
uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
literal8Map.emplace(value, literal8Map.size());
}
break;
}
case S_16BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
if (!isec->isLive(off))
continue;
UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
literal16Map.emplace(value, literal16Map.size());
}
break;
}
default:
llvm_unreachable("invalid literal section type");
}
}
}
void WordLiteralSection::writeTo(uint8_t *buf) const {
// Note that we don't attempt to do any endianness conversion in addInput(),
// so we don't do it here either -- just write out the original value,
// byte-for-byte.
for (const auto &p : literal16Map)
memcpy(buf + p.second * 16, &p.first, 16);
buf += literal16Map.size() * 16;
for (const auto &p : literal8Map)
memcpy(buf + p.second * 8, &p.first, 8);
buf += literal8Map.size() * 8;
for (const auto &p : literal4Map)
memcpy(buf + p.second * 4, &p.first, 4);
}
ObjCImageInfoSection::ObjCImageInfoSection()
: SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
ObjCImageInfoSection::ImageInfo
ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
ImageInfo info;
ArrayRef<uint8_t> data = file->objCImageInfo;
// The image info struct has the following layout:
// struct {
// uint32_t version;
// uint32_t flags;
// };
if (data.size() < 8) {
warn(toString(file) + ": invalid __objc_imageinfo size");
return info;
}
auto *buf = reinterpret_cast<const uint32_t *>(data.data());
if (read32le(buf) != 0) {
warn(toString(file) + ": invalid __objc_imageinfo version");
return info;
}
uint32_t flags = read32le(buf + 1);
info.swiftVersion = (flags >> 8) & 0xff;
info.hasCategoryClassProperties = flags & 0x40;
return info;
}
static std::string swiftVersionString(uint8_t version) {
switch (version) {
case 1:
return "1.0";
case 2:
return "1.1";
case 3:
return "2.0";
case 4:
return "3.0";
case 5:
return "4.0";
default:
return ("0x" + Twine::utohexstr(version)).str();
}
}
// Validate each object file's __objc_imageinfo and use them to generate the
// image info for the output binary. Only two pieces of info are relevant:
// 1. The Swift version (should be identical across inputs)
// 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
void ObjCImageInfoSection::finalizeContents() {
assert(files.size() != 0); // should have already been checked via isNeeded()
info.hasCategoryClassProperties = true;
const InputFile *firstFile;
for (const InputFile *file : files) {
ImageInfo inputInfo = parseImageInfo(file);
info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
// swiftVersion 0 means no Swift is present, so no version checking required
if (inputInfo.swiftVersion == 0)
continue;
if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
error("Swift version mismatch: " + toString(firstFile) + " has version " +
swiftVersionString(info.swiftVersion) + " but " + toString(file) +
" has version " + swiftVersionString(inputInfo.swiftVersion));
} else {
info.swiftVersion = inputInfo.swiftVersion;
firstFile = file;
}
}
}
void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
flags |= info.swiftVersion << 8;
write32le(buf + 4, flags);
}
InitOffsetsSection::InitOffsetsSection()
: SyntheticSection(segment_names::text, section_names::initOffsets) {
flags = S_INIT_FUNC_OFFSETS;
align = 4; // This section contains 32-bit integers.
}
uint64_t InitOffsetsSection::getSize() const {
size_t count = 0;
for (const ConcatInputSection *isec : sections)
count += isec->relocs.size();
return count * sizeof(uint32_t);
}
void InitOffsetsSection::writeTo(uint8_t *buf) const {
// FIXME: Add function specified by -init when that argument is implemented.
for (ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
assert(referent && "section relocation should have been rejected");
uint64_t offset = referent->getVA() - in.header->addr;
// FIXME: Can we handle this gracefully?
if (offset > UINT32_MAX)
fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
referent->getName() + " (" + utohexstr(offset) +
") does not fit in 32 bits");
// Entries need to be added in the order they appear in the section, but
// relocations aren't guaranteed to be sorted.
size_t index = rel.offset >> target->p2WordSize;
write32le(&buf[index * sizeof(uint32_t)], offset);
}
buf += isec->relocs.size() * sizeof(uint32_t);
}
}
// The inputs are __mod_init_func sections, which contain pointers to
// initializer functions, therefore all relocations should be of the UNSIGNED
// type. InitOffsetsSection stores offsets, so if the initializer's address is
// not known at link time, stub-indirection has to be used.
void InitOffsetsSection::setUp() {
for (const ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
RelocAttrs attrs = target->getRelocAttrs(rel.type);
if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
error(isec->getLocation(rel.offset) +
": unsupported relocation type: " + attrs.name);
if (rel.addend != 0)
error(isec->getLocation(rel.offset) +
": relocation addend is not representable in __init_offsets");
if (rel.referent.is<InputSection *>())
error(isec->getLocation(rel.offset) +
": unexpected section relocation");
Symbol *sym = rel.referent.dyn_cast<Symbol *>();
if (auto *undefined = dyn_cast<Undefined>(sym))
treatUndefinedSymbol(*undefined, isec, rel.offset);
if (needsBinding(sym))
in.stubs->addEntry(sym);
}
}
}
ObjCMethListSection::ObjCMethListSection()
: SyntheticSection(segment_names::text, section_names::objcMethList) {
flags = S_ATTR_NO_DEAD_STRIP;
align = relativeOffsetSize;
}
// Go through all input method lists and ensure that we have selrefs for all
// their method names. The selrefs will be needed later by ::writeTo. We need to
// create them early on here to ensure they are processed correctly by the lld
// pipeline.
void ObjCMethListSection::setUp() {
for (const ConcatInputSection *isec : inputs) {
uint32_t structSizeAndFlags = 0, structCount = 0;
readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
uint32_t originalStructSize = structSizeAndFlags & structSizeMask;
// Method name is immediately after header
uint32_t methodNameOff = methodListHeaderSize;
// Loop through all methods, and ensure a selref for each of them exists.
while (methodNameOff < isec->data.size()) {
const Reloc *reloc = isec->getRelocAt(methodNameOff);
assert(reloc && "Relocation expected at method list name slot");
StringRef methname = reloc->getReferentString();
if (!ObjCSelRefsHelper::getSelRef(methname))
ObjCSelRefsHelper::makeSelRef(methname);
// Jump to method name offset in next struct
methodNameOff += originalStructSize;
}
}
}
// Calculate section size and final offsets for where InputSection's need to be
// written.
void ObjCMethListSection::finalize() {
// sectionSize will be the total size of the __objc_methlist section
sectionSize = 0;
for (ConcatInputSection *isec : inputs) {
// We can also use sectionSize as write offset for isec
assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) &&
"expected __objc_methlist to be aligned by default with the "
"required section alignment");
isec->outSecOff = sectionSize;
isec->isFinal = true;
uint32_t relativeListSize =
computeRelativeMethodListSize(isec->data.size());
sectionSize += relativeListSize;
// If encoding the method list in relative offset format shrinks the size,
// then we also need to adjust symbol sizes to match the new size. Note that
// on 32bit platforms the size of the method list will remain the same when
// encoded in relative offset format.
if (relativeListSize != isec->data.size()) {
for (Symbol *sym : isec->symbols) {
assert(isa<Defined>(sym) &&
"Unexpected undefined symbol in ObjC method list");
auto *def = cast<Defined>(sym);
// There can be 0-size symbols, check if this is the case and ignore
// them.
if (def->size) {
assert(
def->size == isec->data.size() &&
"Invalid ObjC method list symbol size: expected symbol size to "
"match isec size");
def->size = relativeListSize;
}
}
}
}
}
void ObjCMethListSection::writeTo(uint8_t *bufStart) const {
uint8_t *buf = bufStart;
for (const ConcatInputSection *isec : inputs) {
assert(buf - bufStart == long(isec->outSecOff) &&
"Writing at unexpected offset");
uint32_t writtenSize = writeRelativeMethodList(isec, buf);
buf += writtenSize;
}
assert(buf - bufStart == sectionSize &&
"Written size does not match expected section size");
}
// Check if an InputSection is a method list. To do this we scan the
// InputSection for any symbols who's names match the patterns we expect clang
// to generate for method lists.
bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) {
const char *symPrefixes[] = {objc::symbol_names::classMethods,
objc::symbol_names::instanceMethods,
objc::symbol_names::categoryInstanceMethods,
objc::symbol_names::categoryClassMethods};
if (!isec)
return false;
for (const Symbol *sym : isec->symbols) {
auto *def = dyn_cast_or_null<Defined>(sym);
if (!def)
continue;
for (const char *prefix : symPrefixes) {
if (def->getName().starts_with(prefix)) {
assert(def->size == isec->data.size() &&
"Invalid ObjC method list symbol size: expected symbol size to "
"match isec size");
assert(def->value == 0 &&
"Offset of ObjC method list symbol must be 0");
return true;
}
}
}
return false;
}
// Encode a single relative offset value. The input is the data/symbol at
// (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]).
// 'createSelRef' indicates that we should not directly use the specified
// symbol, but instead get the selRef for the symbol and use that instead.
void ObjCMethListSection::writeRelativeOffsetForIsec(
const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff,
uint32_t &outSecOff, bool useSelRef) const {
const Reloc *reloc = isec->getRelocAt(inSecOff);
assert(reloc && "Relocation expected at __objc_methlist Offset");
uint32_t symVA = 0;
if (useSelRef) {
StringRef methname = reloc->getReferentString();
ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
assert(selRef && "Expected all selector names to already be already be "
"present in __objc_selrefs");
symVA = selRef->getVA();
assert(selRef->data.size() == target->wordSize &&
"Expected one selref per ConcatInputSection");
} else if (reloc->referent.is<Symbol *>()) {
auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
assert(def && "Expected all syms in __objc_methlist to be defined");
symVA = def->getVA();
} else {
auto *isec = reloc->referent.get<InputSection *>();
symVA = isec->getVA(reloc->addend);
}
uint32_t currentVA = isec->getVA() + outSecOff;
uint32_t delta = symVA - currentVA;
write32le(buf + outSecOff, delta);
// Move one pointer forward in the absolute method list
inSecOff += target->wordSize;
// Move one relative offset forward in the relative method list (32 bits)
outSecOff += relativeOffsetSize;
}
// Write a relative method list to buf, return the size of the written
// information
uint32_t
ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec,
uint8_t *buf) const {
// Copy over the header, and add the "this is a relative method list" magic
// value flag
uint32_t structSizeAndFlags = 0, structCount = 0;
readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
// Set the struct size for the relative method list
uint32_t relativeStructSizeAndFlags =
(relativeOffsetSize * pointersPerStruct) & structSizeMask;
// Carry over the old flags from the input struct
relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask;
// Set the relative method list flag
relativeStructSizeAndFlags |= relMethodHeaderFlag;
writeMethodListHeader(buf, relativeStructSizeAndFlags, structCount);
assert(methodListHeaderSize +
(structCount * pointersPerStruct * target->wordSize) ==
isec->data.size() &&
"Invalid computed ObjC method list size");
uint32_t inSecOff = methodListHeaderSize;
uint32_t outSecOff = methodListHeaderSize;
// Go through the method list and encode input absolute pointers as relative
// offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and
// outSecOff
for (uint32_t i = 0; i < structCount; i++) {
// Write the name of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, true);
// Write the type of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
// Write reference to the selector of the method
writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
}
// Expecting to have read all the data in the isec
assert(inSecOff == isec->data.size() &&
"Invalid actual ObjC method list size");
assert(
outSecOff == computeRelativeMethodListSize(inSecOff) &&
"Mismatch between input & output size when writing relative method list");
return outSecOff;
}
// Given the size of an ObjC method list InputSection, return the size of the
// method list when encoded in relative offsets format. We can do this without
// decoding the actual data, as it can be directly inferred from the size of the
// isec.
uint32_t ObjCMethListSection::computeRelativeMethodListSize(
uint32_t absoluteMethodListSize) const {
uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize;
uint32_t pointerCount = oldPointersSize / target->wordSize;
assert(((pointerCount % pointersPerStruct) == 0) &&
"__objc_methlist expects method lists to have multiple-of-3 pointers");
uint32_t newPointersSize = pointerCount * relativeOffsetSize;
uint32_t newTotalSize = methodListHeaderSize + newPointersSize;
assert((newTotalSize <= absoluteMethodListSize) &&
"Expected relative method list size to be smaller or equal than "
"original size");
return newTotalSize;
}
// Read a method list header from buf
void ObjCMethListSection::readMethodListHeader(const uint8_t *buf,
uint32_t &structSizeAndFlags,
uint32_t &structCount) const {
structSizeAndFlags = read32le(buf);
structCount = read32le(buf + sizeof(uint32_t));
}
// Write a method list header to buf
void ObjCMethListSection::writeMethodListHeader(uint8_t *buf,
uint32_t structSizeAndFlags,
uint32_t structCount) const {
write32le(buf, structSizeAndFlags);
write32le(buf + sizeof(structSizeAndFlags), structCount);
}
void macho::createSyntheticSymbols() {
auto addHeaderSymbol = [](const char *name) {
symtab->addSynthetic(name, in.header->isec, /*value=*/0,
/*isPrivateExtern=*/true, /*includeInSymtab=*/false,
/*referencedDynamically=*/false);
};
switch (config->outputType) {
// FIXME: Assign the right address value for these symbols
// (rather than 0). But we need to do that after assignAddresses().
case MH_EXECUTE:
// If linking PIE, __mh_execute_header is a defined symbol in
// __TEXT, __text)
// Otherwise, it's an absolute symbol.
if (config->isPic)
symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
else
symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
break;
// The following symbols are N_SECT symbols, even though the header is not
// part of any section and that they are private to the bundle/dylib/object
// they are part of.
case MH_BUNDLE:
addHeaderSymbol("__mh_bundle_header");
break;
case MH_DYLIB:
addHeaderSymbol("__mh_dylib_header");
break;
case MH_DYLINKER:
addHeaderSymbol("__mh_dylinker_header");
break;
case MH_OBJECT:
addHeaderSymbol("__mh_object_header");
break;
default:
llvm_unreachable("unexpected outputType");
break;
}
// The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
// which does e.g. cleanup of static global variables. The ABI document
// says that the pointer can point to any address in one of the dylib's
// segments, but in practice ld64 seems to set it to point to the header,
// so that's what's implemented here.
addHeaderSymbol("___dso_handle");
}
ChainedFixupsSection::ChainedFixupsSection()
: LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
bool ChainedFixupsSection::isNeeded() const {
assert(config->emitChainedFixups);
// dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
// dyld_chained_fixups_header, so we create this section even if there aren't
// any fixups.
return true;
}
void ChainedFixupsSection::addBinding(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
locations.emplace_back(isec, offset);
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto [it, inserted] = bindings.insert(
{{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
if (inserted) {
symtabSize += sym->getName().size() + 1;
hasWeakBind = hasWeakBind || needsWeakBind(*sym);
if (!isInt<23>(outlineAddend))
needsLargeAddend = true;
else if (outlineAddend != 0)
needsAddend = true;
}
}
std::pair<uint32_t, uint8_t>
ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto it = bindings.find({sym, outlineAddend});
assert(it != bindings.end() && "binding not found in the imports table");
if (outlineAddend == 0)
return {it->second, addend};
return {it->second, 0};
}
static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal,
bool weakRef, uint32_t nameOffset, int64_t addend) {
switch (format) {
case DYLD_CHAINED_IMPORT: {
auto *import = reinterpret_cast<dyld_chained_import *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
return sizeof(dyld_chained_import);
}
case DYLD_CHAINED_IMPORT_ADDEND: {
auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend);
}
case DYLD_CHAINED_IMPORT_ADDEND64: {
auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend64);
}
default:
llvm_unreachable("Unknown import format");
}
}
size_t ChainedFixupsSection::SegmentInfo::getSize() const {
assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
pageStarts.back().first * sizeof(uint16_t));
}
size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
segInfo->size = getSize();
segInfo->page_size = target->getPageSize();
// FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
segInfo->pointer_format = DYLD_CHAINED_PTR_64;
segInfo->segment_offset = oseg->addr - in.header->addr;
segInfo->max_valid_pointer = 0; // not used on 64-bit
segInfo->page_count = pageStarts.back().first + 1;
uint16_t *starts = segInfo->page_start;
for (size_t i = 0; i < segInfo->page_count; ++i)
starts[i] = DYLD_CHAINED_PTR_START_NONE;
for (auto [pageIdx, startAddr] : pageStarts)
starts[pageIdx] = startAddr;
return segInfo->size;
}
static size_t importEntrySize(int format) {
switch (format) {
case DYLD_CHAINED_IMPORT:
return sizeof(dyld_chained_import);
case DYLD_CHAINED_IMPORT_ADDEND:
return sizeof(dyld_chained_import_addend);
case DYLD_CHAINED_IMPORT_ADDEND64:
return sizeof(dyld_chained_import_addend64);
default:
llvm_unreachable("Unknown import format");
}
}
// This is step 3 of the algorithm described in the class comment of
// ChainedFixupsSection.
//
// LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
// * A dyld_chained_fixups_header
// * A dyld_chained_starts_in_image
// * One dyld_chained_starts_in_segment per segment
// * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
// dyld_chained_import_addend64)
// * Names of imported symbols
void ChainedFixupsSection::writeTo(uint8_t *buf) const {
auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
header->fixups_version = 0;
header->imports_count = bindings.size();
header->imports_format = importFormat;
header->symbols_format = 0;
buf += alignTo<8>(sizeof(*header));
auto curOffset = [&buf, &header]() -> uint32_t {
return buf - reinterpret_cast<uint8_t *>(header);
};
header->starts_offset = curOffset();
auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
imageInfo->seg_count = outputSegments.size();
uint32_t *segStarts = imageInfo->seg_info_offset;
// dyld_chained_starts_in_image ends in a flexible array member containing an
// uint32_t for each segment. Leave room for it, and fill it via segStarts.
buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
// Initialize all offsets to 0, which indicates that the segment does not have
// fixups. Those that do have them will be filled in below.
for (size_t i = 0; i < outputSegments.size(); ++i)
segStarts[i] = 0;
for (const SegmentInfo &seg : fixupSegments) {
segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
buf += seg.writeTo(buf);
}
// Write imports table.
header->imports_offset = curOffset();
uint64_t nameOffset = 0;
for (auto [import, idx] : bindings) {
const Symbol &sym = *import.first;
buf += writeImport(buf, importFormat, ordinalForSymbol(sym),
sym.isWeakRef(), nameOffset, import.second);
nameOffset += sym.getName().size() + 1;
}
// Write imported symbol names.
header->symbols_offset = curOffset();
for (auto [import, idx] : bindings) {
StringRef name = import.first->getName();
memcpy(buf, name.data(), name.size());
buf += name.size() + 1; // account for null terminator
}
assert(curOffset() == getRawSize());
}
// This is step 2 of the algorithm described in the class comment of
// ChainedFixupsSection.
void ChainedFixupsSection::finalizeContents() {
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
assert(config->emitChainedFixups);
if (!isUInt<32>(symtabSize))
error("cannot encode chained fixups: imported symbols table size " +
Twine(symtabSize) + " exceeds 4 GiB");
bool needsLargeOrdinal = any_of(bindings, [](const auto &p) {
// 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding.
return ordinalForSymbol(*p.first.first) > 0xF0;
});
if (needsLargeAddend || !isUInt<23>(symtabSize) || needsLargeOrdinal)
importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
else if (needsAddend)
importFormat = DYLD_CHAINED_IMPORT_ADDEND;
else
importFormat = DYLD_CHAINED_IMPORT;
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
llvm::sort(locations, [](const Location &a, const Location &b) {
const OutputSegment *segA = a.isec->parent->parent;
const OutputSegment *segB = b.isec->parent->parent;
if (segA == segB)
return a.offset < b.offset;
return segA->addr < segB->addr;
});
auto sameSegment = [](const Location &a, const Location &b) {
return a.isec->parent->parent == b.isec->parent->parent;
};
const uint64_t pageSize = target->getPageSize();
for (size_t i = 0, count = locations.size(); i < count;) {
const Location &firstLoc = locations[i];
fixupSegments.emplace_back(firstLoc.isec->parent->parent);
while (i < count && sameSegment(locations[i], firstLoc)) {
uint32_t pageIdx = locations[i].offset / pageSize;
fixupSegments.back().pageStarts.emplace_back(
pageIdx, locations[i].offset % pageSize);
++i;
while (i < count && sameSegment(locations[i], firstLoc) &&
locations[i].offset / pageSize == pageIdx)
++i;
}
}
// Compute expected encoded size.
size = alignTo<8>(sizeof(dyld_chained_fixups_header));
size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
for (const SegmentInfo &seg : fixupSegments)
size += seg.getSize();
size += importEntrySize(importFormat) * bindings.size();
size += symtabSize;
}
template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);