Add tests for signaling NaNs, and fix function behavior for handling signaling NaN input. Fixes https://github.com/llvm/llvm-project/issues/124812
222 lines
7.3 KiB
C++
222 lines
7.3 KiB
C++
//===-- Double-precision sincos function ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "src/math/sincos.h"
|
|
#include "hdr/errno_macros.h"
|
|
#include "src/__support/FPUtil/FEnvImpl.h"
|
|
#include "src/__support/FPUtil/FPBits.h"
|
|
#include "src/__support/FPUtil/double_double.h"
|
|
#include "src/__support/FPUtil/dyadic_float.h"
|
|
#include "src/__support/FPUtil/except_value_utils.h"
|
|
#include "src/__support/FPUtil/multiply_add.h"
|
|
#include "src/__support/FPUtil/rounding_mode.h"
|
|
#include "src/__support/common.h"
|
|
#include "src/__support/macros/config.h"
|
|
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
|
|
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
|
|
#include "src/math/generic/range_reduction_double_common.h"
|
|
#include "src/math/generic/sincos_eval.h"
|
|
|
|
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
|
#include "range_reduction_double_fma.h"
|
|
#else
|
|
#include "range_reduction_double_nofma.h"
|
|
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
|
|
|
namespace LIBC_NAMESPACE_DECL {
|
|
|
|
using DoubleDouble = fputil::DoubleDouble;
|
|
using Float128 = typename fputil::DyadicFloat<128>;
|
|
|
|
LLVM_LIBC_FUNCTION(void, sincos, (double x, double *sin_x, double *cos_x)) {
|
|
using FPBits = typename fputil::FPBits<double>;
|
|
FPBits xbits(x);
|
|
|
|
uint16_t x_e = xbits.get_biased_exponent();
|
|
|
|
DoubleDouble y;
|
|
unsigned k;
|
|
LargeRangeReduction range_reduction_large{};
|
|
|
|
// |x| < 2^16
|
|
if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
|
|
// |x| < 2^-7
|
|
if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) {
|
|
// |x| < 2^-27
|
|
if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
|
|
// Signed zeros.
|
|
if (LIBC_UNLIKELY(x == 0.0)) {
|
|
*sin_x = x;
|
|
*cos_x = 1.0;
|
|
return;
|
|
}
|
|
|
|
// For |x| < 2^-27, max(|sin(x) - x|, |cos(x) - 1|) < ulp(x)/2.
|
|
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
|
*sin_x = fputil::multiply_add(x, -0x1.0p-54, x);
|
|
*cos_x = fputil::multiply_add(x, -x, 1.0);
|
|
#else
|
|
*cos_x = fputil::round_result_slightly_down(1.0);
|
|
|
|
if (LIBC_UNLIKELY(x_e < 4)) {
|
|
int rounding_mode = fputil::quick_get_round();
|
|
if (rounding_mode == FE_TOWARDZERO ||
|
|
(xbits.sign() == Sign::POS && rounding_mode == FE_DOWNWARD) ||
|
|
(xbits.sign() == Sign::NEG && rounding_mode == FE_UPWARD))
|
|
*sin_x = FPBits(xbits.uintval() - 1).get_val();
|
|
}
|
|
*sin_x = fputil::multiply_add(x, -0x1.0p-54, x);
|
|
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
|
|
return;
|
|
}
|
|
// No range reduction needed.
|
|
k = 0;
|
|
y.lo = 0.0;
|
|
y.hi = x;
|
|
} else {
|
|
// Small range reduction.
|
|
k = range_reduction_small(x, y);
|
|
}
|
|
} else {
|
|
// Inf or NaN
|
|
if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
|
|
if (xbits.is_signaling_nan()) {
|
|
fputil::raise_except_if_required(FE_INVALID);
|
|
*sin_x = *cos_x = FPBits::quiet_nan().get_val();
|
|
return;
|
|
}
|
|
|
|
// sin(+-Inf) = NaN
|
|
if (xbits.get_mantissa() == 0) {
|
|
fputil::set_errno_if_required(EDOM);
|
|
fputil::raise_except_if_required(FE_INVALID);
|
|
}
|
|
*sin_x = *cos_x = x + FPBits::quiet_nan().get_val();
|
|
return;
|
|
}
|
|
|
|
// Large range reduction.
|
|
k = range_reduction_large.fast(x, y);
|
|
}
|
|
|
|
DoubleDouble sin_y, cos_y;
|
|
|
|
[[maybe_unused]] double err = generic::sincos_eval(y, sin_y, cos_y);
|
|
|
|
// Look up sin(k * pi/128) and cos(k * pi/128)
|
|
#ifdef LIBC_MATH_HAS_SMALL_TABLES
|
|
// Memory saving versions. Use 65-entry table.
|
|
auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
|
|
unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
|
|
DoubleDouble ans = SIN_K_PI_OVER_128[idx];
|
|
if (kk & 128) {
|
|
ans.hi = -ans.hi;
|
|
ans.lo = -ans.lo;
|
|
}
|
|
return ans;
|
|
};
|
|
DoubleDouble sin_k = get_idx_dd(k);
|
|
DoubleDouble cos_k = get_idx_dd(k + 64);
|
|
#else
|
|
// Fast look up version, but needs 256-entry table.
|
|
// cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
|
|
DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 255];
|
|
DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];
|
|
#endif // LIBC_MATH_HAS_SMALL_TABLES
|
|
|
|
DoubleDouble msin_k{-sin_k.lo, -sin_k.hi};
|
|
|
|
// After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
|
|
// So k is an integer and -pi / 256 <= y <= pi / 256.
|
|
// Then sin(x) = sin((k * pi/128 + y)
|
|
// = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128)
|
|
DoubleDouble sin_k_cos_y = fputil::quick_mult(cos_y, sin_k);
|
|
DoubleDouble cos_k_sin_y = fputil::quick_mult(sin_y, cos_k);
|
|
// cos(x) = cos((k * pi/128 + y)
|
|
// = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128)
|
|
DoubleDouble cos_k_cos_y = fputil::quick_mult(cos_y, cos_k);
|
|
DoubleDouble msin_k_sin_y = fputil::quick_mult(sin_y, msin_k);
|
|
|
|
DoubleDouble sin_dd =
|
|
fputil::exact_add<false>(sin_k_cos_y.hi, cos_k_sin_y.hi);
|
|
DoubleDouble cos_dd =
|
|
fputil::exact_add<false>(cos_k_cos_y.hi, msin_k_sin_y.hi);
|
|
sin_dd.lo += sin_k_cos_y.lo + cos_k_sin_y.lo;
|
|
cos_dd.lo += msin_k_sin_y.lo + cos_k_cos_y.lo;
|
|
|
|
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
|
*sin_x = sin_dd.hi + sin_dd.lo;
|
|
*cos_x = cos_dd.hi + cos_dd.lo;
|
|
return;
|
|
#else
|
|
// Accurate test and pass for correctly rounded implementation.
|
|
|
|
double sin_lp = sin_dd.lo + err;
|
|
double sin_lm = sin_dd.lo - err;
|
|
double cos_lp = cos_dd.lo + err;
|
|
double cos_lm = cos_dd.lo - err;
|
|
|
|
double sin_upper = sin_dd.hi + sin_lp;
|
|
double sin_lower = sin_dd.hi + sin_lm;
|
|
double cos_upper = cos_dd.hi + cos_lp;
|
|
double cos_lower = cos_dd.hi + cos_lm;
|
|
|
|
// Ziv's rounding test.
|
|
if (LIBC_LIKELY(sin_upper == sin_lower && cos_upper == cos_lower)) {
|
|
*sin_x = sin_upper;
|
|
*cos_x = cos_upper;
|
|
return;
|
|
}
|
|
|
|
Float128 u_f128, sin_u, cos_u;
|
|
if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
|
|
u_f128 = range_reduction_small_f128(x);
|
|
else
|
|
u_f128 = range_reduction_large.accurate();
|
|
|
|
generic::sincos_eval(u_f128, sin_u, cos_u);
|
|
|
|
auto get_sin_k = [](unsigned kk) -> Float128 {
|
|
unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
|
|
Float128 ans = SIN_K_PI_OVER_128_F128[idx];
|
|
if (kk & 128)
|
|
ans.sign = Sign::NEG;
|
|
return ans;
|
|
};
|
|
|
|
// cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
|
|
Float128 sin_k_f128 = get_sin_k(k);
|
|
Float128 cos_k_f128 = get_sin_k(k + 64);
|
|
Float128 msin_k_f128 = get_sin_k(k + 128);
|
|
|
|
// TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
|
|
// https://github.com/llvm/llvm-project/issues/96452.
|
|
|
|
if (sin_upper == sin_lower)
|
|
*sin_x = sin_upper;
|
|
else
|
|
// sin(x) = sin((k * pi/128 + u)
|
|
// = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128)
|
|
*sin_x = static_cast<double>(
|
|
fputil::quick_add(fputil::quick_mul(sin_k_f128, cos_u),
|
|
fputil::quick_mul(cos_k_f128, sin_u)));
|
|
|
|
if (cos_upper == cos_lower)
|
|
*cos_x = cos_upper;
|
|
else
|
|
// cos(x) = cos((k * pi/128 + u)
|
|
// = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128)
|
|
*cos_x = static_cast<double>(
|
|
fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u),
|
|
fputil::quick_mul(msin_k_f128, sin_u)));
|
|
|
|
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
|
}
|
|
|
|
} // namespace LIBC_NAMESPACE_DECL
|