Files
clang-p2996/flang/runtime/derived.cpp
jeanPerier e3d6a3ac69 [flang][runtime] Support non contiguous array in Finalize/Initialize (#67295)
Finalize/Initialize may be called on non contiguous arrays when dealing
with INTENT(OUT) dummies or non contiguous LHS. Update the related
element access to use indices instead of assuming contiguity and
manually computing the byte offset.

Also, the descriptor passed to parent type final routines should be set
to the parent type, otherwise descriptor.IsContiguous() may wrongfully
return true when finalizing parent components. Create a pointer to the
parent component when recursing in Finalize.
2023-09-25 18:16:53 +02:00

335 lines
14 KiB
C++

//===-- runtime/derived.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "tools.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
int Initialize(const Descriptor &instance, const typeInfo::DerivedType &derived,
Terminator &terminator, bool hasStat, const Descriptor *errMsg) {
const Descriptor &componentDesc{derived.component()};
std::size_t elements{instance.Elements()};
int stat{StatOk};
// Initialize data components in each element; the per-element iterations
// constitute the inner loops, not the outer ones
std::size_t myComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
SubscriptValue at[maxRank];
instance.GetLowerBounds(at);
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
Descriptor &allocDesc{
*instance.ElementComponent<Descriptor>(at, comp.offset())};
comp.EstablishDescriptor(allocDesc, instance, terminator);
allocDesc.raw().attribute = CFI_attribute_allocatable;
if (comp.genre() == typeInfo::Component::Genre::Automatic) {
stat = ReturnError(terminator, allocDesc.Allocate(), errMsg, hasStat);
if (stat == StatOk) {
if (const DescriptorAddendum * addendum{allocDesc.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
stat = Initialize(
allocDesc, *derived, terminator, hasStat, errMsg);
}
}
}
}
if (stat != StatOk) {
break;
}
}
}
} else if (const void *init{comp.initialization()}) {
// Explicit initialization of data pointers and
// non-allocatable non-automatic components
std::size_t bytes{comp.SizeInBytes(instance)};
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
char *ptr{instance.ElementComponent<char>(at, comp.offset())};
std::memcpy(ptr, init, bytes);
}
} else if (comp.genre() == typeInfo::Component::Genre::Pointer) {
// Data pointers without explicit initialization are established
// so that they are valid right-hand side targets of pointer
// assignment statements.
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
Descriptor &ptrDesc{
*instance.ElementComponent<Descriptor>(at, comp.offset())};
comp.EstablishDescriptor(ptrDesc, instance, terminator);
ptrDesc.raw().attribute = CFI_attribute_pointer;
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noInitializationNeeded()) {
// Default initialization of non-pointer non-allocatable/automatic
// data component. Handles parent component's elements. Recursive.
SubscriptValue extent[maxRank];
const typeInfo::Value *bounds{comp.bounds()};
for (int dim{0}; dim < comp.rank(); ++dim) {
typeInfo::TypeParameterValue lb{
bounds[2 * dim].GetValue(&instance).value_or(0)};
typeInfo::TypeParameterValue ub{
bounds[2 * dim + 1].GetValue(&instance).value_or(0)};
extent[dim] = ub >= lb ? ub - lb + 1 : 0;
}
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
compDesc.Establish(compType,
instance.ElementComponent<char>(at, comp.offset()), comp.rank(),
extent);
stat = Initialize(compDesc, compType, terminator, hasStat, errMsg);
if (stat != StatOk) {
break;
}
}
}
}
// Initialize procedure pointer components in each element
const Descriptor &procPtrDesc{derived.procPtr()};
std::size_t myProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < myProcPtrs; ++k) {
const auto &comp{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
SubscriptValue at[maxRank];
instance.GetLowerBounds(at);
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
auto &pptr{*instance.ElementComponent<typeInfo::ProcedurePointer>(
at, comp.offset)};
pptr = comp.procInitialization;
}
}
return stat;
}
static const typeInfo::SpecialBinding *FindFinal(
const typeInfo::DerivedType &derived, int rank) {
if (const auto *ranked{derived.FindSpecialBinding(
typeInfo::SpecialBinding::RankFinal(rank))}) {
return ranked;
} else if (const auto *assumed{derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::AssumedRankFinal)}) {
return assumed;
} else {
return derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalFinal);
}
}
static void CallFinalSubroutine(const Descriptor &descriptor,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (const auto *special{FindFinal(derived, descriptor.rank())}) {
if (special->which() == typeInfo::SpecialBinding::Which::ElementalFinal) {
std::size_t elements{descriptor.Elements()};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &elemDesc{statDesc.descriptor()};
elemDesc = descriptor;
elemDesc.raw().attribute = CFI_attribute_pointer;
elemDesc.raw().rank = 0;
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
elemDesc.set_base_addr(descriptor.Element<char>(at));
p(elemDesc);
}
} else {
auto *p{special->GetProc<void (*)(char *)>()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
p(descriptor.Element<char>(at));
}
}
} else {
StaticDescriptor<maxRank, true, 10> statDesc;
Descriptor &copy{statDesc.descriptor()};
const Descriptor *argDescriptor{&descriptor};
if (descriptor.rank() > 0 && special->IsArgContiguous(0) &&
!descriptor.IsContiguous()) {
// The FINAL subroutine demands a contiguous array argument, but
// this INTENT(OUT) or intrinsic assignment LHS isn't contiguous.
// Finalize a shallow copy of the data.
copy = descriptor;
copy.set_base_addr(nullptr);
copy.raw().attribute = CFI_attribute_allocatable;
Terminator stubTerminator{"CallFinalProcedure() in Fortran runtime", 0};
RUNTIME_CHECK(terminator ? *terminator : stubTerminator,
copy.Allocate() == CFI_SUCCESS);
ShallowCopyDiscontiguousToContiguous(copy, descriptor);
argDescriptor = &copy;
}
if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &tmpDesc{statDesc.descriptor()};
tmpDesc = *argDescriptor;
tmpDesc.raw().attribute = CFI_attribute_pointer;
tmpDesc.Addendum()->set_derivedType(&derived);
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
p(tmpDesc);
} else {
auto *p{special->GetProc<void (*)(char *)>()};
p(argDescriptor->OffsetElement<char>());
}
if (argDescriptor == &copy) {
ShallowCopyContiguousToDiscontiguous(descriptor, copy);
copy.Deallocate();
}
}
}
}
// Fortran 2018 subclause 7.5.6.2
void Finalize(const Descriptor &descriptor,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (derived.noFinalizationNeeded() || !descriptor.IsAllocated()) {
return;
}
CallFinalSubroutine(descriptor, derived, terminator);
const auto *parentType{derived.GetParentType()};
bool recurse{parentType && !parentType->noFinalizationNeeded()};
// If there's a finalizable parent component, handle it last, as required
// by the Fortran standard (7.5.6.2), and do so recursively with the same
// descriptor so that the rank is preserved.
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
for (auto k{recurse ? std::size_t{1}
/* skip first component, it's the parent */
: 0};
k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
if (comp.genre() == typeInfo::Component::Genre::Allocatable &&
comp.category() == TypeCategory::Derived) {
// Component may be polymorphic or unlimited polymorphic. Need to use the
// dynamic type to check whether finalization is needed.
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
const Descriptor &compDesc{
*descriptor.ElementComponent<Descriptor>(at, comp.offset())};
if (compDesc.IsAllocated()) {
if (const DescriptorAddendum * addendum{compDesc.Addendum()}) {
if (const typeInfo::DerivedType *
compDynamicType{addendum->derivedType()}) {
if (!compDynamicType->noFinalizationNeeded()) {
Finalize(compDesc, *compDynamicType, terminator);
}
}
}
}
}
} else if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
if (const typeInfo::DerivedType * compType{comp.derivedType()}) {
if (!compType->noFinalizationNeeded()) {
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
const Descriptor &compDesc{
*descriptor.ElementComponent<Descriptor>(at, comp.offset())};
if (compDesc.IsAllocated()) {
Finalize(compDesc, *compType, terminator);
}
}
}
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noFinalizationNeeded()) {
SubscriptValue extent[maxRank];
const typeInfo::Value *bounds{comp.bounds()};
for (int dim{0}; dim < comp.rank(); ++dim) {
SubscriptValue lb{bounds[2 * dim].GetValue(&descriptor).value_or(0)};
SubscriptValue ub{
bounds[2 * dim + 1].GetValue(&descriptor).value_or(0)};
extent[dim] = ub >= lb ? ub - lb + 1 : 0;
}
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
compDesc.Establish(compType,
descriptor.ElementComponent<char>(at, comp.offset()), comp.rank(),
extent);
Finalize(compDesc, compType, terminator);
}
}
}
if (recurse) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &tmpDesc{statDesc.descriptor()};
tmpDesc = descriptor;
tmpDesc.raw().attribute = CFI_attribute_pointer;
tmpDesc.Addendum()->set_derivedType(parentType);
tmpDesc.raw().elem_len = parentType->sizeInBytes();
Finalize(tmpDesc, *parentType, terminator);
}
}
// The order of finalization follows Fortran 2018 7.5.6.2, with
// elementwise finalization of non-parent components taking place
// before parent component finalization, and with all finalization
// preceding any deallocation.
void Destroy(const Descriptor &descriptor, bool finalize,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (derived.noDestructionNeeded() || !descriptor.IsAllocated()) {
return;
}
if (finalize && !derived.noFinalizationNeeded()) {
Finalize(descriptor, derived, terminator);
}
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j < elements; ++j) {
Descriptor *d{
descriptor.ElementComponent<Descriptor>(at, comp.offset())};
d->Deallocate();
descriptor.IncrementSubscripts(at);
}
}
}
}
bool HasDynamicComponent(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived = addendum->derivedType()) {
const Descriptor &componentDesc{derived->component()};
std::size_t myComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
return true;
}
}
}
}
return false;
}
} // namespace Fortran::runtime