[MLIR][XeGPU] Add unroll patterns and blocking pass for XeGPU [2/N] (#140163)

This PR introduces the initial implementation of a blocking pass for
XeGPU programs. The pass leverages unroll patterns from both the XeGPU
and Vector dialects. 

---------

Co-authored-by: Adam Siemieniuk <adam.siemieniuk@intel.com>
This commit is contained in:
Chao Chen
2025-06-02 14:02:45 -05:00
committed by GitHub
parent 18e51314c4
commit 0210750d5a
10 changed files with 965 additions and 48 deletions

View File

@@ -295,11 +295,17 @@ def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout"> {
}
LayoutAttr dropSgLayoutAndData() {
// avoid every field of the attribute is nullptr, which may lead to segment fault
if (!getInstData() && !getLaneLayout())
return nullptr;
return LayoutAttr::get(getContext(), nullptr, nullptr, getInstData(),
getLaneLayout(), getLaneData(), getOrder());
}
LayoutAttr dropInstData() {
// avoid every field of the attribute is nullptr, which may lead to segment fault
if (!getSgLayout() && !getLaneLayout())
return nullptr;
return LayoutAttr::get(getContext(), getSgLayout(), getSgData(), nullptr,
getLaneLayout(), getLaneData(), getOrder());
}

View File

@@ -45,4 +45,17 @@ def XeGPUWgToSgDistribute : Pass<"xegpu-wg-to-sg-distribute"> {
"gpu::GPUDialect", "index::IndexDialect"];
}
def XeGPUBlocking: Pass<"xegpu-blocking"> {
let summary = "Block XeGPU ops into smaller size.";
let description = [{
This pass partitions operations that process large shapes into multiple
operations on smaller shapes, as specified by the inst_data in the layout
attribute. This enables each resulting operation to be efficiently mapped
to a hardware instruction.
}];
let dependentDialects = [
"memref::MemRefDialect", "xegpu::XeGPUDialect", "vector::VectorDialect"
];
}
#endif // MLIR_DIALECT_XEGPU_TRANSFORMS_PASSES_TD

View File

@@ -13,6 +13,12 @@
namespace mlir {
class VectorType;
class OpOperand;
class OpResult;
class OpBuilder;
class ValueRange;
class TypeConverter;
namespace xegpu {
class LayoutAttr;
class TensorDescType;
@@ -50,6 +56,59 @@ FailureOr<VectorType> getDistributedVectorType(xegpu::TensorDescType tdescTy);
FailureOr<VectorType> getDistributedVectorType(VectorType originalType,
LayoutAttr layout);
/// Return the attribute name for the OpOperand to attach LayoutAttr
std::string getLayoutName(const OpOperand &operand);
/// Return the attribute name for the OpResult to attach LayoutAttr
std::string getLayoutName(const OpResult result);
/// Retrieves the LayoutAttr associated with a given Value. For TensorDescType
/// values, the LayoutAttr is extracted from the TensorDescType itself. For
/// other values, it is obtained from the attributes of the defining operation.
/// Returns nullptr if no LayoutAttr is found.
LayoutAttr getLayoutAttr(const Value value);
/// Retrieves the LayoutAttr associated with a given OpOperand. It will
/// first check the operand_layout_{id} of the owner operation. If not found,
/// it will check the operand itself and its defining op.
LayoutAttr getLayoutAttr(const OpOperand &opr);
/// Sets the LayoutAttr for a given OpOperand or OpResult by attaching
/// it to the owner's dictionary attributes
template <typename T,
typename = std::enable_if_t<std::is_same_v<T, OpOperand> ||
std::is_same_v<T, OpResult>>>
void setLayoutAttr(const T &operandOrResult, const LayoutAttr layout);
/// Set the LayoutAttr for each OpOperand and OpResult of the given operation.
/// If the operation contains regions, it is also applied recursively to the
/// contained operations
void setLayoutAttrs(Operation *op,
function_ref<LayoutAttr(Value)> getLayoutImpl);
/// Extract a set of small vectors from a value with a given shape using
/// vector.extract_stride_slice
SmallVector<Value> extractVectorsWithShapeFromValue(OpBuilder &builder,
Location loc, Value value,
ArrayRef<int64_t> shape);
/// Create a vector of shape from a set of values using
/// vector.insert_stride_slice.
Value createVectorWithShapeFromValues(OpBuilder &builder, Location loc,
ValueRange values,
ArrayRef<int64_t> shape);
/// Do type conversion for SCF structural ops, e.g., scf.for using SCF structure
/// type convertion patterns. Since VectorType cannot carry the layout
/// attribute, which is needed to guide the type conversion for XeGPU, they are
/// first converted into RankedTensorType, where the layout attribute can be
/// attached. And then upstream SCF structural type conversion patterns are
/// applied with the provided converter.
/// TODO: This is a temporary solution. We should refactor it when context-aware
/// type conversion is available.
void doSCFStructuralTypeConversionWithTensorType(Operation *op,
TypeConverter converter);
} // namespace xegpu
} // namespace mlir

View File

@@ -1,4 +1,5 @@
add_mlir_dialect_library(MLIRXeGPUTransforms
XeGPUBlocking.cpp
XeGPUFoldAliasOps.cpp
XeGPUSubgroupDistribute.cpp
XeGPUUnroll.cpp

View File

@@ -0,0 +1,337 @@
//===---- XeGPUBlocking.cpp ---- XeGPU Blocking Pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
namespace mlir {
namespace xegpu {
#define GEN_PASS_DEF_XEGPUBLOCKING
#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
} // namespace xegpu
} // namespace mlir
#define DEBUG_TYPE "xegpu-blocking"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
using namespace mlir;
namespace {
// reslove the unrealized conversion cast ops generated when doing SCF
// Structural Type Conversion. It will have two formats, N:1 vector
// cast and 1:N vector cast. vector::insert_strided_slice ops will be
// used for the first case, and vector::extract_strided_slice ops will be
// used for the second case.
static void
resolveUnrealizedConversionCastOp(UnrealizedConversionCastOp castOp) {
ValueRange inputs = castOp.getInputs();
ValueRange outputs = castOp.getOutputs();
auto hasIdenticalVectorTypes = [](ValueRange values) {
auto types = values.getTypes();
return llvm::all_of(types, [&](Type type) {
return isa<VectorType>(type) && type == types.front();
});
};
// We only interest in the case where all inputs and outputs have the
// identical VectorTypes
if (!hasIdenticalVectorTypes(inputs) || !hasIdenticalVectorTypes(outputs)) {
LDBG("skip unrealized conversion cast op not emulating pack/unpack.");
return;
}
VectorType outputTy = dyn_cast<VectorType>(outputs[0].getType());
OpBuilder builder(castOp);
if (inputs.size() > 1 && outputs.size() == 1) {
// the castOp is emulating an unpack op
ArrayRef<int64_t> shape = outputTy.getShape();
Value result = xegpu::createVectorWithShapeFromValues(
builder, castOp.getLoc(), inputs, shape);
castOp->replaceAllUsesWith(ValueRange(result));
castOp->erase();
} else if (castOp.getNumResults() > 1 && castOp.getNumOperands() == 1) {
// the castOp is emulating a pack op
ArrayRef<int64_t> tileShape = outputTy.getShape();
SmallVector<Value> results = xegpu::extractVectorsWithShapeFromValue(
builder, castOp.getLoc(), inputs[0], tileShape);
castOp->replaceAllUsesWith(results);
castOp->erase();
}
}
//===------------------------------------------------------------------------===//
// The XeGPUBlockingPass leverages the unroll patterns for XeGPU and Vector ops
// to partition operations that process large shapes into multiple operations on
// smaller shapes, as specified by the inst_data in the layout attribute. This
// enables each resulting operation to be efficiently mapped to a hardware
// instruction.
//===------------------------------------------------------------------------===//
class XeGPUBlockingPass final
: public xegpu::impl::XeGPUBlockingBase<XeGPUBlockingPass> {
public:
void runOnOperation() override;
private:
// Get the tile shape for a given OpOperand or OpResult by examining the
// corresponding layout attribute. If layout is not present or is not a
// subgroup level layout, it returns std::nullopt.
template <typename T,
typename = std::enable_if_t<std::is_same_v<T, OpOperand> ||
std::is_same_v<T, OpResult>>>
std::optional<SmallVector<int64_t>>
getTileShape(const T &operandOrResult) const;
// Get the tile shape for a given operation.
std::optional<SmallVector<int64_t>> getTileShape(Operation *op) const;
// Determine if the operation requires unrolling. Return false if all operands
// and results have tile shapes identical to their original types. Otherwise,
// return true.
bool needsUnroll(Operation *op) const;
};
} // namespace
template <typename T, typename>
std::optional<SmallVector<int64_t>>
XeGPUBlockingPass::getTileShape(const T &operandOrResult) const {
Value value;
if constexpr (std::is_same_v<T, OpOperand>)
value = operandOrResult.get();
else
value = (Value)operandOrResult;
xegpu::LayoutAttr layout = xegpu::getLayoutAttr(operandOrResult);
if (layout && layout.isSgLayout()) {
if (auto inst_data = layout.getInstData())
return llvm::to_vector_of<int64_t>(inst_data.asArrayRef());
if (auto type = dyn_cast<ShapedType>(value.getType()))
return llvm::to_vector(type.getShape());
}
LDBG("failed to getTileShape for: " << value);
return std::nullopt;
}
std::optional<SmallVector<int64_t>>
XeGPUBlockingPass::getTileShape(Operation *op) const {
if (isa<xegpu::CreateNdDescOp, xegpu::UpdateNdOffsetOp>(op))
return getTileShape(op->getOpResult(0));
if (isa<xegpu::PrefetchNdOp, xegpu::LoadNdOp>(op))
return getTileShape(op->getOpOperand(0));
if (isa<xegpu::StoreNdOp>(op))
return getTileShape(op->getOpOperand(1));
if (isa<xegpu::DpasOp>(op)) {
std::optional<SmallVector<int64_t>> aTile =
getTileShape(op->getOpOperand(0));
std::optional<SmallVector<int64_t>> bTile =
getTileShape(op->getOpOperand(1));
if (!aTile || aTile->size() != 2 || !bTile || bTile->size() != 2)
return std::nullopt;
// semantic check for A and B
if ((*aTile)[1] != (*bTile)[0])
return std::nullopt;
// semantic check for C
if (op->getNumOperands() == 3) {
std::optional<SmallVector<int64_t>> cTile =
getTileShape(op->getOpOperand(2));
int64_t expectedCTile[2] = {(*aTile)[0], (*bTile)[1]};
if (!cTile || !llvm::equal(*cTile, expectedCTile))
return std::nullopt;
}
return SmallVector<int64_t>({(*aTile)[0], (*aTile)[1], (*bTile)[1]});
}
if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1)
return getTileShape(op->getOpResult(0));
return std::nullopt;
}
bool XeGPUBlockingPass::needsUnroll(Operation *op) const {
// skip the op if any of its operands or results has workgroup level layouts
bool hasWgLayoutOperands =
llvm::any_of(op->getOpOperands(), [](OpOperand &opr) {
xegpu::LayoutAttr layout = xegpu::getLayoutAttr(opr);
return layout && layout.isWgLayout();
});
bool hasWgLayoutResults =
llvm::any_of(op->getOpResults(), [](OpResult result) {
xegpu::LayoutAttr layout = xegpu::getLayoutAttr(result);
return layout && layout.isWgLayout();
});
if (hasWgLayoutOperands || hasWgLayoutResults) {
LDBG("skip unrolling for op with workgroup level layout: " << *op);
return false;
}
auto isUnrollable = [](Value value, ArrayRef<int64_t> tileShape) {
Type valTy = value.getType();
if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(valTy)) {
xegpu::LayoutAttr layout = tdescTy.getLayoutAttr();
return layout && layout.getInstData();
}
auto shapedType = dyn_cast<ShapedType>(valTy);
return shapedType && !llvm::equal(tileShape, shapedType.getShape());
};
bool hasUnrollableOperands =
llvm::any_of(op->getOpOperands(), [&](OpOperand &opr) {
std::optional<SmallVector<int64_t>> tileShape = getTileShape(opr);
return tileShape.has_value() && isUnrollable(opr.get(), *tileShape);
});
bool hasUnrollableResults =
llvm::any_of(op->getOpResults(), [&](OpResult result) {
std::optional<SmallVector<int64_t>> tileShape = getTileShape(result);
return tileShape.has_value() && isUnrollable(result, *tileShape);
});
return hasUnrollableOperands || hasUnrollableResults;
}
void XeGPUBlockingPass::runOnOperation() {
MLIRContext *ctx = &getContext();
Operation *op = getOperation();
// Preserve the LayoutAttr for each operand to the owner's DictionaryAttr.
// This ensures that the LayoutAttr remains accessible even if the defining
// operation is replaced.
xegpu::setLayoutAttrs(op, [](Value v) { return xegpu::getLayoutAttr(v); });
auto getTileShapeAndCount = [](llvm::ArrayRef<int64_t> shape,
xegpu::LayoutAttr layout) {
int count = 1;
SmallVector<int64_t> tileShape(shape);
if (layout && layout.getInstData()) {
DenseI32ArrayAttr instData = layout.getInstData();
tileShape = llvm::to_vector_of<int64_t>(instData.asArrayRef());
count = computeProduct(shape) / computeProduct(tileShape);
}
return std::make_pair(tileShape, count);
};
// Perform type conversion for SCF control folow ops
TypeConverter converter;
converter.addConversion([](Type type) -> Type { return type; });
converter.addConversion(
[&](RankedTensorType type,
SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
Type elemTy = type.getElementType();
ArrayRef<int64_t> shape = type.getShape();
auto layout =
llvm::dyn_cast_if_present<xegpu::LayoutAttr>(type.getEncoding());
if (layout && layout.isWgLayout())
return failure();
int count;
SmallVector<int64_t> subShape;
std::tie(subShape, count) = getTileShapeAndCount(shape, layout);
auto newTy = VectorType::get(subShape, elemTy);
result.append(count, newTy);
return success();
});
converter.addConversion(
[&](xegpu::TensorDescType type,
SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
Type elemTy = type.getElementType();
ArrayRef<int64_t> shape = type.getShape();
xegpu::LayoutAttr layout = type.getLayoutAttr();
if (layout && layout.isWgLayout())
return failure();
int count;
SmallVector<int64_t> subShape;
std::tie(subShape, count) = getTileShapeAndCount(shape, layout);
if (layout)
layout = layout.dropInstData();
auto newTy = xegpu::TensorDescType::get(
type.getContext(), subShape, elemTy, type.getEncoding(), layout);
result.append(count, newTy);
return success();
});
xegpu::doSCFStructuralTypeConversionWithTensorType(op, converter);
xegpu::UnrollOptions options;
options.setFilterConstraint(
[&](Operation *op) -> LogicalResult { return success(needsUnroll(op)); });
options.setNativeShapeFn([&](Operation *op) { return getTileShape(op); });
options.setUnrolledTypesFn([&](ShapedType type, ArrayRef<int64_t> tileShape) {
Type elemTy = type.getElementType();
Type newTy;
if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(type))
newTy = xegpu::TensorDescType::get(
ctx, tileShape, elemTy, tdescTy.getEncoding(),
tdescTy.getLayoutAttr().dropInstData());
else
newTy = type.clone(tileShape, elemTy);
std::optional<SmallVector<int64_t>> ratio =
computeShapeRatio(type.getShape(), tileShape);
assert(ratio && "The shape of the type must be a multiple of tileShape.");
return SmallVector<Type>(computeProduct(*ratio), newTy);
});
RewritePatternSet patterns(ctx);
vector::UnrollVectorOptions vectorOptions;
vectorOptions.setNativeShapeFn(options.nativeShape);
populateXeGPUUnrollPatterns(patterns, options);
vector::populateVectorUnrollPatterns(patterns, vectorOptions);
(void)applyPatternsGreedily(op, std::move(patterns));
op->walk([](Operation *op) {
// Resolve unrealized conversion cast ops emulating pack/unpack
if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
resolveUnrealizedConversionCastOp(castOp);
// Remove the layout attributes cached per operands.
for (OpOperand &opr : op->getOpOperands()) {
std::string name = xegpu::getLayoutName(opr);
if (auto layout = op->getAttrOfType<xegpu::LayoutAttr>(name))
op->removeAttr(name);
}
// Update the layout attributes per result.
for (OpResult result : op->getOpResults()) {
std::string name = xegpu::getLayoutName(result);
if (auto layout = op->getAttrOfType<xegpu::LayoutAttr>(name)) {
op->removeAttr(name);
if (!isa<LoopLikeOpInterface>(op))
xegpu::setLayoutAttr(result, layout.dropInstData());
}
}
});
}

View File

@@ -62,8 +62,6 @@ constexpr unsigned packedSizeInBitsForDefault =
16; // Minimum packing size per register for DPAS A.
constexpr unsigned packedSizeInBitsForDpasB =
32; // Minimum packing size per register for DPAS B.
static const char *const operandLayoutNamePrefix = "layout_operand_";
static const char *const resultLayoutNamePrefix = "layout_result_";
namespace {
@@ -729,10 +727,7 @@ private:
void LayoutAttrAssignment::assignToUsers(Value v, xegpu::LayoutAttr layout) {
for (OpOperand &user : v.getUses()) {
Operation *owner = user.getOwner();
unsigned operandNumber = user.getOperandNumber();
// Use a generic name for ease of querying the layout attribute later.
std::string attrName =
operandLayoutNamePrefix + std::to_string(operandNumber);
std::string attrName = xegpu::getLayoutName(user);
owner->setAttr(attrName, layout);
}
}
@@ -806,10 +801,10 @@ LogicalResult LayoutAttrAssignment::assign(Operation *op) {
return success();
}
// Otherwise simply attach the layout to the op itself.
for (auto [i, r] : llvm::enumerate(op->getResults())) {
for (auto r : op->getOpResults()) {
xegpu::LayoutAttr layoutInfo = getLayoutAttrForValue(r);
if (layoutInfo) {
std::string attrName = resultLayoutNamePrefix + std::to_string(i);
std::string attrName = xegpu::getLayoutName(r);
op->setAttr(attrName, layoutInfo);
// Attach the layout attribute to the users of the result.
assignToUsers(r, layoutInfo);
@@ -929,11 +924,8 @@ static SmallVector<NamedAttribute>
removeTemporaryLayoutAttributes(ArrayRef<NamedAttribute> attrs) {
SmallVector<NamedAttribute> newAttrs;
for (NamedAttribute attr : attrs) {
if (attr.getName().strref().contains(operandLayoutNamePrefix) ||
attr.getName().strref().contains(resultLayoutNamePrefix)) {
continue;
}
newAttrs.push_back(attr);
if (!isa<xegpu::LayoutAttr>(attr.getValue()))
newAttrs.push_back(attr);
}
return newAttrs;
}
@@ -1336,11 +1328,10 @@ struct DpasDistribution final : public gpu::WarpDistributionPattern {
auto dpasOp = operand->get().getDefiningOp<xegpu::DpasOp>();
unsigned operandIdx = operand->getOperandNumber();
std::string layoutAName =
llvm::formatv("{0}{1}", operandLayoutNamePrefix, 0).str();
std::string layoutBName =
llvm::formatv("{0}{1}", operandLayoutNamePrefix, 1).str();
auto layoutCName = llvm::formatv("{0}{1}", resultLayoutNamePrefix, 0).str();
std::string layoutAName = xegpu::getLayoutName(dpasOp->getOpOperand(0));
std::string layoutBName = xegpu::getLayoutName(dpasOp->getOpOperand(1));
std::string layoutCName = xegpu::getLayoutName(dpasOp->getOpResult(0));
xegpu::LayoutAttr layoutA =
dpasOp->getAttrOfType<xegpu::LayoutAttr>(layoutAName);
xegpu::LayoutAttr layoutB =

View File

@@ -17,6 +17,7 @@
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
@@ -74,17 +75,7 @@ protected:
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of destTy.");
auto shape = vecTy.getShape();
auto zeroAttr = rewriter.getZeroAttr(vecTy.getElementType());
Value result = rewriter.create<arith::ConstantOp>(
loc, vecTy, DenseElementsAttr::get(vecTy, zeroAttr));
for (auto [src, offsets] :
llvm::zip_equal(srcs, StaticTileOffsetRange(shape, blockSize))) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, src, result, offsets, staticStrides);
}
return result;
return xegpu::createVectorWithShapeFromValues(rewriter, loc, srcs, shape);
}
if (isa<xegpu::TensorDescType>(destTy)) {
@@ -109,16 +100,8 @@ protected:
if (auto vecTy = dyn_cast<VectorType>(src.getType())) {
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of src.");
auto shape = vecTy.getShape();
SmallVector<Value> results;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(shape, blockSize)) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
auto slice = rewriter.create<vector::ExtractStridedSliceOp>(
loc, src, offsets, blockSize, staticStrides);
results.push_back(slice);
}
return results;
return xegpu::extractVectorsWithShapeFromValue(rewriter, loc, src,
blockSize);
}
if (isa<xegpu::TensorDescType>(src.getType())) {
@@ -153,7 +136,7 @@ struct UnrollCreateNdOp : public UnrollPattern<xegpu::CreateNdDescOp> {
ArrayRef<int64_t> shape = tdescTy.getShape();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || llvm::equal(*targetShape, shape))
if (!targetShape)
return failure();
auto newTdescTy = getUnrolledTypes(tdescTy, *targetShape)[0];
@@ -204,10 +187,9 @@ struct UnrollUpdateNdOffsetOp : public UnrollPattern<xegpu::UpdateNdOffsetOp> {
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
ArrayRef<int64_t> shape = tdescTy.getShape();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || llvm::equal(*targetShape, shape))
if (!targetShape)
return failure();
SmallVector<Type> convertedTdescTypes =
@@ -233,10 +215,9 @@ struct UnrollPrefetchNdOp : public UnrollPattern<xegpu::PrefetchNdOp> {
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
ArrayRef<int64_t> shape = tdescTy.getShape();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || llvm::equal(*targetShape, shape))
if (!targetShape)
return failure();
SmallVector<Type> convertedTdescTypes =
@@ -260,10 +241,9 @@ struct UnrollLoadNdOp : public UnrollPattern<xegpu::LoadNdOp> {
Location loc = op.getLoc();
VectorType valueTy = op.getType();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
ArrayRef<int64_t> shape = tdescTy.getShape();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || llvm::equal(*targetShape, shape))
if (!targetShape)
return failure();
Type elemTy = tdescTy.getElementType();
@@ -295,10 +275,9 @@ struct UnrollStoreNdOp : public UnrollPattern<xegpu::StoreNdOp> {
Location loc = op.getLoc();
VectorType valueTy = op.getValueType();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
ArrayRef<int64_t> shape = tdescTy.getShape();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || llvm::equal(*targetShape, shape))
if (!targetShape)
return failure();
SmallVector<Type> convertedValTypes =

View File

@@ -6,5 +6,6 @@ add_mlir_dialect_library(MLIRXeGPUUtils
LINK_LIBS PUBLIC
MLIRIR
MLIRSCFTransforms
MLIRXeGPUDialect
)

View File

@@ -11,12 +11,29 @@
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include <cstdint>
#include <numeric>
using namespace mlir;
/// convert ArrayRef<ValueRange> into SmallVector<Value>
static SmallVector<Value> flattenValues(ArrayRef<ValueRange> values) {
SmallVector<Value> result;
for (const auto &vals : values)
llvm::append_range(result, vals);
return result;
}
FailureOr<VectorType>
mlir::xegpu::getDistributedVectorType(xegpu::TensorDescType tdescTy) {
auto layout = llvm::dyn_cast_if_present<LayoutAttr>(tdescTy.getLayout());
@@ -83,3 +100,268 @@ mlir::xegpu::getDistributedVectorType(VectorType originalType,
/*memory_space=*/xegpu::MemorySpace::Global, layout);
return xegpu::getDistributedVectorType(helperTdescTy);
}
std::string xegpu::getLayoutName(const OpOperand &operand) {
const StringRef prefix("layout_operand_");
unsigned idx = const_cast<OpOperand &>(operand).getOperandNumber();
return llvm::formatv("{0}{1}", prefix, idx).str();
}
std::string xegpu::getLayoutName(const OpResult result) {
const StringRef prefix = "layout_result_";
return llvm::formatv("{0}{1}", prefix, result.getResultNumber()).str();
}
xegpu::LayoutAttr xegpu::getLayoutAttr(const Value value) {
if (!value)
return nullptr;
if (auto tdescTy =
dyn_cast_if_present<xegpu::TensorDescType>(value.getType()))
return tdescTy.getLayoutAttr();
if (auto result = dyn_cast<OpResult>(value)) {
Operation *defOp = result.getDefiningOp();
assert(defOp && "result must have a defining op");
// for LoadNdOp, the layout is stored in the tensor descriptor
if (auto loadNd = dyn_cast<xegpu::LoadNdOp>(defOp))
return getLayoutAttr(loadNd.getTensorDesc());
std::string layoutName = getLayoutName(result);
if (defOp->hasAttr(layoutName))
return defOp->getAttrOfType<xegpu::LayoutAttr>(layoutName);
}
if (auto arg = dyn_cast<BlockArgument>(value)) {
auto parentOp = arg.getOwner()->getParentOp();
if (auto loop = dyn_cast<LoopLikeOpInterface>(parentOp)) {
OpOperand *tiedInit = loop.getTiedLoopInit(arg);
return getLayoutAttr(tiedInit->get());
}
}
return nullptr;
}
xegpu::LayoutAttr xegpu::getLayoutAttr(const OpOperand &opr) {
Operation *op = opr.getOwner();
std::string layoutName = xegpu::getLayoutName(opr);
if (op->hasAttr(layoutName))
return op->getAttrOfType<xegpu::LayoutAttr>(layoutName);
return getLayoutAttr(opr.get());
}
template <typename T, typename>
void xegpu::setLayoutAttr(const T &operandOrResult, const LayoutAttr layout) {
Operation *owner = operandOrResult.getOwner();
std::string name = xegpu::getLayoutName(operandOrResult);
if (layout && !owner->hasAttrOfType<LayoutAttr>(name))
owner->setAttr(name, layout);
}
void xegpu::setLayoutAttrs(Operation *op,
function_ref<LayoutAttr(Value)> getLayoutImpl) {
op->walk([&](Operation *nestOp) {
for (OpOperand &opr : nestOp->getOpOperands()) {
auto layout = getLayoutImpl(opr.get());
setLayoutAttr(opr, layout);
}
for (OpResult result : nestOp->getOpResults()) {
auto layout = getLayoutImpl(result);
setLayoutAttr(result, layout);
}
});
}
SmallVector<Value>
xegpu::extractVectorsWithShapeFromValue(OpBuilder &builder, Location loc,
Value value, ArrayRef<int64_t> shape) {
auto vecTy = dyn_cast<VectorType>(value.getType());
if (!vecTy)
return {value};
ArrayRef<int64_t> srcShape = vecTy.getShape();
if (!computeShapeRatio(srcShape, shape))
return {value};
SmallVector<Value> result;
for (SmallVector<int64_t> offsets : StaticTileOffsetRange(srcShape, shape)) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
result.push_back(builder.create<vector::ExtractStridedSliceOp>(
loc, value, offsets, shape, staticStrides));
}
return result;
}
Value xegpu::createVectorWithShapeFromValues(OpBuilder &builder, Location loc,
ValueRange values,
ArrayRef<int64_t> shape) {
VectorType inputTy = dyn_cast<VectorType>(values[0].getType());
assert(llvm::all_of(values.getTypes(),
[&](Type type) { return type == inputTy; }) &&
"values must be of the same VectorType");
Type elemTy = inputTy.getElementType();
ArrayRef<int64_t> tileShape = inputTy.getShape();
VectorType resultTy = VectorType::get(shape, elemTy);
auto zeroAttr = builder.getZeroAttr(elemTy);
Value result = builder.create<arith::ConstantOp>(
loc, resultTy, DenseElementsAttr::get(resultTy, zeroAttr));
for (auto [src, offsets] :
llvm::zip_equal(values, StaticTileOffsetRange(shape, tileShape))) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
result = builder.create<vector::InsertStridedSliceOp>(
loc, src, result, offsets, staticStrides);
}
return result;
}
void xegpu::doSCFStructuralTypeConversionWithTensorType(
Operation *op, TypeConverter converter) {
MLIRContext *context = op->getContext();
auto materializeCast = [](OpBuilder &builder, Type type, ValueRange inputs,
Location loc) -> Value {
return builder.create<UnrealizedConversionCastOp>(loc, type, inputs)
.getResult(0);
};
{ // convert VectorType to RankedTensorType for SCF Structural ops
TypeConverter converter;
converter.addConversion([](Type type) -> Type { return type; });
converter.addConversion([](VectorType type) -> Type {
return RankedTensorType::get(type.getShape(), type.getElementType());
});
converter.addSourceMaterialization(materializeCast);
converter.addTargetMaterialization(materializeCast);
mlir::ConversionTarget target(*context);
target.addLegalOp<UnrealizedConversionCastOp>();
mlir::RewritePatternSet patterns(context);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
(void)mlir::applyPartialConversion(op, target, std::move(patterns));
}
{ // propagate the layout attribute to RankedTensorType by checking
// BuiltInUnrealizedCastOps
// for VectorType to RankedTensorType cast.
op->walk([](UnrealizedConversionCastOp castOp) {
if (castOp.getNumOperands() != 1 || castOp.getNumResults() != 1)
return WalkResult::skip();
Value input = castOp.getInputs()[0];
Value result = castOp.getResults()[0];
auto inputTy = dyn_cast<VectorType>(input.getType());
auto resultTy = dyn_cast<RankedTensorType>(result.getType());
// Only look at ops casting from VectorType to RankedTensorType
if (!isa<VectorType>(inputTy) || !isa<RankedTensorType>(resultTy))
return WalkResult::skip();
xegpu::LayoutAttr layout = xegpu::getLayoutAttr(input);
if (!layout)
return WalkResult::skip();
RankedTensorType newTy = resultTy.cloneWithEncoding(layout);
result.setType(newTy);
// update the arguments if user is a LoopLike op.
for (OpOperand &use : result.getUses()) {
if (auto loop = dyn_cast<LoopLikeOpInterface>(use.getOwner())) {
BlockArgument arg = loop.getTiedLoopRegionIterArg(&use);
arg.setType(newTy);
}
// whileOp has two regions, the BlockArgument of the after region
// is not exposed by LoopLikeOpInterface
if (auto whileOp = dyn_cast<scf::WhileOp>(use.getOwner())) {
unsigned idx = use.getOperandNumber();
BlockArgument arg = whileOp.getAfterArguments()[idx];
arg.setType(newTy);
}
}
return WalkResult::advance();
});
// using yieldOp as anchor to update the result type of its ParentOp
op->walk([](scf::YieldOp yieldOp) {
Operation *parentOp = yieldOp->getParentOp();
for (OpResult r : parentOp->getOpResults()) {
unsigned idx = r.getResultNumber();
Type resultTy = r.getType();
Type yieldTy = yieldOp.getResults()[idx].getType();
if (isa<RankedTensorType>(resultTy) && yieldTy != resultTy)
r.setType(yieldTy);
}
});
}
{ // perform the conversion from RankedTensorType to VectorType based on the
// LayoutAttr
// Handle the UnrealizedConversionCastOp introduced by the first step.
// For vector->RankedTensorType, it will simply forward the inputs.
// For RankedTensorType->vector, it will update the inputs with the
// one from the adaptor.
class UnrealizedConversionCastOpPattern
: public OpConversionPattern<mlir::UnrealizedConversionCastOp> {
using OpConversionPattern<
mlir::UnrealizedConversionCastOp>::OpConversionPattern;
mlir::LogicalResult
matchAndRewrite(mlir::UnrealizedConversionCastOp op,
OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto inputs = op.getOperands();
auto outputs = op.getOutputs();
if (inputs.size() != 1 || outputs.size() != 1)
return failure();
auto inputTy = inputs[0].getType();
auto outputTy = outputs[0].getType();
if (isa<VectorType>(inputTy) && isa<RankedTensorType>(outputTy)) {
rewriter.replaceOpWithMultiple(op, adaptor.getInputs());
return success();
}
if (isa<RankedTensorType>(inputTy) && isa<VectorType>(outputTy)) {
SmallVector<Value> values = flattenValues(adaptor.getInputs());
auto newOp = rewriter.create<UnrealizedConversionCastOp>(
op.getLoc(), outputTy, values);
rewriter.replaceOp(op, newOp);
return success();
}
return failure();
}
};
converter.addSourceMaterialization(materializeCast);
converter.addTargetMaterialization([&](OpBuilder &builder, TypeRange type,
ValueRange inputs, Location loc) {
return builder.create<UnrealizedConversionCastOp>(loc, type, inputs)
.getResults();
});
mlir::ConversionTarget target(*context);
target.addDynamicallyLegalOp<UnrealizedConversionCastOp>(
[](UnrealizedConversionCastOp op) {
auto isTensorTy = [](Type type) {
return isa<RankedTensorType>(type);
};
return llvm::none_of(op->getOperandTypes(), isTensorTy) &&
llvm::none_of(op->getResultTypes(), isTensorTy);
});
mlir::RewritePatternSet patterns(context);
patterns.insert<UnrealizedConversionCastOpPattern>(context);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
(void)mlir::applyPartialConversion(op, target, std::move(patterns));
}
}

View File

@@ -0,0 +1,248 @@
// RUN: mlir-opt --xegpu-blocking -split-input-file %s | FileCheck %s
#a = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>
#b = #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [16, 1]>
#c = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>
gpu.module @test_kernel {
gpu.func @test_gemm_with_one_to_n_lowering(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index
%c16 = arith.constant 16 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c16 : index
%n = arith.muli %block_id_y, %c32 : index
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %n] : memref<1024x1024xf32> -> !xegpu.tensor_desc<16x32xf32, #c>
%c_init = xegpu.load_nd %c_tdesc : !xegpu.tensor_desc<16x32xf32, #c> -> vector<16x32xf32>
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #a>
%b_tdesc = xegpu.create_nd_tdesc %B[%c0, %n] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32x32xf16, #b>
%out:3 = scf.for %k = %c0 to %c1024 step %c32
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_init)
-> (!xegpu.tensor_desc<16x32xf16, #a>, !xegpu.tensor_desc<32x32xf16, #b>, vector<16x32xf32>) {
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<8x16xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<16x32xf16, #a> -> vector<16x32xf16>
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<16x16xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<32x32xf16, #b> -> vector<32x32xf16>
//CHECK-COUNT-8: xegpu.dpas {{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>} : vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32>
%c = xegpu.dpas %a, %b, %arg2 {layout_result_0 = #c}: vector<16x32xf16>, vector<32x32xf16>, vector<16x32xf32> -> vector<16x32xf32>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #a>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c32, %c0] : !xegpu.tensor_desc<32x32xf16, #b>
scf.yield %a_next_tdesc, %b_next_tdesc, %c
: !xegpu.tensor_desc<16x32xf16, #a>, !xegpu.tensor_desc<32x32xf16, #b>, vector<16x32xf32>
}
//CHECK-COUNT-4: xegpu.store_nd {{.*}} : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>>
xegpu.store_nd %out#2, %c_tdesc: vector<16x32xf32>, !xegpu.tensor_desc<16x32xf32, #c>
gpu.return
}
}
// -----
#l1 = #xegpu.layout<inst_data = [8, 16]>
#l2 = #xegpu.layout<inst_data = [16, 16]>
gpu.module @test_kernel {
gpu.func @test_gemm_with_inst_data_only_attribute(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index
%c16 = arith.constant 16 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c16 : index
%n = arith.muli %block_id_y, %c32 : index
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %n] : memref<1024x1024xf32> -> !xegpu.tensor_desc<16x32xf32, #l1>
%c_init = xegpu.load_nd %c_tdesc : !xegpu.tensor_desc<16x32xf32, #l1> -> vector<16x32xf32>
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #l1>
%b_tdesc = xegpu.create_nd_tdesc %B[%c0, %n] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32x32xf16, #l2>
%out:3 = scf.for %k = %c0 to %c1024 step %c32
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_init)
-> (!xegpu.tensor_desc<16x32xf16, #l1>, !xegpu.tensor_desc<32x32xf16, #l2>, vector<16x32xf32>) {
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<8x16xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<16x32xf16, #l1> -> vector<16x32xf16>
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<16x16xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<32x32xf16, #l2> -> vector<32x32xf16>
//CHECK-COUNT-8: xegpu.dpas {{.*}} : vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32>
%c = xegpu.dpas %a, %b, %arg2 {layout_result_0 = #l1}: vector<16x32xf16>, vector<32x32xf16>, vector<16x32xf32> -> vector<16x32xf32>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<8x16xf16>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #l1>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<16x16xf16>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c32, %c0] : !xegpu.tensor_desc<32x32xf16, #l2>
scf.yield %a_next_tdesc, %b_next_tdesc, %c
: !xegpu.tensor_desc<16x32xf16, #l1>, !xegpu.tensor_desc<32x32xf16, #l2>, vector<16x32xf32>
}
//CHECK-COUNT-4: xegpu.store_nd {{.*}} : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
xegpu.store_nd %out#2, %c_tdesc: vector<16x32xf32>, !xegpu.tensor_desc<16x32xf32, #l1>
gpu.return
}
}
// -----
#l1 = #xegpu.layout<inst_data = [8, 16]>
#l2 = #xegpu.layout<inst_data = [16, 16]>
gpu.module @test_kernel {
gpu.func @test_gemm_with_one_to_one_lowering(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index
%c8 = arith.constant 8 : index
%c16 = arith.constant 16 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c8 : index
%n = arith.muli %block_id_y, %c32 : index
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %n] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x32xf32, #l1>
//CHECK-COUNT-2: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
%c_init = xegpu.load_nd %c_tdesc : !xegpu.tensor_desc<8x32xf32, #l1> -> vector<8x32xf32>
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<8x16xf16, #l1>
%b_tdesc = xegpu.create_nd_tdesc %B[%c0, %n] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #l2>
%out:3 = scf.for %k = %c0 to %c1024 step %c16
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_init)
-> (!xegpu.tensor_desc<8x16xf16, #l1>, !xegpu.tensor_desc<16x32xf16, #l2>, vector<8x32xf32>) {
//CHECK: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<8x16xf16, #l1> -> vector<8x16xf16>
//CHECK-COUNT-2: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<16x16xf16> -> vector<16x16xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<16x32xf16, #l2> -> vector<16x32xf16>
%c = xegpu.dpas %a, %b, %arg2 {layout_result_0 = #l1}: vector<8x16xf16>, vector<16x32xf16>, vector<8x32xf32> -> vector<8x32xf32>
//CHECK: xegpu.update_nd_offset {{.*}} [%c0, %c32] : !xegpu.tensor_desc<8x16xf16>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<8x16xf16, #l1>
//CHECK-COUNT-2: xegpu.update_nd_offset {{.*}} [%c32, %c0] : !xegpu.tensor_desc<16x16xf16>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c32, %c0] : !xegpu.tensor_desc<16x32xf16, #l2>
scf.yield %a_next_tdesc, %b_next_tdesc, %c
: !xegpu.tensor_desc<8x16xf16, #l1>, !xegpu.tensor_desc<16x32xf16, #l2>, vector<8x32xf32>
}
//CHECK-COUNT-2: xegpu.store_nd {{.*}} : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
xegpu.store_nd %out#2, %c_tdesc: vector<8x32xf32>, !xegpu.tensor_desc<8x32xf32, #l1>
gpu.return
}
}
// -----
#a = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>
#b = #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [16, 1]>
#c = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>
gpu.module @test_kernel {
gpu.func @test_gemm_with_elemwise_preop(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index
%c16 = arith.constant 16 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c16 : index
%n = arith.muli %block_id_y, %c32 : index
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %n] : memref<1024x1024xf32> -> !xegpu.tensor_desc<16x32xf32, #c>
%c_init = xegpu.load_nd %c_tdesc : !xegpu.tensor_desc<16x32xf32, #c> -> vector<16x32xf32>
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #a>
%b_tdesc = xegpu.create_nd_tdesc %B[%c0, %n] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32x32xf16, #b>
%out:3 = scf.for %k = %c0 to %c1024 step %c32
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_init)
-> (!xegpu.tensor_desc<16x32xf16, #a>, !xegpu.tensor_desc<32x32xf16, #b>, vector<16x32xf32>) {
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<8x16xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<16x32xf16, #a> -> vector<16x32xf16>
//CHECK-COUNT-4: xegpu.load_nd {{.*}} -> vector<16x16xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<32x32xf16, #b> -> vector<32x32xf16>
//CHECK-COUNT-4: math.exp {{.*}} : vector<8x16xf16>
%e = math.exp %a {layout_result_0 = #a} : vector<16x32xf16>
//CHECK-COUNT-8: xegpu.dpas {{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>} : vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32>
%c = xegpu.dpas %e, %b, %arg2 {layout_result_0 = #c}: vector<16x32xf16>, vector<32x32xf16>, vector<16x32xf32> -> vector<16x32xf32>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #a>
//CHECK-COUNT-4: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [16, 1]>>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c32, %c0] : !xegpu.tensor_desc<32x32xf16, #b>
scf.yield %a_next_tdesc, %b_next_tdesc, %c
: !xegpu.tensor_desc<16x32xf16, #a>, !xegpu.tensor_desc<32x32xf16, #b>, vector<16x32xf32>
}
//CHECK-COUNT-4: xegpu.store_nd {{.*}} : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [8, 1]>>
xegpu.store_nd %out#2, %c_tdesc: vector<16x32xf32>, !xegpu.tensor_desc<16x32xf32, #c>
gpu.return
}
}
// -----
#l = #xegpu.layout<inst_data = [8, 16]>
gpu.module @test_kernel {
gpu.func @test_elementwise_with_inst_data_only(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf16>) {
%c0 = arith.constant 0 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c32 : index
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #l>
%b_tdesc = xegpu.create_nd_tdesc %B[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #l>
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16, #l>
%out:3 = scf.for %k = %c0 to %c1024 step %c32
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_tdesc)
-> (!xegpu.tensor_desc<16x32xf16, #l>, !xegpu.tensor_desc<16x32xf16, #l>, !xegpu.tensor_desc<16x32xf16, #l>) {
//CHECK-COUNT-8: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<16x32xf16, #l> -> vector<16x32xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<16x32xf16, #l> -> vector<16x32xf16>
//CHECK-COUNT-4: arith.addf {{.*}} : vector<8x16xf16>
%c = arith.addf %a, %b {layout_result_0 = #l} : vector<16x32xf16>
//CHECK-COUNT-4: xegpu.store_nd {{.*}} : vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16>
xegpu.store_nd %c, %arg2: vector<16x32xf16>, !xegpu.tensor_desc<16x32xf16, #l>
//CHECK-COUNT-12: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<8x16xf16>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #l>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #l>
%c_next_tdesc = xegpu.update_nd_offset %arg2, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16, #l>
scf.yield %a_next_tdesc, %b_next_tdesc, %c_next_tdesc
: !xegpu.tensor_desc<16x32xf16, #l>, !xegpu.tensor_desc<16x32xf16, #l>, !xegpu.tensor_desc<16x32xf16, #l>
}
gpu.return
}
}
// -----
#l = #xegpu.layout<inst_data = [8]>
gpu.module @test_kernel {
gpu.func @test_elementwise_1D(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf16>) {
%c0 = arith.constant 0 : index
%c32 = arith.constant 32 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c32 : index
%a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32xf16, #l>
%b_tdesc = xegpu.create_nd_tdesc %B[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32xf16, #l>
%c_tdesc = xegpu.create_nd_tdesc %C[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<32xf16, #l>
%out:3 = scf.for %k = %c0 to %c1024 step %c32
iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_tdesc)
-> (!xegpu.tensor_desc<32xf16, #l>, !xegpu.tensor_desc<32xf16, #l>, !xegpu.tensor_desc<32xf16, #l>) {
//CHECK-COUNT-8: xegpu.load_nd {{.*}} : !xegpu.tensor_desc<8xf16> -> vector<8xf16>
%a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<32xf16, #l> -> vector<32xf16>
%b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<32xf16, #l> -> vector<32xf16>
//CHECK-COUNT-4: arith.addf {{.*}} : vector<8xf16>
%c = arith.addf %a, %b {layout_result_0 = #l} : vector<32xf16>
//CHECK-COUNT-4: xegpu.store_nd {{.*}} : vector<8xf16>, !xegpu.tensor_desc<8xf16>
xegpu.store_nd %c, %arg2: vector<32xf16>, !xegpu.tensor_desc<32xf16, #l>
//CHECK-COUNT-12: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<8xf16>
%a_next_tdesc = xegpu.update_nd_offset %arg0, [%c32] : !xegpu.tensor_desc<32xf16, #l>
%b_next_tdesc = xegpu.update_nd_offset %arg1, [%c32] : !xegpu.tensor_desc<32xf16, #l>
%c_next_tdesc = xegpu.update_nd_offset %arg2, [%c32] : !xegpu.tensor_desc<32xf16, #l>
scf.yield %a_next_tdesc, %b_next_tdesc, %c_next_tdesc
: !xegpu.tensor_desc<32xf16, #l>, !xegpu.tensor_desc<32xf16, #l>, !xegpu.tensor_desc<32xf16, #l>
}
gpu.return
}
}