[DirectX] Implement memcpy in DXIL CBuffer Access pass (#144436)

Fixes #141840

This PR implements support for the `memcpy` intrinsic in the DXIL
CBuffer Access pass with the following restrictions:

- The CBuffer Access must be the `src` operand of `memcpy` and must be
direct (i.e., not a GEP)
- The type of the CBuffer Access must be of an Array Type

These restrictions greatly simplify the implementation of `memcpy` yet
still covers the known uses in DML shaders.

Furthermore, to prevent errors like #141840 from occurring silently
again, this PR adds error reporting for unsupported users of globals in
the DXIL CBuffer Access pass.
This commit is contained in:
Deric C.
2025-06-30 16:32:43 -07:00
committed by GitHub
parent 92b50959da
commit 12409a18f6
2 changed files with 416 additions and 64 deletions

View File

@@ -11,9 +11,11 @@
#include "llvm/Frontend/HLSL/CBuffer.h"
#include "llvm/Frontend/HLSL/HLSLResource.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsDirectX.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "dxil-cbuffer-access"
@@ -54,71 +56,106 @@ struct CBufferRowIntrin {
}
}
};
} // namespace
static size_t getOffsetForCBufferGEP(GEPOperator *GEP, GlobalVariable *Global,
const DataLayout &DL) {
// Since we should always have a constant offset, we should only ever have a
// single GEP of indirection from the Global.
assert(GEP->getPointerOperand() == Global &&
"Indirect access to resource handle");
// Helper for creating CBuffer handles and loading data from them
struct CBufferResource {
GlobalVariable *GVHandle;
GlobalVariable *Member;
size_t MemberOffset;
APInt ConstantOffset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
bool Success = GEP->accumulateConstantOffset(DL, ConstantOffset);
(void)Success;
assert(Success && "Offsets into cbuffer globals must be constant");
LoadInst *Handle;
if (auto *ATy = dyn_cast<ArrayType>(Global->getValueType()))
ConstantOffset = hlsl::translateCBufArrayOffset(DL, ConstantOffset, ATy);
CBufferResource(GlobalVariable *GVHandle, GlobalVariable *Member,
size_t MemberOffset)
: GVHandle(GVHandle), Member(Member), MemberOffset(MemberOffset) {}
return ConstantOffset.getZExtValue();
}
const DataLayout &getDataLayout() { return GVHandle->getDataLayout(); }
Type *getValueType() { return Member->getValueType(); }
iterator_range<ConstantDataSequential::user_iterator> users() {
return Member->users();
}
/// Replace access via cbuffer global with a load from the cbuffer handle
/// itself.
static void replaceAccess(LoadInst *LI, GlobalVariable *Global,
GlobalVariable *HandleGV, size_t BaseOffset,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
const DataLayout &DL = HandleGV->getDataLayout();
/// Get the byte offset of a Pointer-typed Value * `Val` relative to Member.
/// `Val` can either be Member itself, or a GEP of a constant offset from
/// Member
size_t getOffsetForCBufferGEP(Value *Val) {
assert(isa<PointerType>(Val->getType()) &&
"Expected a pointer-typed value");
size_t Offset = BaseOffset;
if (auto *GEP = dyn_cast<GEPOperator>(LI->getPointerOperand()))
Offset += getOffsetForCBufferGEP(GEP, Global, DL);
else if (LI->getPointerOperand() != Global)
llvm_unreachable("Load instruction doesn't reference cbuffer global");
if (Val == Member)
return 0;
IRBuilder<> Builder(LI);
auto *Handle = Builder.CreateLoad(HandleGV->getValueType(), HandleGV,
HandleGV->getName());
if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
// Since we should always have a constant offset, we should only ever have
// a single GEP of indirection from the Global.
assert(GEP->getPointerOperand() == Member &&
"Indirect access to resource handle");
Type *Ty = LI->getType();
CBufferRowIntrin Intrin(DL, Ty->getScalarType());
// The cbuffer consists of some number of 16-byte rows.
unsigned int CurrentRow = Offset / hlsl::CBufferRowSizeInBytes;
unsigned int CurrentIndex =
(Offset % hlsl::CBufferRowSizeInBytes) / Intrin.EltSize;
const DataLayout &DL = getDataLayout();
APInt ConstantOffset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
bool Success = GEP->accumulateConstantOffset(DL, ConstantOffset);
(void)Success;
assert(Success && "Offsets into cbuffer globals must be constant");
auto *CBufLoad = Builder.CreateIntrinsic(
Intrin.RetTy, Intrin.IID,
{Handle, ConstantInt::get(Builder.getInt32Ty(), CurrentRow)}, nullptr,
LI->getName());
auto *Elt =
Builder.CreateExtractValue(CBufLoad, {CurrentIndex++}, LI->getName());
if (auto *ATy = dyn_cast<ArrayType>(Member->getValueType()))
ConstantOffset =
hlsl::translateCBufArrayOffset(DL, ConstantOffset, ATy);
Value *Result = nullptr;
unsigned int Remaining =
((DL.getTypeSizeInBits(Ty) / 8) / Intrin.EltSize) - 1;
if (Remaining == 0) {
// We only have a single element, so we're done.
Result = Elt;
// However, if we loaded a <1 x T>, then we need to adjust the type here.
if (auto *VT = dyn_cast<FixedVectorType>(LI->getType())) {
assert(VT->getNumElements() == 1 && "Can't have multiple elements here");
Result = Builder.CreateInsertElement(PoisonValue::get(VT), Result,
Builder.getInt32(0));
return ConstantOffset.getZExtValue();
}
} else {
llvm_unreachable("Expected Val to be a GlobalVariable or GEP");
}
/// Create a handle for this cbuffer resource using the IRBuilder `Builder`
/// and sets the handle as the current one to use for subsequent calls to
/// `loadValue`
void createAndSetCurrentHandle(IRBuilder<> &Builder) {
Handle = Builder.CreateLoad(GVHandle->getValueType(), GVHandle,
GVHandle->getName());
}
/// Load a value of type `Ty` at offset `Offset` using the handle from the
/// last call to `createAndSetCurrentHandle`
Value *loadValue(IRBuilder<> &Builder, Type *Ty, size_t Offset,
const Twine &Name = "") {
assert(Handle &&
"Expected a handle for this cbuffer global resource to be created "
"before loading a value from it");
const DataLayout &DL = getDataLayout();
size_t TargetOffset = MemberOffset + Offset;
CBufferRowIntrin Intrin(DL, Ty->getScalarType());
// The cbuffer consists of some number of 16-byte rows.
unsigned int CurrentRow = TargetOffset / hlsl::CBufferRowSizeInBytes;
unsigned int CurrentIndex =
(TargetOffset % hlsl::CBufferRowSizeInBytes) / Intrin.EltSize;
auto *CBufLoad = Builder.CreateIntrinsic(
Intrin.RetTy, Intrin.IID,
{Handle, ConstantInt::get(Builder.getInt32Ty(), CurrentRow)}, nullptr,
Name + ".load");
auto *Elt = Builder.CreateExtractValue(CBufLoad, {CurrentIndex++},
Name + ".extract");
Value *Result = nullptr;
unsigned int Remaining =
((DL.getTypeSizeInBits(Ty) / 8) / Intrin.EltSize) - 1;
if (Remaining == 0) {
// We only have a single element, so we're done.
Result = Elt;
// However, if we loaded a <1 x T>, then we need to adjust the type here.
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
assert(VT->getNumElements() == 1 &&
"Can't have multiple elements here");
Result = Builder.CreateInsertElement(PoisonValue::get(VT), Result,
Builder.getInt32(0), Name);
}
return Result;
}
// Walk each element and extract it, wrapping to new rows as needed.
SmallVector<Value *> Extracts{Elt};
while (Remaining--) {
@@ -128,40 +165,138 @@ static void replaceAccess(LoadInst *LI, GlobalVariable *Global,
CBufLoad = Builder.CreateIntrinsic(
Intrin.RetTy, Intrin.IID,
{Handle, ConstantInt::get(Builder.getInt32Ty(), ++CurrentRow)},
nullptr, LI->getName());
nullptr, Name + ".load");
Extracts.push_back(Builder.CreateExtractValue(CBufLoad, {CurrentIndex++},
LI->getName()));
Name + ".extract"));
}
// Finally, we build up the original loaded value.
Result = PoisonValue::get(Ty);
for (int I = 0, E = Extracts.size(); I < E; ++I)
Result =
Builder.CreateInsertElement(Result, Extracts[I], Builder.getInt32(I));
Builder.CreateInsertElement(Result, Extracts[I], Builder.getInt32(I),
Name + formatv(".upto{}", I));
return Result;
}
};
} // namespace
/// Replace load via cbuffer global with a load from the cbuffer handle itself.
static void replaceLoad(LoadInst *LI, CBufferResource &CBR,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
size_t Offset = CBR.getOffsetForCBufferGEP(LI->getPointerOperand());
IRBuilder<> Builder(LI);
CBR.createAndSetCurrentHandle(Builder);
Value *Result = CBR.loadValue(Builder, LI->getType(), Offset, LI->getName());
LI->replaceAllUsesWith(Result);
DeadInsts.push_back(LI);
}
static void replaceAccessesWithHandle(GlobalVariable *Global,
GlobalVariable *HandleGV,
size_t BaseOffset) {
/// This function recursively copies N array elements from the cbuffer resource
/// CBR to the MemCpy Destination. Recursion is used to unravel multidimensional
/// arrays into a sequence of scalar/vector extracts and stores.
static void copyArrayElemsForMemCpy(IRBuilder<> &Builder, MemCpyInst *MCI,
CBufferResource &CBR, ArrayType *ArrTy,
size_t ArrOffset, size_t N,
const Twine &Name = "") {
const DataLayout &DL = MCI->getDataLayout();
Type *ElemTy = ArrTy->getElementType();
size_t ElemTySize = DL.getTypeAllocSize(ElemTy);
for (unsigned I = 0; I < N; ++I) {
size_t Offset = ArrOffset + I * ElemTySize;
// Recursively copy nested arrays
if (ArrayType *ElemArrTy = dyn_cast<ArrayType>(ElemTy)) {
copyArrayElemsForMemCpy(Builder, MCI, CBR, ElemArrTy, Offset,
ElemArrTy->getNumElements(), Name);
continue;
}
// Load CBuffer value and store it in Dest
APInt CBufArrayOffset(
DL.getIndexTypeSizeInBits(MCI->getSource()->getType()), Offset);
CBufArrayOffset =
hlsl::translateCBufArrayOffset(DL, CBufArrayOffset, ArrTy);
Value *CBufferVal =
CBR.loadValue(Builder, ElemTy, CBufArrayOffset.getZExtValue(), Name);
Value *GEP =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), MCI->getDest(),
{Builder.getInt32(Offset)}, Name + ".dest");
Builder.CreateStore(CBufferVal, GEP, MCI->isVolatile());
}
}
/// Replace memcpy from a cbuffer global with a memcpy from the cbuffer handle
/// itself. Assumes the cbuffer global is an array, and the length of bytes to
/// copy is divisible by array element allocation size.
/// The memcpy source must also be a direct cbuffer global reference, not a GEP.
static void replaceMemCpy(MemCpyInst *MCI, CBufferResource &CBR) {
ArrayType *ArrTy = dyn_cast<ArrayType>(CBR.getValueType());
assert(ArrTy && "MemCpy lowering is only supported for array types");
// This assumption vastly simplifies the implementation
if (MCI->getSource() != CBR.Member)
reportFatalUsageError(
"Expected MemCpy source to be a cbuffer global variable");
ConstantInt *Length = dyn_cast<ConstantInt>(MCI->getLength());
uint64_t ByteLength = Length->getZExtValue();
// If length to copy is zero, no memcpy is needed
if (ByteLength == 0) {
MCI->eraseFromParent();
return;
}
const DataLayout &DL = CBR.getDataLayout();
Type *ElemTy = ArrTy->getElementType();
size_t ElemSize = DL.getTypeAllocSize(ElemTy);
assert(ByteLength % ElemSize == 0 &&
"Length of bytes to MemCpy must be divisible by allocation size of "
"source/destination array elements");
size_t ElemsToCpy = ByteLength / ElemSize;
IRBuilder<> Builder(MCI);
CBR.createAndSetCurrentHandle(Builder);
copyArrayElemsForMemCpy(Builder, MCI, CBR, ArrTy, 0, ElemsToCpy,
"memcpy." + MCI->getDest()->getName() + "." +
MCI->getSource()->getName());
MCI->eraseFromParent();
}
static void replaceAccessesWithHandle(CBufferResource &CBR) {
SmallVector<WeakTrackingVH> DeadInsts;
SmallVector<User *> ToProcess{Global->users()};
SmallVector<User *> ToProcess{CBR.users()};
while (!ToProcess.empty()) {
User *Cur = ToProcess.pop_back_val();
// If we have a load instruction, replace the access.
if (auto *LI = dyn_cast<LoadInst>(Cur)) {
replaceAccess(LI, Global, HandleGV, BaseOffset, DeadInsts);
replaceLoad(LI, CBR, DeadInsts);
continue;
}
// If we have a memcpy instruction, replace it with multiple accesses and
// subsequent stores to the destination
if (auto *MCI = dyn_cast<MemCpyInst>(Cur)) {
replaceMemCpy(MCI, CBR);
continue;
}
// Otherwise, walk users looking for a load...
ToProcess.append(Cur->user_begin(), Cur->user_end());
if (isa<GetElementPtrInst>(Cur) || isa<GEPOperator>(Cur)) {
ToProcess.append(Cur->user_begin(), Cur->user_end());
continue;
}
llvm_unreachable("Unexpected user of Global");
}
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
}
@@ -173,7 +308,8 @@ static bool replaceCBufferAccesses(Module &M) {
for (const hlsl::CBufferMapping &Mapping : *CBufMD)
for (const hlsl::CBufferMember &Member : Mapping.Members) {
replaceAccessesWithHandle(Member.GV, Mapping.Handle, Member.Offset);
CBufferResource CBR(Mapping.Handle, Member.GV, Member.Offset);
replaceAccessesWithHandle(CBR);
Member.GV->removeFromParent();
}

View File

@@ -0,0 +1,216 @@
; RUN: opt -S -dxil-cbuffer-access -mtriple=dxil--shadermodel6.3-library %s | FileCheck %s
; cbuffer CB : register(b0) {
; float a1[3];
; double3 a2[2];
; float16_t a3[2][2];
; uint64_t a4[3];
; int2 a5[3][2];
; uint16_t a6[1];
; int64_t a7[2];
; bool a8[4];
; }
%__cblayout_CB = type <{ [3 x float], [2 x <3 x double>], [2 x [2 x half]], [3 x i64], [3 x [2 x <2 x i32>]], [1 x i16], [2 x i64], [4 x i32] }>
@CB.cb = local_unnamed_addr global target("dx.CBuffer", target("dx.Layout", %__cblayout_CB, 708, 0, 48, 112, 176, 224, 272, 288, 320)) poison
@a1 = external local_unnamed_addr addrspace(2) global [3 x float], align 4
@a2 = external local_unnamed_addr addrspace(2) global [2 x <3 x double>], align 32
@a3 = external local_unnamed_addr addrspace(2) global [2 x [2 x half]], align 2
@a4 = external local_unnamed_addr addrspace(2) global [3 x i64], align 8
@a5 = external local_unnamed_addr addrspace(2) global [3 x [2 x <2 x i32>]], align 16
@a6 = external local_unnamed_addr addrspace(2) global [1 x i16], align 2
@a7 = external local_unnamed_addr addrspace(2) global [2 x i64], align 8
@a8 = external local_unnamed_addr addrspace(2) global [4 x i32], align 4
; CHECK: define void @f(
define void @f(ptr %dst) {
entry:
%CB.cb_h.i.i = tail call target("dx.CBuffer", target("dx.Layout", %__cblayout_CB, 708, 0, 48, 112, 176, 224, 272, 288, 320)) @llvm.dx.resource.handlefrombinding(i32 0, i32 0, i32 1, i32 0, i1 false, ptr null)
store target("dx.CBuffer", target("dx.Layout", %__cblayout_CB, 708, 0, 48, 112, 176, 224, 272, 288, 320)) %CB.cb_h.i.i, ptr @CB.cb, align 4
%a1.copy = alloca [3 x float], align 4
%a2.copy = alloca [2 x <3 x double>], align 32
%a3.copy = alloca [2 x [2 x half]], align 2
%a4.copy = alloca [3 x i64], align 8
%a5.copy = alloca [3 x [2 x <2 x i32>]], align 16
%a6.copy = alloca [1 x i16], align 2
%a7.copy = alloca [2 x i64], align 8
%a8.copy = alloca [4 x i32], align 4
; Try copying no elements
; CHECK-NOT: memcpy
call void @llvm.memcpy.p0.p2.i32(ptr align 4 %a1.copy, ptr addrspace(2) align 4 @a1, i32 0, i1 false)
; Try copying only the first element
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { float, float, float, float } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 0)
; CHECK: [[X:%.*]] = extractvalue { float, float, float, float } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A1_COPY:%.*]], i32 0
; CHECK: store float [[X]], ptr [[DEST]], align 4
call void @llvm.memcpy.p0.p2.i32(ptr align 4 %a1.copy, ptr addrspace(2) align 4 @a1, i32 4, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { float, float, float, float } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 0)
; CHECK: [[X:%.*]] = extractvalue { float, float, float, float } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A1_COPY:%.*]], i32 0
; CHECK: store float [[X]], ptr [[DEST]], align 4
; CHECK: [[LOAD:%.*]] = call { float, float, float, float } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 1)
; CHECK: [[Y:%.*]] = extractvalue { float, float, float, float } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A1_COPY]], i32 4
; CHECK: store float [[Y]], ptr [[DEST]], align 4
; CHECK: [[LOAD:%.*]] = call { float, float, float, float } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 2)
; CHECK: [[Z:%.*]] = extractvalue { float, float, float, float } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A1_COPY]], i32 8
; CHECK: store float [[Z]], ptr [[DEST]], align 4
call void @llvm.memcpy.p0.p2.i32(ptr align 4 %a1.copy, ptr addrspace(2) align 4 @a1, i32 12, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { double, double } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 3)
; CHECK: [[X:%.*]] = extractvalue { double, double } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { double, double } [[LOAD]], 1
; CHECK: [[LOAD:%.*]] = call { double, double } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 4)
; CHECK: [[Z:%.*]] = extractvalue { double, double } [[LOAD]], 0
; CHECK: [[UPTO0:%.*]] = insertelement <3 x double> poison, double [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <3 x double> [[UPTO0]], double [[Y]], i32 1
; CHECK: [[UPTO2:%.*]] = insertelement <3 x double> [[UPTO1]], double [[Z]], i32 2
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A2_COPY:%.*]], i32 0
; CHECK: store <3 x double> [[UPTO2]], ptr [[DEST]], align 32
; CHECK: [[LOAD:%.*]] = call { double, double } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 5)
; CHECK: [[X:%.*]] = extractvalue { double, double } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { double, double } [[LOAD]], 1
; CHECK: [[LOAD:%.*]] = call { double, double } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 6)
; CHECK: [[Z:%.*]] = extractvalue { double, double } [[LOAD]], 0
; CHECK: [[UPTO0:%.*]] = insertelement <3 x double> poison, double [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <3 x double> [[UPTO0]], double [[Y]], i32 1
; CHECK: [[UPTO2:%.*]] = insertelement <3 x double> [[UPTO1]], double [[Z]], i32 2
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A2_COPY]], i32 32
; CHECK: store <3 x double> [[UPTO2]], ptr [[DEST]], align 32
call void @llvm.memcpy.p0.p2.i32(ptr align 32 %a2.copy, ptr addrspace(2) align 32 @a2, i32 64, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { half, half, half, half, half, half, half, half } @llvm.dx.resource.load.cbufferrow.8.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 7)
; CHECK: [[X:%.*]] = extractvalue { half, half, half, half, half, half, half, half } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A3_COPY:%.*]], i32 0
; CHECK: store half [[X]], ptr [[DEST]], align 2
; CHECK: [[LOAD:%.*]] = call { half, half, half, half, half, half, half, half } @llvm.dx.resource.load.cbufferrow.8.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 8)
; CHECK: [[Y:%.*]] = extractvalue { half, half, half, half, half, half, half, half } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A3_COPY]], i32 2
; CHECK: store half [[Y]], ptr [[DEST]], align 2
; CHECK: [[LOAD:%.*]] = call { half, half, half, half, half, half, half, half } @llvm.dx.resource.load.cbufferrow.8.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 9)
; CHECK: [[X:%.*]] = extractvalue { half, half, half, half, half, half, half, half } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A3_COPY]], i32 4
; CHECK: store half [[X]], ptr [[DEST]], align 2
; CHECK: [[LOAD:%.*]] = call { half, half, half, half, half, half, half, half } @llvm.dx.resource.load.cbufferrow.8.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 10)
; CHECK: [[Y:%.*]] = extractvalue { half, half, half, half, half, half, half, half } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A3_COPY]], i32 6
; CHECK: store half [[Y]], ptr [[DEST]], align 2
call void @llvm.memcpy.p0.p2.i32(ptr align 2 %a3.copy, ptr addrspace(2) align 2 @a3, i32 8, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { i64, i64 } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 11)
; CHECK: [[X:%.*]] = extractvalue { i64, i64 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A4_COPY:%.*]], i32 0
; CHECK: store i64 [[X]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i64, i64 } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 12)
; CHECK: [[Y:%.*]] = extractvalue { i64, i64 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A4_COPY]], i32 8
; CHECK: store i64 [[Y]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i64, i64 } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 13)
; CHECK: [[Z:%.*]] = extractvalue { i64, i64 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A4_COPY]], i32 16
; CHECK: store i64 [[Z]], ptr [[DEST]], align 8
call void @llvm.memcpy.p0.p2.i32(ptr align 8 %a4.copy, ptr addrspace(2) align 8 @a4, i32 24, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 14)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY:%.*]], i32 0
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 15)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY]], i32 8
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 16)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY]], i32 16
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 17)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY]], i32 24
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 18)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY]], i32 32
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 19)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 1
; CHECK: [[UPTO0:%.*]] = insertelement <2 x i32> poison, i32 [[X]], i32 0
; CHECK: [[UPTO1:%.*]] = insertelement <2 x i32> [[UPTO0]], i32 [[Y]], i32 1
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A5_COPY]], i32 40
; CHECK: store <2 x i32> [[UPTO1]], ptr [[DEST]], align 8
call void @llvm.memcpy.p0.p2.i32(ptr align 16 %a5.copy, ptr addrspace(2) align 16 @a5, i32 48, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { i16, i16, i16, i16, i16, i16, i16, i16 } @llvm.dx.resource.load.cbufferrow.8.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 17)
; CHECK: [[X:%.*]] = extractvalue { i16, i16, i16, i16, i16, i16, i16, i16 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A6_COPY:%.*]], i32 0
; CHECK: store i16 [[X]], ptr [[DEST]], align 2
call void @llvm.memcpy.p0.p2.i32(ptr align 2 %a6.copy, ptr addrspace(2) align 2 @a6, i32 2, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { i64, i64 } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 18)
; CHECK: [[X:%.*]] = extractvalue { i64, i64 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A7_COPY:%.*]], i32 0
; CHECK: store i64 [[X]], ptr [[DEST]], align 8
; CHECK: [[LOAD:%.*]] = call { i64, i64 } @llvm.dx.resource.load.cbufferrow.2.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 19)
; CHECK: [[Y:%.*]] = extractvalue { i64, i64 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A7_COPY]], i32 8
; CHECK: store i64 [[Y]], ptr [[DEST]], align 8
call void @llvm.memcpy.p0.p2.i32(ptr align 8 %a7.copy, ptr addrspace(2) align 8 @a7, i32 16, i1 false)
; CHECK: [[CB:%.*]] = load target("dx.CBuffer", {{.*}})), ptr @CB.cb, align 4
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 20)
; CHECK: [[X:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A8_COPY:%.*]], i32 0
; CHECK: store i32 [[X]], ptr [[DEST]], align 4
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 21)
; CHECK: [[Y:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A8_COPY]], i32 4
; CHECK: store i32 [[Y]], ptr [[DEST]], align 4
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 22)
; CHECK: [[Z:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A8_COPY]], i32 8
; CHECK: store i32 [[Z]], ptr [[DEST]], align 4
; CHECK: [[LOAD:%.*]] = call { i32, i32, i32, i32 } @llvm.dx.resource.load.cbufferrow.4.{{.*}}(target("dx.CBuffer", {{.*}})) [[CB]], i32 23)
; CHECK: [[W:%.*]] = extractvalue { i32, i32, i32, i32 } [[LOAD]], 0
; CHECK: [[DEST:%.*]] = getelementptr inbounds i8, ptr [[A8_COPY]], i32 12
; CHECK: store i32 [[W]], ptr [[DEST]], align 4
call void @llvm.memcpy.p0.p2.i32(ptr align 4 %a8.copy, ptr addrspace(2) align 4 @a8, i32 16, i1 false)
ret void
}
declare void @llvm.memcpy.p0.p2.i32(ptr noalias writeonly captures(none), ptr addrspace(2) noalias readonly captures(none), i32, i1 immarg)
; CHECK-NOT: !hlsl.cbs =
!hlsl.cbs = !{!0}
!0 = !{ptr @CB.cb, ptr addrspace(2) @a1, ptr addrspace(2) @a2, ptr addrspace(2) @a3, ptr addrspace(2) @a4, ptr addrspace(2) @a5, ptr addrspace(2) @a6, ptr addrspace(2) @a7, ptr addrspace(2) @a8}
!1 = !{i32 0, i32 2}
!2 = !{}