[NVPTX] Cleanup/Refactoring in NVPTX AsmPrinter and RegisterInfo (NFC) (#126800)

This commit is contained in:
Alex MacLean
2025-02-12 00:23:36 -08:00
committed by GitHub
parent 0b9b014be7
commit 215fa9e175
4 changed files with 241 additions and 332 deletions

View File

@@ -27,6 +27,7 @@
#include "cl_common_defines.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
@@ -47,6 +48,7 @@
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
@@ -93,20 +95,19 @@ using namespace llvm;
#define DEPOTNAME "__local_depot"
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// discoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
static void
DiscoverDependentGlobals(const Value *V,
discoverDependentGlobals(const Value *V,
DenseSet<const GlobalVariable *> &Globals) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
Globals.insert(GV);
else {
if (const User *U = dyn_cast<User>(V)) {
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
DiscoverDependentGlobals(U->getOperand(i), Globals);
}
}
return;
}
if (const User *U = dyn_cast<User>(V))
for (const auto &O : U->operands())
discoverDependentGlobals(O, Globals);
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
@@ -127,8 +128,8 @@ VisitGlobalVariableForEmission(const GlobalVariable *GV,
// Make sure we visit all dependents first
DenseSet<const GlobalVariable *> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
DiscoverDependentGlobals(GV->getOperand(i), Others);
for (const auto &O : GV->operands())
discoverDependentGlobals(O, Others);
for (const GlobalVariable *GV : Others)
VisitGlobalVariableForEmission(GV, Order, Visited, Visiting);
@@ -623,9 +624,8 @@ static bool usedInGlobalVarDef(const Constant *C) {
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
return GV->getName() != "llvm.used";
}
for (const User *U : C->users())
if (const Constant *C = dyn_cast<Constant>(U))
@@ -635,25 +635,23 @@ static bool usedInGlobalVarDef(const Constant *C) {
return false;
}
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
if (othergv->getName() == "llvm.used")
static bool usedInOneFunc(const User *U, Function const *&OneFunc) {
if (const GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(U))
if (OtherGV->getName() == "llvm.used")
return true;
}
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
if (instr->getParent() && instr->getParent()->getParent()) {
const Function *curFunc = instr->getParent()->getParent();
if (oneFunc && (curFunc != oneFunc))
if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (const Function *CurFunc = I->getFunction()) {
if (OneFunc && (CurFunc != OneFunc))
return false;
oneFunc = curFunc;
OneFunc = CurFunc;
return true;
} else
return false;
}
return false;
}
for (const User *UU : U->users())
if (!usedInOneFunc(UU, oneFunc))
if (!usedInOneFunc(UU, OneFunc))
return false;
return true;
@@ -666,16 +664,15 @@ static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
* 2. Does it have local linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
if (!gv->hasLocalLinkage())
static bool canDemoteGlobalVar(const GlobalVariable *GV, Function const *&f) {
if (!GV->hasLocalLinkage())
return false;
PointerType *Pty = gv->getType();
if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
if (GV->getAddressSpace() != ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = nullptr;
bool flag = usedInOneFunc(gv, oneFunc);
bool flag = usedInOneFunc(GV, oneFunc);
if (!flag)
return false;
if (!oneFunc)
@@ -685,27 +682,22 @@ static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
}
static bool useFuncSeen(const Constant *C,
DenseMap<const Function *, bool> &seenMap) {
const SmallPtrSetImpl<const Function *> &SeenSet) {
for (const User *U : C->users()) {
if (const Constant *cu = dyn_cast<Constant>(U)) {
if (useFuncSeen(cu, seenMap))
if (useFuncSeen(cu, SeenSet))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
const BasicBlock *bb = I->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
if (seenMap.contains(caller))
return true;
if (const Function *Caller = I->getFunction())
if (SeenSet.contains(Caller))
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
DenseMap<const Function *, bool> seenMap;
SmallPtrSet<const Function *, 32> SeenSet;
for (const Function &F : M) {
if (F.getAttributes().hasFnAttr("nvptx-libcall-callee")) {
emitDeclaration(&F, O);
@@ -731,7 +723,7 @@ void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, seenMap)) {
if (useFuncSeen(C, SeenSet)) {
emitDeclaration(&F, O);
break;
}
@@ -739,23 +731,19 @@ void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
if (!isa<Instruction>(U))
continue;
const Instruction *instr = cast<Instruction>(U);
const BasicBlock *bb = instr->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
const Function *Caller = cast<Instruction>(U)->getFunction();
if (!Caller)
continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (seenMap.contains(caller)) {
if (SeenSet.contains(Caller)) {
emitDeclaration(&F, O);
break;
}
}
seenMap[&F] = true;
SeenSet.insert(&F);
}
for (const GlobalAlias &GA : M.aliases())
emitAliasDeclaration(&GA, O);
@@ -818,7 +806,7 @@ void NVPTXAsmPrinter::emitGlobals(const Module &M) {
// Print out module-level global variables in proper order
for (const GlobalVariable *GV : Globals)
printModuleLevelGV(GV, OS2, /*processDemoted=*/false, STI);
printModuleLevelGV(GV, OS2, /*ProcessDemoted=*/false, STI);
OS2 << '\n';
@@ -839,16 +827,14 @@ void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) {
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
const NVPTXSubtarget &STI) {
O << "//\n";
O << "// Generated by LLVM NVPTX Back-End\n";
O << "//\n";
O << "\n";
const unsigned PTXVersion = STI.getPTXVersion();
unsigned PTXVersion = STI.getPTXVersion();
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
O << ".target ";
O << STI.getTargetName();
O << "//\n"
"// Generated by LLVM NVPTX Back-End\n"
"//\n"
"\n"
<< ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"
<< ".target " << STI.getTargetName();
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
if (NTM.getDrvInterface() == NVPTX::NVCL)
@@ -871,16 +857,9 @@ void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
if (HasFullDebugInfo)
O << ", debug";
O << "\n";
O << ".address_size ";
if (NTM.is64Bit())
O << "64";
else
O << "32";
O << "\n";
O << "\n";
O << "\n"
<< ".address_size " << (NTM.is64Bit() ? "64" : "32") << "\n"
<< "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
@@ -928,41 +907,28 @@ void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
raw_ostream &O) {
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (isa<GlobalVariable>(V)) {
const GlobalVariable *GVar = cast<GlobalVariable>(V);
if (GVar) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
} else if (V->isDeclaration())
if (const auto *GVar = dyn_cast<GlobalVariable>(V))
O << (GVar->hasInitializer() ? ".visible " : ".extern ");
else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
std::string msg;
msg.append("Error: ");
msg.append("Symbol ");
if (V->hasName())
msg.append(std::string(V->getName()));
msg.append("has unsupported appending linkage type");
llvm_unreachable(msg.c_str());
} else if (!V->hasInternalLinkage() &&
!V->hasPrivateLinkage()) {
report_fatal_error("Symbol '" + llvm::Twine(V->getNameOrAsOperand()) +
"' has unsupported appending linkage type");
} else if (!V->hasInternalLinkage() && !V->hasPrivateLinkage()) {
O << ".weak ";
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
raw_ostream &O, bool processDemoted,
raw_ostream &O, bool ProcessDemoted,
const NVPTXSubtarget &STI) {
// Skip meta data
if (GVar->hasSection()) {
if (GVar->hasSection())
if (GVar->getSection() == "llvm.metadata")
return;
}
// Skip LLVM intrinsic global variables
if (GVar->getName().starts_with("llvm.") ||
@@ -1069,20 +1035,20 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
}
if (GVar->hasPrivateLinkage()) {
if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
if (GVar->getName().starts_with("unrollpragma"))
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (strncmp(GVar->getName().data(), "filename", 8) == 0)
if (GVar->getName().starts_with("filename"))
return;
if (GVar->use_empty())
return;
}
const Function *demotedFunc = nullptr;
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
const Function *DemotedFunc = nullptr;
if (!ProcessDemoted && canDemoteGlobalVar(GVar, DemotedFunc)) {
O << "// " << GVar->getName() << " has been demoted\n";
localDecls[demotedFunc].push_back(GVar);
localDecls[DemotedFunc].push_back(GVar);
return;
}
@@ -1090,17 +1056,14 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
emitPTXAddressSpace(GVar->getAddressSpace(), O);
if (isManaged(*GVar)) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
report_fatal_error(
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
}
O << " .attribute(.managed)";
}
if (MaybeAlign A = GVar->getAlign())
O << " .align " << A->value();
else
O << " .align " << (int)DL.getPrefTypeAlign(ETy).value();
O << " .align "
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
(ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
@@ -1137,8 +1100,6 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
}
}
} else {
uint64_t ElementSize = 0;
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
@@ -1147,8 +1108,8 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
case Type::IntegerTyID: // Integers larger than 64 bits
case Type::StructTyID:
case Type::ArrayTyID:
case Type::FixedVectorTyID:
ElementSize = DL.getTypeStoreSize(ETy);
case Type::FixedVectorTyID: {
const uint64_t ElementSize = DL.getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
@@ -1159,7 +1120,7 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
AggBuffer aggBuffer(ElementSize, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols()) {
unsigned int ptrSize = MAI->getCodePointerSize();
const unsigned int ptrSize = MAI->getCodePointerSize();
if (ElementSize % ptrSize ||
!aggBuffer.allSymbolsAligned(ptrSize)) {
// Print in bytes and use the mask() operator for pointers.
@@ -1190,22 +1151,17 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
if (ElementSize)
O << "[" << ElementSize << "]";
}
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
if (ElementSize)
O << "[" << ElementSize << "]";
}
break;
}
default:
llvm_unreachable("type not supported yet");
}
@@ -1229,7 +1185,7 @@ void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) {
Name->print(os, AP.MAI);
}
} else if (const ConstantExpr *CExpr = dyn_cast<ConstantExpr>(v0)) {
const MCExpr *Expr = AP.lowerConstantForGV(cast<Constant>(CExpr), false);
const MCExpr *Expr = AP.lowerConstantForGV(CExpr, false);
AP.printMCExpr(*Expr, os);
} else
llvm_unreachable("symbol type unknown");
@@ -1298,18 +1254,18 @@ void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) {
}
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
auto It = localDecls.find(f);
void NVPTXAsmPrinter::emitDemotedVars(const Function *F, raw_ostream &O) {
auto It = localDecls.find(F);
if (It == localDecls.end())
return;
std::vector<const GlobalVariable *> &gvars = It->second;
ArrayRef<const GlobalVariable *> GVars = It->second;
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const NVPTXSubtarget &STI =
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
for (const GlobalVariable *GV : gvars) {
for (const GlobalVariable *GV : GVars) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(GV, O, /*processDemoted=*/true, STI);
}
@@ -1344,13 +1300,11 @@ NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
else if (NumBits <= 64) {
if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
} else {
llvm_unreachable("Integer too large");
break;
}
llvm_unreachable("Integer too large");
break;
}
case Type::BFloatTyID:
@@ -1393,16 +1347,14 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
O << ".";
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
if (isManaged(*GVar)) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
report_fatal_error(
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
}
O << " .attribute(.managed)";
}
if (MaybeAlign A = GVar->getAlign())
O << " .align " << A->value();
else
O << " .align " << (int)DL.getPrefTypeAlign(ETy).value();
O << " .align "
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
// Special case for i128
if (ETy->isIntegerTy(128)) {
@@ -1413,9 +1365,7 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
}
if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
O << " ." << getPTXFundamentalTypeStr(ETy) << " ";
getSymbol(GVar)->print(O, MAI);
return;
}
@@ -1446,16 +1396,13 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const AttributeList &PAL = F->getAttributes();
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
const NVPTXMachineFunctionInfo *MFI =
MF ? MF->getInfo<NVPTXMachineFunctionInfo>() : nullptr;
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
bool isKernelFunc = isKernelFunction(*F);
bool IsFirst = true;
const bool IsKernelFunc = isKernelFunction(*F);
if (F->arg_empty() && !F->isVarArg()) {
O << "()";
@@ -1464,161 +1411,143 @@ void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
O << "(\n";
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
Type *Ty = I->getType();
for (const Argument &Arg : F->args()) {
Type *Ty = Arg.getType();
const std::string ParamSym = TLI->getParamName(F, Arg.getArgNo());
if (!first)
if (!IsFirst)
O << ",\n";
first = false;
IsFirst = false;
// Handle image/sampler parameters
if (isKernelFunc) {
if (isSampler(*I) || isImage(*I)) {
std::string ParamSym;
raw_string_ostream ParamStr(ParamSym);
ParamStr << F->getName() << "_param_" << paramIndex;
ParamStr.flush();
bool EmitImagePtr = !MFI || !MFI->checkImageHandleSymbol(ParamSym);
if (isImage(*I)) {
if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
if (EmitImagePtr)
O << "\t.param .u64 .ptr .surfref ";
else
O << "\t.param .surfref ";
O << TLI->getParamName(F, paramIndex);
}
else { // Default image is read_only
if (EmitImagePtr)
O << "\t.param .u64 .ptr .texref ";
else
O << "\t.param .texref ";
O << TLI->getParamName(F, paramIndex);
}
} else {
if (EmitImagePtr)
O << "\t.param .u64 .ptr .samplerref ";
else
O << "\t.param .samplerref ";
O << TLI->getParamName(F, paramIndex);
}
if (IsKernelFunc) {
const bool IsSampler = isSampler(Arg);
const bool IsTexture = !IsSampler && isImageReadOnly(Arg);
const bool IsSurface = !IsSampler && !IsTexture &&
(isImageReadWrite(Arg) || isImageWriteOnly(Arg));
if (IsSampler || IsTexture || IsSurface) {
const bool EmitImgPtr = !MFI || !MFI->checkImageHandleSymbol(ParamSym);
O << "\t.param ";
if (EmitImgPtr)
O << ".u64 .ptr ";
if (IsSampler)
O << ".samplerref ";
else if (IsTexture)
O << ".texref ";
else // IsSurface
O << ".samplerref ";
O << ParamSym;
continue;
}
}
auto getOptimalAlignForParam = [TLI, &DL, &PAL, F,
paramIndex](Type *Ty) -> Align {
auto GetOptimalAlignForParam = [TLI, &DL, F, &Arg](Type *Ty) -> Align {
if (MaybeAlign StackAlign =
getAlign(*F, paramIndex + AttributeList::FirstArgIndex))
getAlign(*F, Arg.getArgNo() + AttributeList::FirstArgIndex))
return StackAlign.value();
Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, Ty, DL);
MaybeAlign ParamAlign = PAL.getParamAlignment(paramIndex);
MaybeAlign ParamAlign =
Arg.hasByValAttr() ? Arg.getParamAlign() : MaybeAlign();
return std::max(TypeAlign, ParamAlign.valueOrOne());
};
if (!PAL.hasParamAttr(paramIndex, Attribute::ByVal)) {
if (ShouldPassAsArray(Ty)) {
// Just print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
Align OptimalAlign = getOptimalAlignForParam(Ty);
if (Arg.hasByValAttr()) {
// param has byVal attribute.
Type *ETy = Arg.getParamByValType();
assert(ETy && "Param should have byval type");
O << "\t.param .align " << OptimalAlign.value() << " .b8 ";
O << TLI->getParamName(F, paramIndex);
O << "[" << DL.getTypeAllocSize(Ty) << "]";
// Print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
const Align OptimalAlign =
IsKernelFunc ? GetOptimalAlignForParam(ETy)
: TLI->getFunctionByValParamAlign(
F, ETy, Arg.getParamAlign().valueOrOne(), DL);
continue;
}
// Just a scalar
auto *PTy = dyn_cast<PointerType>(Ty);
unsigned PTySizeInBits = 0;
if (PTy) {
PTySizeInBits =
TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits();
assert(PTySizeInBits && "Invalid pointer size");
}
if (isKernelFunc) {
if (PTy) {
O << "\t.param .u" << PTySizeInBits << " .ptr";
switch (PTy->getAddressSpace()) {
default:
break;
case ADDRESS_SPACE_GLOBAL:
O << " .global";
break;
case ADDRESS_SPACE_SHARED:
O << " .shared";
break;
case ADDRESS_SPACE_CONST:
O << " .const";
break;
case ADDRESS_SPACE_LOCAL:
O << " .local";
break;
}
O << " .align " << I->getParamAlign().valueOrOne().value();
O << " " << TLI->getParamName(F, paramIndex);
continue;
}
// non-pointer scalar to kernel func
O << "\t.param .";
// Special case: predicate operands become .u8 types
if (Ty->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(Ty);
O << " ";
O << TLI->getParamName(F, paramIndex);
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non-ABI
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
sz = promoteScalarArgumentSize(sz);
} else if (PTy) {
assert(PTySizeInBits && "Invalid pointer size");
sz = PTySizeInBits;
} else
sz = Ty->getPrimitiveSizeInBits();
O << "\t.param .b" << sz << " ";
O << TLI->getParamName(F, paramIndex);
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
<< "[" << DL.getTypeAllocSize(ETy) << "]";
continue;
}
// param has byVal attribute.
Type *ETy = PAL.getParamByValType(paramIndex);
assert(ETy && "Param should have byval type");
if (ShouldPassAsArray(Ty)) {
// Just print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
Align OptimalAlign = GetOptimalAlignForParam(Ty);
// Print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
Align OptimalAlign =
isKernelFunc
? getOptimalAlignForParam(ETy)
: TLI->getFunctionByValParamAlign(
F, ETy, PAL.getParamAlignment(paramIndex).valueOrOne(), DL);
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
<< "[" << DL.getTypeAllocSize(Ty) << "]";
unsigned sz = DL.getTypeAllocSize(ETy);
O << "\t.param .align " << OptimalAlign.value() << " .b8 ";
O << TLI->getParamName(F, paramIndex);
O << "[" << sz << "]";
continue;
}
// Just a scalar
auto *PTy = dyn_cast<PointerType>(Ty);
unsigned PTySizeInBits = 0;
if (PTy) {
PTySizeInBits =
TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits();
assert(PTySizeInBits && "Invalid pointer size");
}
if (IsKernelFunc) {
if (PTy) {
O << "\t.param .u" << PTySizeInBits << " .ptr";
switch (PTy->getAddressSpace()) {
default:
break;
case ADDRESS_SPACE_GLOBAL:
O << " .global";
break;
case ADDRESS_SPACE_SHARED:
O << " .shared";
break;
case ADDRESS_SPACE_CONST:
O << " .const";
break;
case ADDRESS_SPACE_LOCAL:
O << " .local";
break;
}
O << " .align " << Arg.getParamAlign().valueOrOne().value() << " "
<< ParamSym;
continue;
}
// non-pointer scalar to kernel func
O << "\t.param .";
// Special case: predicate operands become .u8 types
if (Ty->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(Ty);
O << " " << ParamSym;
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non-ABI
unsigned Size;
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
Size = promoteScalarArgumentSize(ITy->getBitWidth());
} else if (PTy) {
assert(PTySizeInBits && "Invalid pointer size");
Size = PTySizeInBits;
} else
Size = Ty->getPrimitiveSizeInBits();
O << "\t.param .b" << Size << " " << ParamSym;
}
if (F->isVarArg()) {
if (!first)
if (!IsFirst)
O << ",\n";
O << "\t.param .align " << STI.getMaxRequiredAlignment();
O << " .b8 ";
O << TLI->getParamName(F, /* vararg */ -1) << "[]";
O << "\t.param .align " << STI.getMaxRequiredAlignment() << " .b8 "
<< TLI->getParamName(F, /* vararg */ -1) << "[]";
}
O << "\n)";
@@ -1641,11 +1570,11 @@ void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
<< DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
O << "\t.reg .b64 \t%SP;\n";
O << "\t.reg .b64 \t%SPL;\n";
O << "\t.reg .b64 \t%SP;\n"
<< "\t.reg .b64 \t%SPL;\n";
} else {
O << "\t.reg .b32 \t%SP;\n";
O << "\t.reg .b32 \t%SPL;\n";
O << "\t.reg .b32 \t%SP;\n"
<< "\t.reg .b32 \t%SPL;\n";
}
}
@@ -1662,29 +1591,16 @@ void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
regmap.insert(std::make_pair(vr, n + 1));
}
// Emit register declarations
// @TODO: Extract out the real register usage
// O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
const TargetRegisterClass *RC = TRI->getRegClass(i);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
std::string rcname = getNVPTXRegClassName(RC);
std::string rcStr = getNVPTXRegClassStr(RC);
int n = regmap.size();
for (const TargetRegisterClass *RC : TRI->regclasses()) {
const unsigned N = VRegMapping[RC].size();
// Only declare those registers that may be used.
if (n) {
O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
<< ">;\n";
if (N) {
const StringRef RCName = getNVPTXRegClassName(RC);
const StringRef RCStr = getNVPTXRegClassStr(RC);
O << "\t.reg " << RCName << " \t" << RCStr << "<" << (N + 1) << ">;\n";
}
}
@@ -1711,7 +1627,8 @@ void NVPTXAsmPrinter::encodeDebugInfoRegisterNumbers(
}
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp,
raw_ostream &O) const {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
@@ -1746,10 +1663,7 @@ void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
return;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
bool IsNonGenericPointer = false;
if (GVar->getType()->getAddressSpace() != 0) {
IsNonGenericPointer = true;
}
const bool IsNonGenericPointer = GVar->getAddressSpace() != 0;
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
O << "generic(";
getSymbol(GVar)->print(O, MAI);
@@ -1798,7 +1712,7 @@ void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID:
if (const auto CI = dyn_cast<ConstantInt>(CPV)) {
if (const auto *CI = dyn_cast<ConstantInt>(CPV)) {
AddIntToBuffer(CI->getValue());
break;
}
@@ -1912,7 +1826,8 @@ void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
/// expressions that are representable in PTX and create
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
const MCExpr *
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV,
bool ProcessingGeneric) const {
MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
@@ -1922,13 +1837,10 @@ NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric)
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
const MCSymbolRefExpr *Expr =
MCSymbolRefExpr::create(getSymbol(GV), Ctx);
if (ProcessingGeneric) {
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(getSymbol(GV), Ctx);
if (ProcessingGeneric)
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
} else {
return Expr;
}
return Expr;
}
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
@@ -2041,7 +1953,7 @@ NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric)
}
// Copy of MCExpr::print customized for NVPTX
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) const {
switch (Expr.getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);

View File

@@ -101,15 +101,13 @@ class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
// SymbolsBeforeStripping[i].
SmallVector<const Value *, 4> SymbolsBeforeStripping;
unsigned curpos;
NVPTXAsmPrinter &AP;
bool EmitGeneric;
const NVPTXAsmPrinter &AP;
const bool EmitGeneric;
public:
AggBuffer(unsigned size, NVPTXAsmPrinter &AP)
: size(size), buffer(size), AP(AP) {
curpos = 0;
EmitGeneric = AP.EmitGeneric;
}
AggBuffer(unsigned size, const NVPTXAsmPrinter &AP)
: size(size), buffer(size), curpos(0), AP(AP),
EmitGeneric(AP.EmitGeneric) {}
// Copy Num bytes from Ptr.
// if Bytes > Num, zero fill up to Bytes.
@@ -155,7 +153,6 @@ private:
StringRef getPassName() const override { return "NVPTX Assembly Printer"; }
const Function *F;
std::string CurrentFnName;
void emitStartOfAsmFile(Module &M) override;
void emitBasicBlockStart(const MachineBasicBlock &MBB) override;
@@ -190,8 +187,9 @@ private:
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &) override;
const MCExpr *lowerConstantForGV(const Constant *CV, bool ProcessingGeneric);
void printMCExpr(const MCExpr &Expr, raw_ostream &OS);
const MCExpr *lowerConstantForGV(const Constant *CV,
bool ProcessingGeneric) const;
void printMCExpr(const MCExpr &Expr, raw_ostream &OS) const;
protected:
bool doInitialization(Module &M) override;
@@ -217,7 +215,7 @@ private:
void emitPTXAddressSpace(unsigned int AddressSpace, raw_ostream &O) const;
std::string getPTXFundamentalTypeStr(Type *Ty, bool = true) const;
void printScalarConstant(const Constant *CPV, raw_ostream &O);
void printFPConstant(const ConstantFP *Fp, raw_ostream &O);
void printFPConstant(const ConstantFP *Fp, raw_ostream &O) const;
void bufferLEByte(const Constant *CPV, int Bytes, AggBuffer *aggBuffer);
void bufferAggregateConstant(const Constant *CV, AggBuffer *aggBuffer);
@@ -245,7 +243,7 @@ private:
// Since the address value should always be generic in CUDA C and always
// be specific in OpenCL, we use this simple control here.
//
bool EmitGeneric;
const bool EmitGeneric;
public:
NVPTXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)

View File

@@ -24,7 +24,7 @@ using namespace llvm;
#define DEBUG_TYPE "nvptx-reg-info"
namespace llvm {
std::string getNVPTXRegClassName(TargetRegisterClass const *RC) {
StringRef getNVPTXRegClassName(TargetRegisterClass const *RC) {
if (RC == &NVPTX::Float32RegsRegClass)
return ".f32";
if (RC == &NVPTX::Float64RegsRegClass)
@@ -62,7 +62,7 @@ std::string getNVPTXRegClassName(TargetRegisterClass const *RC) {
return "INTERNAL";
}
std::string getNVPTXRegClassStr(TargetRegisterClass const *RC) {
StringRef getNVPTXRegClassStr(TargetRegisterClass const *RC) {
if (RC == &NVPTX::Float32RegsRegClass)
return "%f";
if (RC == &NVPTX::Float64RegsRegClass)
@@ -81,7 +81,7 @@ std::string getNVPTXRegClassStr(TargetRegisterClass const *RC) {
return "!Special!";
return "INTERNAL";
}
}
} // namespace llvm
NVPTXRegisterInfo::NVPTXRegisterInfo()
: NVPTXGenRegisterInfo(0), StrPool(StrAlloc) {}
@@ -144,11 +144,10 @@ void NVPTXRegisterInfo::clearDebugRegisterMap() const {
debugRegisterMap.clear();
}
static uint64_t encodeRegisterForDwarf(std::string registerName) {
if (registerName.length() > 8) {
static uint64_t encodeRegisterForDwarf(StringRef RegisterName) {
if (RegisterName.size() > 8)
// The name is more than 8 characters long, and so won't fit into 64 bits.
return 0;
}
// Encode the name string into a DWARF register number using cuda-gdb's
// encoding. See cuda_check_dwarf2_reg_ptx_virtual_register in cuda-tdep.c,
@@ -157,14 +156,14 @@ static uint64_t encodeRegisterForDwarf(std::string registerName) {
// number, which is stored in ULEB128, but in practice must be no more than 8
// bytes (excluding null terminator, which is not included).
uint64_t result = 0;
for (unsigned char c : registerName)
for (unsigned char c : RegisterName)
result = (result << 8) | c;
return result;
}
void NVPTXRegisterInfo::addToDebugRegisterMap(
uint64_t preEncodedVirtualRegister, std::string registerName) const {
uint64_t mapped = encodeRegisterForDwarf(registerName);
uint64_t preEncodedVirtualRegister, StringRef RegisterName) const {
uint64_t mapped = encodeRegisterForDwarf(RegisterName);
if (mapped == 0)
return;
debugRegisterMap.insert({preEncodedVirtualRegister, mapped});
@@ -172,13 +171,13 @@ void NVPTXRegisterInfo::addToDebugRegisterMap(
int64_t NVPTXRegisterInfo::getDwarfRegNum(MCRegister RegNum, bool isEH) const {
if (RegNum.isPhysical()) {
std::string name = NVPTXInstPrinter::getRegisterName(RegNum.id());
StringRef Name = NVPTXInstPrinter::getRegisterName(RegNum.id());
// In NVPTXFrameLowering.cpp, we do arrange for %Depot to be accessible from
// %SP. Using the %Depot register doesn't provide any debug info in
// cuda-gdb, but switching it to %SP does.
if (RegNum.id() == NVPTX::VRDepot)
name = "%SP";
return encodeRegisterForDwarf(name);
Name = "%SP";
return encodeRegisterForDwarf(Name);
}
uint64_t lookup = debugRegisterMap.lookup(RegNum.id());
if (lookup)

View File

@@ -69,13 +69,13 @@ public:
// here, because the proper encoding for debug registers is available only
// temporarily during ASM emission.
void addToDebugRegisterMap(uint64_t preEncodedVirtualRegister,
std::string registerName) const;
StringRef RegisterName) const;
void clearDebugRegisterMap() const;
int64_t getDwarfRegNum(MCRegister RegNum, bool isEH) const override;
};
std::string getNVPTXRegClassName(const TargetRegisterClass *RC);
std::string getNVPTXRegClassStr(const TargetRegisterClass *RC);
StringRef getNVPTXRegClassName(const TargetRegisterClass *RC);
StringRef getNVPTXRegClassStr(const TargetRegisterClass *RC);
} // end namespace llvm