[MLIR][AMDGPU] Adding dynamic size check to avoid subword buffer load (#135014)
Motivation: amdgpu buffer load instruction will return all zeros when loading sub-word values. For example, assuming the buffer size is exactly one word and we attempt to invoke `llvm.amdgcn.raw.ptr.buffer.load.v2i32` starting from byte 2 of the word, we will not receive the actual value of the buffer but all zeros for the first word. This is because the boundary has been crossed for the first word. This PR come up with a fix to this problem, such that, it creates a bounds check against the buffer load instruction. It will compare the offset + vector size to see if the upper bound of the address will exceed the buffer size. If it does, masked transfer read will be optimized to `vector.load` + `arith.select`, else, it will continue to fall back to default lowering of the masked vector load.
This commit is contained in:
@@ -54,15 +54,20 @@ def AmdgpuResolveStridedMetadataPass : Pass<"amdgpu-resolve-strided-metadata"> {
|
||||
def AmdgpuTransferReadToLoadPass : Pass<"amdgpu-transfer-read-to-load"> {
|
||||
let summary = "Lower the operations from the vector transfer_read to vector load";
|
||||
let description = [{
|
||||
This pass creates a transfer read op lowering. A vector trasfer read op
|
||||
will be lowered to a combination of vector.load, arith.select and
|
||||
vector.broadcast.
|
||||
This pass creates a transfer read op lowering optimization. The lowering
|
||||
will produce a conditional check at runtime. If within bounds, a vector
|
||||
trasfer read op will be lowered to a combination of vector.load, arith.select
|
||||
and vector.broadcast. If not, it will fallback to the default lowering
|
||||
of the transfer_read op.
|
||||
|
||||
This pattern will make it possible for masked transfer_read to be lowered
|
||||
towards buffer load with bounds check, allowing a more optimized global
|
||||
load accessing pattern compared with existing implementation of
|
||||
llvm.intr.masked.load on vectors.
|
||||
}];
|
||||
let dependentDialects = [];
|
||||
let dependentDialects = [
|
||||
"scf::SCFDialect",
|
||||
"memref::MemRefDialect"
|
||||
];
|
||||
}
|
||||
#endif // MLIR_DIALECT_AMDGPU_TRANSFORMS_PASSES_TD_
|
||||
|
||||
@@ -14,6 +14,7 @@ add_mlir_dialect_library(MLIRAMDGPUTransforms
|
||||
MLIRAMDGPUUtils
|
||||
MLIRArithDialect
|
||||
MLIRMemRefDialect
|
||||
MLIRSCFDialect
|
||||
MLIRVectorDialect
|
||||
MLIRControlFlowDialect
|
||||
MLIRFuncDialect
|
||||
|
||||
@@ -9,13 +9,22 @@
|
||||
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h"
|
||||
|
||||
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||||
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
|
||||
#include "mlir/Dialect/SCF/IR/SCF.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
|
||||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/IR/OpDefinition.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/IR/TypeUtilities.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/Support/LogicalResult.h"
|
||||
#include "mlir/Transforms/WalkPatternRewriteDriver.h"
|
||||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
|
||||
namespace mlir::amdgpu {
|
||||
#define GEN_PASS_DEF_AMDGPUTRANSFERREADTOLOADPASS
|
||||
@@ -67,6 +76,9 @@ static LogicalResult transferPreconditions(
|
||||
if (!memRefType.isLastDimUnitStride())
|
||||
return rewriter.notifyMatchFailure(xferOp, "!= 1 stride needs VectorToSCF");
|
||||
|
||||
if (memRefType.getElementTypeBitWidth() < 8)
|
||||
return rewriter.notifyMatchFailure(xferOp, "unsupported sub-byte type");
|
||||
|
||||
// If there is broadcasting involved then we first load the unbroadcasted
|
||||
// vector, and then broadcast it with `vector.broadcast`.
|
||||
ArrayRef<int64_t> vectorShape = xferOp.getVectorType().getShape();
|
||||
@@ -101,6 +113,26 @@ static LogicalResult transferPreconditions(
|
||||
return success();
|
||||
}
|
||||
|
||||
static Value createVectorLoadForMaskedLoad(OpBuilder &builder, Location loc,
|
||||
vector::TransferReadOp readOp,
|
||||
bool requiresBroadcasting,
|
||||
VectorType unbroadcastedVectorType) {
|
||||
Value fill = builder.create<vector::SplatOp>(loc, unbroadcastedVectorType,
|
||||
readOp.getPadding());
|
||||
Value load = builder.create<vector::LoadOp>(
|
||||
loc, unbroadcastedVectorType, readOp.getSource(), readOp.getIndices());
|
||||
Value res = builder.create<arith::SelectOp>(loc, unbroadcastedVectorType,
|
||||
readOp.getMask(), load, fill);
|
||||
// Insert a broadcasting op if required.
|
||||
if (requiresBroadcasting) {
|
||||
res = builder.create<vector::BroadcastOp>(loc, readOp.getVectorType(), res);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
static constexpr char kTransferReadNeedsMask[] =
|
||||
"amdgpu.buffer_transfer_read_needs_mask";
|
||||
|
||||
namespace {
|
||||
|
||||
struct TransferReadLowering final : OpRewritePattern<vector::TransferReadOp> {
|
||||
@@ -108,6 +140,8 @@ struct TransferReadLowering final : OpRewritePattern<vector::TransferReadOp> {
|
||||
|
||||
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
|
||||
PatternRewriter &rewriter) const override {
|
||||
if (readOp->hasAttr(kTransferReadNeedsMask))
|
||||
return failure();
|
||||
|
||||
bool requiresBroadcasting = false;
|
||||
VectorType unbroadcastedVectorType;
|
||||
@@ -117,20 +151,115 @@ struct TransferReadLowering final : OpRewritePattern<vector::TransferReadOp> {
|
||||
}
|
||||
|
||||
Location loc = readOp.getLoc();
|
||||
Value fill = rewriter.create<vector::SplatOp>(loc, unbroadcastedVectorType,
|
||||
readOp.getPadding());
|
||||
Value load = rewriter.create<vector::LoadOp>(
|
||||
loc, unbroadcastedVectorType, readOp.getSource(), readOp.getIndices());
|
||||
Value res = rewriter.create<arith::SelectOp>(loc, unbroadcastedVectorType,
|
||||
readOp.getMask(), load, fill);
|
||||
Value src = readOp.getSource();
|
||||
|
||||
// Insert a broadcasting op if required.
|
||||
if (requiresBroadcasting) {
|
||||
res = rewriter.create<vector::BroadcastOp>(loc, readOp.getVectorType(),
|
||||
res);
|
||||
VectorType vectorType = readOp.getVectorType();
|
||||
int64_t vectorSize = vectorType.getNumElements();
|
||||
int64_t elementBitWidth = vectorType.getElementTypeBitWidth();
|
||||
SmallVector<OpFoldResult> indices = readOp.getIndices();
|
||||
|
||||
auto stridedMetadata =
|
||||
rewriter.create<memref::ExtractStridedMetadataOp>(loc, src);
|
||||
SmallVector<OpFoldResult> strides =
|
||||
stridedMetadata.getConstifiedMixedStrides();
|
||||
SmallVector<OpFoldResult> sizes = stridedMetadata.getConstifiedMixedSizes();
|
||||
OpFoldResult offset = stridedMetadata.getConstifiedMixedOffset();
|
||||
OpFoldResult linearizedIndices;
|
||||
std::tie(std::ignore, linearizedIndices) =
|
||||
memref::getLinearizedMemRefOffsetAndSize(rewriter, loc, elementBitWidth,
|
||||
elementBitWidth, offset, sizes,
|
||||
strides, indices);
|
||||
|
||||
// TODO(jerryyin): Fix the getLinearizedMemRefOffsetAndSize() function
|
||||
// Note below doesn't give the correct result for the linearized size.
|
||||
// Value totalSize = getValueOrCreateConstantIndexOp(
|
||||
// rewriter, loc, linearizedInfo.linearizedSize);
|
||||
// It computes the multiplied sizes of all dimensions instead of taking
|
||||
// the maximum of each dimension size * stride.
|
||||
SmallVector<AffineExpr> productExpressions;
|
||||
SmallVector<Value> productResults;
|
||||
unsigned sourceRank = cast<ShapedType>(src.getType()).getRank();
|
||||
|
||||
SmallVector<AffineExpr> symbols(2 * sourceRank);
|
||||
SmallVector<Value> offsetValues;
|
||||
bindSymbolsList(rewriter.getContext(), MutableArrayRef{symbols});
|
||||
|
||||
size_t symbolIndex = 0;
|
||||
for (size_t i = 0; i < sourceRank; ++i) {
|
||||
AffineExpr strideExpr, sizeExpr;
|
||||
OpFoldResult stride = strides[i];
|
||||
OpFoldResult size = sizes[i];
|
||||
if (auto constantStride = getConstantIntValue(stride)) {
|
||||
strideExpr = rewriter.getAffineConstantExpr(*constantStride);
|
||||
} else {
|
||||
strideExpr = symbols[symbolIndex++];
|
||||
offsetValues.push_back(
|
||||
getValueOrCreateConstantIndexOp(rewriter, loc, stride));
|
||||
}
|
||||
|
||||
if (auto constantSize = getConstantIntValue(size)) {
|
||||
sizeExpr = rewriter.getAffineConstantExpr(*constantSize);
|
||||
} else {
|
||||
sizeExpr = symbols[symbolIndex++];
|
||||
offsetValues.push_back(
|
||||
getValueOrCreateConstantIndexOp(rewriter, loc, size));
|
||||
}
|
||||
|
||||
productExpressions.push_back(strideExpr * sizeExpr);
|
||||
}
|
||||
|
||||
rewriter.replaceOp(readOp, res);
|
||||
AffineMap maxMap = AffineMap::get(
|
||||
/*dimCount=*/0, /*symbolCount=*/symbolIndex, productExpressions,
|
||||
rewriter.getContext());
|
||||
Value totalSize =
|
||||
rewriter.create<affine::AffineMaxOp>(loc, maxMap, offsetValues);
|
||||
|
||||
// delta = bufferSize - linearizedOffset
|
||||
Value vectorSizeOffset =
|
||||
rewriter.create<arith::ConstantIndexOp>(loc, vectorSize);
|
||||
Value linearIndex =
|
||||
getValueOrCreateConstantIndexOp(rewriter, loc, linearizedIndices);
|
||||
Value delta = rewriter.create<arith::SubIOp>(loc, totalSize, linearIndex);
|
||||
|
||||
// 1) check if delta < vectorSize
|
||||
Value isOutofBounds = rewriter.create<arith::CmpIOp>(
|
||||
loc, arith::CmpIPredicate::ult, delta, vectorSizeOffset);
|
||||
|
||||
// 2) check if (detla_bytes % (32 / elementBitwidth) != 0)
|
||||
Value deltaBytes = rewriter.create<arith::MulIOp>(
|
||||
loc, delta,
|
||||
rewriter.create<arith::ConstantIndexOp>(loc, elementBitWidth / 8));
|
||||
Value elementsPerWord = rewriter.create<arith::ConstantIndexOp>(
|
||||
loc, llvm::divideCeil(32, elementBitWidth));
|
||||
Value isNotWordAligned = rewriter.create<arith::CmpIOp>(
|
||||
loc, arith::CmpIPredicate::ne,
|
||||
rewriter.create<arith::RemUIOp>(loc, deltaBytes, elementsPerWord),
|
||||
rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
||||
|
||||
// We take the fallback of transfer_read default lowering only it is both
|
||||
// out-of-bounds and not word aligned. The fallback ensures correct results
|
||||
// when loading at the boundary of the buffer since buffer load returns
|
||||
// inconsistent zeros for the whole word when boundary is crossed.
|
||||
Value ifCondition =
|
||||
rewriter.create<arith::AndIOp>(loc, isOutofBounds, isNotWordAligned);
|
||||
|
||||
auto thenBuilder = [&](OpBuilder &builder, Location loc) {
|
||||
Operation *read = builder.clone(*readOp.getOperation());
|
||||
read->setAttr(kTransferReadNeedsMask, builder.getUnitAttr());
|
||||
Value readResult = read->getResult(0);
|
||||
builder.create<scf::YieldOp>(loc, readResult);
|
||||
};
|
||||
|
||||
auto elseBuilder = [&](OpBuilder &builder, Location loc) {
|
||||
Value res = createVectorLoadForMaskedLoad(
|
||||
builder, loc, readOp, requiresBroadcasting, unbroadcastedVectorType);
|
||||
rewriter.create<scf::YieldOp>(loc, res);
|
||||
};
|
||||
|
||||
auto ifOp =
|
||||
rewriter.create<scf::IfOp>(loc, ifCondition, thenBuilder, elseBuilder);
|
||||
|
||||
rewriter.replaceOp(readOp, ifOp);
|
||||
|
||||
return success();
|
||||
}
|
||||
@@ -149,6 +278,8 @@ struct AmdgpuTransferReadToLoadPass final
|
||||
void runOnOperation() override {
|
||||
RewritePatternSet patterns(&getContext());
|
||||
populateAmdgpuTransferReadToLoadPatterns(patterns);
|
||||
walkAndApplyPatterns(getOperation(), std::move(patterns));
|
||||
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) {
|
||||
return signalPassFailure();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -9,11 +9,71 @@ func.func @transfer_to_maskedload_fatrawbuffer(%mem : memref<8x8xf32, #amdgpu.ad
|
||||
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
|
||||
return %res : vector<4xf32>
|
||||
}
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.0
|
||||
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
|
||||
|
||||
// CHECK: %[[FALSE:.*]] = arith.constant false
|
||||
// CHECK: %[[IF:.*]] = scf.if %[[FALSE]] -> (vector<4xf32>) {
|
||||
// CHECK: vector.transfer_read %[[ARG0]][%[[ARG1]], %[[ARG1]]]
|
||||
|
||||
// CHECK: } else {
|
||||
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
|
||||
// CHECK: return %[[SELECT]] : vector<4xf32>
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %[[ARG2]], %[[LOAD]]
|
||||
|
||||
// CHECK: return %[[IF]] : vector<4xf32>
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #map = affine_map<()[s0, s1] -> (s0 * 8 + s1)>
|
||||
// CHECK-LABEL: func @transfer_to_maskedload_fatrawbuffer_f16(
|
||||
// CHECK-SAME: %[[ARG0:.+]]: memref<8x8xf16, #amdgpu.address_space<fat_raw_buffer>>,
|
||||
// CHECK-SAME: %[[ARG1:.+]]: index, %[[ARG2:.+]]: index,
|
||||
// CHECK-SAME: %[[ARG3:.+]]: vector<4xi1>)
|
||||
func.func @transfer_to_maskedload_fatrawbuffer_f16(%mem : memref<8x8xf16, #amdgpu.address_space<fat_raw_buffer>>, %idx0 : index, %idx1 : index, %mask : vector<4xi1>) -> vector<4xf16> {
|
||||
%cf0 = arith.constant 0.0 : f16
|
||||
%res = vector.transfer_read %mem[%idx0, %idx1], %cf0, %mask {in_bounds = [true]} : memref<8x8xf16, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf16>
|
||||
return %res : vector<4xf16>
|
||||
}
|
||||
// CHECK-DAG: %[[C0:.*]] = arith.constant 0
|
||||
// CHECK-DAG: %[[SIZE:.*]] = arith.constant 64
|
||||
// CHECK-DAG: %[[BYTES:.*]] = arith.constant 2
|
||||
// CHECK-DAG: %[[VECTORSIZE:.*]] = arith.constant 4
|
||||
|
||||
// CHECK: %[[LINEAR:.*]] = affine.apply #map()[%[[ARG1]], %[[ARG2]]]
|
||||
// CHECK: %[[DELTA:.*]] = arith.subi %[[SIZE]], %[[LINEAR]]
|
||||
// CHECK: %[[COND1:.*]] = arith.cmpi ult, %[[DELTA]], %[[VECTORSIZE]]
|
||||
|
||||
// CHECK: %[[DELTABYTES:.*]] = arith.muli %[[DELTA]], %[[BYTES]]
|
||||
// CHECK: %[[REM:.*]] = arith.remui %[[DELTABYTES]], %[[BYTES]]
|
||||
// CHECK: %[[COND2:.*]] = arith.cmpi ne, %[[REM]], %[[C0]]
|
||||
|
||||
// CHECK: %[[COND:.*]] = arith.andi %[[COND1]], %[[COND2]]
|
||||
// CHECK: %[[IF:.*]] = scf.if %[[COND]] -> (vector<4xf16>) {
|
||||
// CHECK: vector.transfer_read %[[ARG0]][%[[ARG1]], %[[ARG2]]]
|
||||
// CHECK: } else {
|
||||
// CHECK: %[[LOAD:.*]] = vector.load %[[ARG0]][%[[ARG1]], %[[ARG2]]]
|
||||
// CHECK: return %[[IF]] : vector<4xf16>
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #map = affine_map<()[s0, s1, s2] -> (s0 * s1 + s2)>
|
||||
// CHECK: #map1 = affine_map<()[s0, s1, s2] -> (s0 * s1, s2)>
|
||||
// CHECK-LABEL: func @transfer_to_maskedload_fatrawbuffer_dynamic_i8(
|
||||
// CHECK-SAME: %[[ARG0:.*]]: memref<?x?xi8, #amdgpu.address_space<fat_raw_buffer>>
|
||||
// CHECK-SAME: %[[ARG1:.*]]: index, %[[ARG2:.*]]: index
|
||||
// CHECK-SAME: %[[ARG3:.*]]: vector<4xi1>
|
||||
func.func @transfer_to_maskedload_fatrawbuffer_dynamic_i8(%mem : memref<?x?xi8, #amdgpu.address_space<fat_raw_buffer>>, %idx0 : index, %idx1 : index, %mask : vector<4xi1>) -> vector<4xi8> {
|
||||
%cf0 = arith.constant 0 : i8
|
||||
%res = vector.transfer_read %mem[%idx0, %idx1], %cf0, %mask {in_bounds = [true]} : memref<?x?xi8, #amdgpu.address_space<fat_raw_buffer>>, vector<4xi8>
|
||||
return %res : vector<4xi8>
|
||||
}
|
||||
|
||||
// CHECK: %[[CST:.*]] = arith.constant dense<0> : vector<4xi8>
|
||||
// CHECK: %[[C0:.*]] = arith.constant 0 : index
|
||||
// CHECK: %[[C4:.*]] = arith.constant 4 : index
|
||||
// CHECK: %[[BASE:.*]], %[[OFFSET:.*]], %[[SIZES:.*]]:2, %[[STRIDES:.*]]:2 = memref.extract_strided_metadata %[[ARG0]]
|
||||
// CHECK: %[[LINEAR:.*]] = affine.apply #map()[%[[ARG1]], %[[STRIDES]]#0, %[[ARG2]]]
|
||||
// CHECK: %[[SIZE:.*]] = affine.max #map1()[%[[STRIDES]]#0, %[[SIZES]]#0, %[[SIZES]]#1]
|
||||
// CHECK: %[[IF:.*]] = scf.if
|
||||
// CHECK: return
|
||||
|
||||
// -----
|
||||
|
||||
@@ -26,8 +86,8 @@ func.func @transfer_to_maskedload_regular(%mem : memref<8x8xf32>, %idx : index,
|
||||
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
|
||||
return %res : vector<4xf32>
|
||||
}
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.0
|
||||
// CHECK: %[[RES:.*]] = vector.transfer_read %arg0[%arg1, %arg1], %[[CST]], %arg2 {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00
|
||||
// CHECK: %[[RES:.*]] = vector.transfer_read %[[ARG0]][%[[ARG1]], %[[ARG1]]], %[[CST]], %[[ARG2]]
|
||||
// CHECK: return %[[RES]] : vector<4xf32>
|
||||
|
||||
// -----
|
||||
@@ -41,8 +101,8 @@ func.func @transfer_to_maskedload_addrspace(%mem : memref<8x8xf32, #gpu.address_
|
||||
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32, #gpu.address_space<workgroup>>, vector<4xf32>
|
||||
return %res : vector<4xf32>
|
||||
}
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.0
|
||||
// CHECK: %[[RES:.*]] = vector.transfer_read %arg0[%arg1, %arg1], %[[CST]], %arg2 {in_bounds = [true]} : memref<8x8xf32, #gpu.address_space<workgroup>>, vector<4xf32>
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00
|
||||
// CHECK: %[[RES:.*]] = vector.transfer_read %[[ARG0]][%[[ARG1]], %[[ARG1]]], %[[CST]], %[[ARG2]]
|
||||
// CHECK: return %[[RES]] : vector<4xf32>
|
||||
|
||||
// -----
|
||||
@@ -59,12 +119,12 @@ func.func @transfer_broadcasting(%mem : memref<8x8xf32, #amdgpu.address_space<fa
|
||||
: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
|
||||
return %res : vector<4xf32>
|
||||
}
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.0
|
||||
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
|
||||
// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00> : vector<1xf32>
|
||||
// CHECK: %[[FALSE:.*]] = arith.constant false
|
||||
// CHECK: %[[IF:.*]] = scf.if %[[FALSE]] -> (vector<4xf32>) {
|
||||
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[CST]]
|
||||
// CHECK: %[[BROADCAST:.*]] = vector.broadcast %[[SELECT]] : vector<1xf32> to vector<4xf32>
|
||||
// CHECK: return %[[BROADCAST]] : vector<4xf32>
|
||||
|
||||
// -----
|
||||
|
||||
@@ -79,8 +139,8 @@ func.func @transfer_scalar(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_
|
||||
: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<1xf32>
|
||||
return %res : vector<1xf32>
|
||||
}
|
||||
// CHECK: %[[CST:.*]] = arith.constant 0.0
|
||||
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
|
||||
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
|
||||
// CHECK: return %[[SELECT]] : vector<1xf32>
|
||||
// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00> : vector<1xf32>
|
||||
// CHECK: %[[FALSE:.*]] = arith.constant false
|
||||
// CHECK: %[[IF:.*]] = scf.if %[[FALSE]] -> (vector<1xf32>) {
|
||||
// CHECK: %[[LOAD:.*]] = vector.load %[[ARG0]][%[[ARG1]], %[[ARG1]]]
|
||||
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[CST]]
|
||||
|
||||
@@ -1569,6 +1569,7 @@ cc_library(
|
||||
":IR",
|
||||
":MemRefDialect",
|
||||
":Pass",
|
||||
":SCFDialect",
|
||||
":SideEffectInterfaces",
|
||||
":Support",
|
||||
":TransformUtils",
|
||||
|
||||
Reference in New Issue
Block a user