[mlir][tosa] Remove FullyConnectedOp from TOSA Dialect (#126152)

This patch removes FullyConncected Operator from the TOSA Dialect and
all associated tests and transforms.

This is part of the TOSA v1.0 alignment effort:
https://discourse.llvm.org/t/rfc-tosa-dialect-increment-to-v1-0/83708

Signed-off-by: Tai Ly <tai.ly@arm.com>
Co-authored-by: Tai Ly <tai.ly@arm.com>
This commit is contained in:
Jerry-Ge
2025-02-13 14:26:38 -08:00
committed by GitHub
parent ac217ee389
commit 4ec199035e
17 changed files with 4 additions and 651 deletions

View File

@@ -150,15 +150,6 @@ def Tosa_TransConvOpQuantInfoBuilder : OpBuilder<
outputShape, acc_type);
}]>;
// The tosa.fully_connected op has its own builder as it does not have
// strides/dilation/padding.
def Tosa_FCOpQuantInfoBuilder : OpBuilder<
(ins "Type":$outputType, "Value":$input, "Value":$weight, "Value":$bias),
[{
buildFCOpWithQuantInfo($_builder, $_state, outputType,
input, weight, bias);
}]>;
// The tosa.matmul op is also intended to be generated where a fully_connected
// op must be constructed where the weight is not a constant. In this case,
// the fully_connected op must be expressed using matmul.

View File

@@ -224,32 +224,6 @@ def Tosa_FFT2dOp : Tosa_InferShapedTypeOp<"fft2d"> {
}];
}
//===----------------------------------------------------------------------===//
// Operator: fully_connected
//===----------------------------------------------------------------------===//
def Tosa_FullyConnectedOp : Tosa_InferShapedTypeOp<"fully_connected"> {
let summary = "Fully Connected operator";
let description = [{
Performs a fully connected network.
}];
let arguments = (ins
Tosa_Tensor2D:$input,
TosaTensorRankOf<[Tosa_Weight], [2]>:$weight,
Tosa_Tensor1D:$bias,
OptionalAttr<I32Attr>:$input_zp,
OptionalAttr<I32Attr>:$weight_zp
);
let results = (outs
Tosa_Tensor2D:$output
);
let builders = [Tosa_FCOpQuantInfoBuilder];
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// Operator: matmul
//===----------------------------------------------------------------------===//

View File

@@ -81,7 +81,7 @@ def Tosa_AnyNumber : AnyTypeOf<[Tosa_Int, Tosa_QuantizedInt, AnyFloat],
"number">;
// For weight tensors from tosa::Conv2DOp, tosa::Conv3DOp,
// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp, tosa::FullyConnectedOp
// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp
def Tosa_Weight : AnyTypeOf<[Tosa_Int4, Tosa_Int8,
Tosa_QuantizedInt, AnyFloat]>;

View File

@@ -26,7 +26,6 @@ namespace tosa {
// Expose Rewrite Functions that decompose TOSA Ops into further TOSA Ops.
// The rewrites can be selectively added to a conversion pass.
void populateTosaDecomposeConv2D(MLIRContext *ctx, RewritePatternSet &patterns);
void populateTosaDecomposeTransposeConv(MLIRContext *ctx,
RewritePatternSet &patterns);
void populateTosaDecomposeDepthwise(MLIRContext *ctx,

View File

@@ -607,84 +607,6 @@ public:
}
};
class FullyConnectedConverter
: public OpConversionPattern<tosa::FullyConnectedOp> {
public:
using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = op.getLoc();
auto outputTy = cast<ShapedType>(op.getType());
auto input = op.getInput();
auto inputTy = cast<ShapedType>(input.getType());
auto bias = op.getBias();
auto weight = op.getWeight();
auto weightTy = cast<ShapedType>(weight.getType());
auto weightShape = weightTy.getShape();
auto outputETy = outputTy.getElementType();
SmallVector<Value> dynDims;
dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
}
if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
}
SmallVector<Value> filteredDims = condenseValues(dynDims);
SmallVector<int64_t> permutation = {1, 0};
auto permutationAttr = rewriter.getI64TensorAttr(permutation);
Value permutationValue =
rewriter.create<arith::ConstantOp>(loc, permutationAttr);
SmallVector<int64_t> newWeightShape = {weightShape[1], weightShape[0]};
Type newWeightTy =
RankedTensorType::get(newWeightShape, weightTy.getElementType());
Value transposedWeight = rewriter.create<tosa::TransposeOp>(
loc, newWeightTy, weight, permutationValue);
Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, outputTy.getShape(), outputETy, filteredDims);
Value broadcastBias =
linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
if (!op.getInputZp() && !op.getWeightZp()) {
Value matmul = rewriter
.create<linalg::MatmulOp>(
loc, TypeRange{op.getType()},
ValueRange{input, transposedWeight}, broadcastBias)
->getResult(0);
rewriter.replaceOp(op, matmul);
return success();
}
auto inputZp = rewriter.create<arith::ConstantOp>(loc, op.getInputZpAttr());
auto outputZp =
rewriter.create<arith::ConstantOp>(loc, op.getWeightZpAttr());
Value matmul =
rewriter
.create<linalg::QuantizedMatmulOp>(
loc, TypeRange{op.getType()},
ValueRange{input, transposedWeight, inputZp, outputZp},
broadcastBias)
->getResult(0);
rewriter.replaceOp(op, matmul);
return success();
}
};
class MaxPool2dConverter : public OpConversionPattern<tosa::MaxPool2dOp> {
public:
using OpConversionPattern::OpConversionPattern;
@@ -1090,7 +1012,6 @@ void mlir::tosa::populateTosaToLinalgNamedConversionPatterns(
DepthwiseConvConverter,
MatMulConverter,
AvgPool2dConverter,
FullyConnectedConverter,
TransposeConverter
>(patterns->getContext());

View File

@@ -62,7 +62,6 @@ public:
target.addIllegalOp<tosa::MaxPool2dOp>();
target.addIllegalOp<tosa::AvgPool2dOp>();
target.addIllegalOp<tosa::MatMulOp>();
target.addIllegalOp<tosa::FullyConnectedOp>();
target.addIllegalOp<tosa::TransposeOp>();
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });

View File

@@ -566,26 +566,9 @@ static void buildTransConvOpWithQuantInfo(
result.addTypes(finalOutputType);
}
/// The tosa.fully_connected op has its own builder as it does not have
/// strides/dilation/padding.
static void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input, Value weight,
Value bias) {
result.addOperands({input, weight, bias});
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// The tosa.matmul op is also intended to be generated where a
/// fully_connected op must be constructed where the weight is not a constant.
/// In this case, the fully_connected op must be expressed using matmul.
/// The tosa.matmul op is also intended to be generated where a fully_connected
/// op must be constructed where the weight is not a constant. In this case,
/// the fully_connected op must be expressed using matmul.
/// TODO: Add link to the leglization document explaining this.
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
@@ -889,76 +872,6 @@ bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
return succeeded(verifyCompatibleShape(l[0], r[0]));
}
LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
FullyConnectedOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
ShapeAdaptor weightShape(adaptor.getWeight().getType());
ShapeAdaptor biasShape(adaptor.getBias().getType());
// All shapes are dynamic.
SmallVector<int64_t> outShape;
outShape.resize(2, ShapedType::kDynamic);
if (inputShape.hasRank()) {
outShape[0] = inputShape.getDimSize(0);
}
if (weightShape.hasRank()) {
outShape[1] = weightShape.getDimSize(0);
}
if (biasShape.hasRank()) {
outShape[1] = outShape[1] == ShapedType::kDynamic ? biasShape.getDimSize(0)
: outShape[1];
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult FullyConnectedOp::verify() {
// All TOSA conv ops have an input() and weight().
auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
RankedTensorType weightType =
llvm::dyn_cast<RankedTensorType>(getWeight().getType());
// Must be ranked tensor types
if (!inputType) {
emitOpError("expect a ranked tensor for input, got ") << getInput();
return failure();
}
if (!weightType) {
emitOpError("expect a ranked tensor for weight, got ") << getWeight();
return failure();
}
auto inputEType = inputType.getElementType();
auto weightEType = weightType.getElementType();
bool inputIsQuant = !llvm::isa<FloatType>(inputEType);
bool weightIsQuant = !llvm::isa<FloatType>(weightEType);
// Either both must be quantized or both unquantized.
if (inputIsQuant != weightIsQuant) {
emitOpError(
"expect both input and weight to be float or not together, got ")
<< inputEType << " and " << weightEType;
return failure();
}
// Quantized type must have constructed the quantizationattr, and unquantized
// types should not have a quantizationattr.
if ((inputIsQuant && !getInputZp()) || (!inputIsQuant && getInputZp())) {
emitOpError("input zero point is required for quantized type, and not "
"allowed for float type");
return failure();
}
return success();
}
LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
MatMulOp::Adaptor adaptor,

View File

@@ -1,6 +1,5 @@
add_mlir_dialect_library(MLIRTosaTransforms
TosaDecomposeTransposeConv.cpp
TosaDecomposeConv2D.cpp
TosaDecomposeDepthwise.cpp
TosaFolders.cpp
TosaInferShapes.cpp

View File

@@ -1,161 +0,0 @@
//===- TosaDecomposeConv2D.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Decompose TOSA Conv2D operation to a series of TOSA Ops specifically
// (1) Convert a 1x1 Convolution to a Reshape->FC->Reshape
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
using namespace mlir;
using namespace mlir::tosa;
namespace {
struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
explicit Conv2DIsFullyConnected(MLIRContext *context)
: OpRewritePattern(context) {}
LogicalResult matchAndRewrite(tosa::Conv2DOp op,
PatternRewriter &rewriter) const override {
Value input = op.getInput();
Value weight = op.getWeight();
ShapedType inputType = cast<ShapedType>(input.getType());
ShapedType weightType = cast<ShapedType>(weight.getType());
ShapedType resultType = cast<ShapedType>(op.getType());
auto numDynamic =
llvm::count_if(inputType.getShape(), ShapedType::isDynamic);
if (numDynamic > 1)
return rewriter.notifyMatchFailure(
op, "at most one dim in input may be dynamic");
if (!weightType.hasRank())
return rewriter.notifyMatchFailure(op, "unranked weight input");
if (!llvm::all_of(op.getStride(), [](int64_t v) { return v == 1; }))
return failure();
// Only works for a 1x1 kernel.
ArrayRef<int64_t> weightShape = weightType.getShape();
if (weightShape[1] != 1 || weightShape[2] != 1)
return failure();
llvm::ArrayRef<int64_t> padAttr = op.getPad();
llvm::SmallVector<int64_t> pad(8, 0);
for (const auto &it : llvm::enumerate(padAttr))
pad[it.index() + 2] = it.value();
Type inputETy = inputType.getElementType();
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
auto failureOrMaybeZps = extractConvZpPair(op, rewriter);
if (failed(failureOrMaybeZps))
return failure();
auto maybeZps = failureOrMaybeZps.value();
Attribute zeroAttr =
maybeZps ? rewriter.getIntegerAttr(inputETy, maybeZps->inputZp)
: rewriter.getZeroAttr(inputETy);
llvm::SmallVector<int64_t> newShape(inputType.getShape());
for (int i = 0, s = newShape.size(); i < s; ++i) {
if (newShape[i] != ShapedType::kDynamic) {
newShape[i] += pad[i * 2] + pad[i * 2 + 1];
}
}
Value padSizeVal = getTosaConstShape(rewriter, op->getLoc(), pad);
auto padTy = RankedTensorType::get({}, inputETy);
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
Value padVal =
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
inputType = RankedTensorType::get(newShape, inputETy);
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
padSizeVal, padVal);
}
// Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t combined = ShapedType::kDynamic;
if (numDynamic == 0)
combined = inputShape[0] * inputShape[1] * inputShape[2];
llvm::SmallVector<int64_t, 2> revisedInputShape{combined, inputShape[3]};
auto revisedInputShapeType =
RankedTensorType::get(revisedInputShape, inputType.getElementType());
auto revisedInputShapeValue = getTosaConstShape(
rewriter, op.getLoc(), convertFromMlirShape(revisedInputShape));
auto reshapedInput =
rewriter
.create<tosa::ReshapeOp>(op.getLoc(), revisedInputShapeType, input,
revisedInputShapeValue)
.getResult();
// Reshape kernel to [OC,KH,KW,IC] -> [OC, IC].
llvm::SmallVector<int64_t, 2> revisedWeightShape{weightShape[0],
weightShape[3]};
auto revisedWeightShapeType = RankedTensorType::get(
revisedWeightShape,
dyn_cast<RankedTensorType>(weight.getType()).getElementType());
auto revisedWeightShapeValue = getTosaConstShape(
rewriter, op.getLoc(), convertFromMlirShape(revisedWeightShape));
auto reshapedWeight =
rewriter
.create<tosa::ReshapeOp>(op.getLoc(), revisedWeightShapeType,
weight, revisedWeightShapeValue)
.getResult();
// Perform a fully connected network over the reshaped input and weight.
llvm::SmallVector<int64_t, 2> fullyConnectedShape{combined, weightShape[0]};
auto fullyConnectedShapeType =
RankedTensorType::get(fullyConnectedShape, resultType.getElementType());
auto failureOrMaybeZps = extractConvZpPair(op, rewriter);
if (failed(failureOrMaybeZps))
return failure();
auto maybeZps = failureOrMaybeZps.value();
Value fullyConnectedValue;
if (maybeZps) {
fullyConnectedValue =
rewriter
.create<tosa::FullyConnectedOp>(
op.getLoc(), fullyConnectedShapeType, reshapedInput,
reshapedWeight, op.getBias(),
rewriter.getI32IntegerAttr(maybeZps->inputZp),
rewriter.getI32IntegerAttr(maybeZps->weightZp))
.getResult();
} else {
fullyConnectedValue = rewriter
.create<tosa::FullyConnectedOp>(
op.getLoc(), fullyConnectedShapeType,
reshapedInput, reshapedWeight, op.getBias())
.getResult();
}
// Reshape output to [N, IH, IW, OC].
llvm::SmallVector<int64_t, 4> outputShape{inputShape[0], inputShape[1],
inputShape[2], weightShape[0]};
auto outputShapeValue = getTosaConstShape(
rewriter, op.getLoc(), convertFromMlirShape(outputShape));
rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
op, resultType, fullyConnectedValue, outputShapeValue);
return success();
}
};
} // namespace
void mlir::tosa::populateTosaDecomposeConv2D(MLIRContext *ctx,
RewritePatternSet &patterns) {
patterns.add<Conv2DIsFullyConnected>(ctx);
}

View File

@@ -38,7 +38,6 @@ struct TosaOptionalDecompositions
RewritePatternSet patterns(ctx);
auto func = getOperation();
mlir::tosa::populateTosaDecomposeConv2D(ctx, patterns);
mlir::tosa::populateTosaDecomposeTransposeConv(ctx, patterns);
mlir::tosa::populateTosaDecomposeDepthwise(ctx, patterns);

View File

@@ -61,19 +61,6 @@ static LogicalResult checkConstantOperandTranspose(Operation *op) {
return success();
}
static LogicalResult checkConstantOperandFullyConnected(Operation *op) {
if (auto fcOp = dyn_cast<tosa::FullyConnectedOp>(op)) {
DenseElementsAttr weight;
if (!matchPattern(fcOp.getWeight(), m_Constant(&weight)))
return op->emitOpError("weight of fully_connected is not constant");
DenseElementsAttr bias;
if (!matchPattern(fcOp.getBias(), m_Constant(&bias)))
return op->emitOpError("bias of fully_connected is not constant");
}
return success();
}
struct TosaLevel {
int32_t MAX_RANK = 0;
int32_t MAX_KERNEL = 0;
@@ -123,7 +110,6 @@ private:
void populateConstantOperandChecks() {
constCheckers.emplace_back(checkConstantOperandPad);
constCheckers.emplace_back(checkConstantOperandTranspose);
constCheckers.emplace_back(checkConstantOperandFullyConnected);
}
bool levelCheckKernel(Operation *op, int32_t v,

View File

@@ -83,77 +83,6 @@ func.func @matmul_dyn_output(%arg0: tensor<1x1x8xf32>, %arg1: tensor<1x8x1xf32>)
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @fully_connected
func.func @fully_connected(%arg0: tensor<5x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<5x6xf32>) {
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
// CHECK: %[[TRANSPOSEDINIT:.+]] = tensor.empty() : tensor<3x6xf32>
// CHECK: %[[TRANSPOSED:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xf32>) outs(%[[TRANSPOSEDINIT]] : tensor<3x6xf32>) permutation = [1, 0]
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<5x6xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xf32>) outs(%[[INIT]] : tensor<5x6xf32>) {
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
// CHECK: linalg.yield %[[IN]] : f32
// CHECK: } -> tensor<5x6xf32>
// CHECK: linalg.matmul ins(%arg0, %[[TRANSPOSED]] : tensor<5x3xf32>, tensor<3x6xf32>) outs(%[[BROADCAST]] : tensor<5x6xf32>) -> tensor<5x6xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<5x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> tensor<5x6xf32>
return %0 : tensor<5x6xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @quantized_fully_connected
func.func @quantized_fully_connected(%arg0: tensor<5x3xi8>, %arg1: tensor<6x3xi8>, %arg2: tensor<6xi32>) -> (tensor<5x6xi32>) {
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xi8>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x6xi8>) permutation = [1, 0]
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<5x6xi32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xi32>) outs(%[[INIT]] : tensor<5x6xi32>) {
// CHECK: ^bb0(%[[IN:.+]]: i32, %[[OUT:.+]]: i32):
// CHECK: linalg.yield %[[IN]] : i32
// CHECK: } -> tensor<5x6xi32>
// CHECK: %[[C1:.+]] = arith.constant 1 : i32
// CHECK: %[[C2:.+]] = arith.constant 2 : i32
// CHECK: linalg.quantized_matmul ins(%arg0, %[[TRANSPOSE]], %[[C1]], %[[C2]] : tensor<5x3xi8>, tensor<3x6xi8>, i32, i32) outs(%[[BROADCAST]] : tensor<5x6xi32>) -> tensor<5x6xi32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 {input_zp = 1 : i32, weight_zp = 2 : i32} : (tensor<5x3xi8>, tensor<6x3xi8>, tensor<6xi32>) -> tensor<5x6xi32>
return %0 : tensor<5x6xi32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @fully_connected_dyn
func.func @fully_connected_dyn(%arg0: tensor<?x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<?x6xf32>) {
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = tensor.dim %arg0, %c0 : tensor<?x3xf32>
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
// CHECK: %[[TRANSPOSED:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xf32>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x6xf32>) permutation = [1, 0]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM0]]) : tensor<?x6xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xf32>) outs(%[[INIT]] : tensor<?x6xf32>) {
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
// CHECK: linalg.yield %[[IN]] : f32
// CHECK: } -> tensor<?x6xf32>
// CHECK: linalg.matmul ins(%arg0, %[[TRANSPOSED]] : tensor<?x3xf32>, tensor<3x6xf32>) outs(%[[BROADCAST]] : tensor<?x6xf32>) -> tensor<?x6xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> tensor<?x6xf32>
return %0 : tensor<?x6xf32>
}
// -----
// CHECK-LABEL: @max_pool
func.func @max_pool(%arg0: tensor<1x6x34x62xf32>) -> () {
// CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38

View File

@@ -332,28 +332,6 @@ func.func @test_transpose_element_type_mismatch(%arg0: tensor<2x3xi32>) -> tenso
// -----
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2x3xf32>) -> tensor<273x2xf32> {
%0 = "tosa.const"() {value = dense<0.000000e+00> : tensor<2xf32>} : () -> tensor<2xf32>
%3 = tosa.const_shape {value = dense<[273, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
%1 = tosa.reshape %arg0, %3 : (tensor<13x21x3xf32>, !tosa.shape<2>) -> tensor<273x3xf32>
// expected-error@+1 {{'tosa.fully_connected' op weight of fully_connected is not constant}}
%2 = tosa.fully_connected %1, %arg1, %0 : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
return %2 : tensor<273x2xf32>
}
// -----
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2xf32>) -> tensor<273x2xf32> {
%0 = "tosa.const"() {value = dense<[[-0.613216758, -0.63714242, -0.73500061], [0.180762768, 0.773053169, -0.933686495]]> : tensor<2x3xf32>} : () -> tensor<2x3xf32>
%3 = tosa.const_shape {value = dense<[273, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
%1 = tosa.reshape %arg0, %3 : (tensor<13x21x3xf32>, !tosa.shape<2>) -> tensor<273x3xf32>
// expected-error@+1 {{'tosa.fully_connected' op bias of fully_connected is not constant}}
%2 = tosa.fully_connected %1, %0, %arg1 : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
return %2 : tensor<273x2xf32>
}
// -----
func.func @test_reduce_sum_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
// expected-error@+2 {{failed to infer returned types}}
// expected-error@+1 {{'tosa.reduce_sum' op inferred type(s) 'tensor<1x3x4x5xf32>' are incompatible with return type(s) of operation 'tensor<1x3x4x5xi32>'}}

View File

@@ -127,13 +127,6 @@ func.func @test_fft2d_with_local_bound(%arg0: tensor<1x4x8xf32>, %arg1: tensor<1
return %0, %1 : tensor<1x4x8xf32>, tensor<1x4x8xf32>
}
// -----
// CHECK-LABEL: fully_connected
func.func @test_fully_connected(%arg0: tensor<14x19xf32>, %arg1: tensor<19x28xf32>, %arg2: tensor<28xf32>) -> tensor<14x28xf32> {
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<14x19xf32>, tensor<19x28xf32>, tensor<28xf32>) -> tensor<14x28xf32>
return %0 : tensor<14x28xf32>
}
// -----
// CHECK-LABEL: test_matmul
func.func @test_matmul(%arg0: tensor<1x14x19xf32>, %arg1: tensor<1x19x28xf32>) -> tensor<1x14x28xf32> {

View File

@@ -1,86 +0,0 @@
// RUN: mlir-opt --split-input-file --tosa-optional-decompositions %s | FileCheck %s
// -----
// CHECK-LABEL: @conv2d_as_fully_connected
func.func @conv2d_as_fully_connected(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<3x1x1x2xf32>, %arg2: tensor<3xf32>) -> tensor<4x10x10x3xf32> {
// CHECK-NOT: tosa.conv2d
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[400, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[4, 10, 10, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAR0:.*]] = tosa.reshape %arg0, %[[CONST0]]
// CHECK-SAME: -> tensor<400x2xf32>
// CHECK: %[[VAR1:.*]] = tosa.reshape %arg1, %[[CONST1]]
// CHECK-SAME: -> tensor<3x2xf32>
// CHECK: %[[VAR2:.*]] = tosa.fully_connected %[[VAR0]], %[[VAR1]], %arg2
// CHECK-SAME: -> tensor<400x3xf32>
// CHECK: %[[VAR3:.*]] = tosa.reshape %[[VAR2]], %[[CONST2]]
// CHECK-SAME: -> tensor<4x10x10x3xf32>
// CHECK: return %[[VAR3]]
%0 = tosa.conv2d %arg0, %arg1, %arg2 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x10x10x3xf32>
return %0 : tensor<4x10x10x3xf32>
}
// -----
// CHECK-LABEL: @conv2d_as_fully_connected_quant
func.func @conv2d_as_fully_connected_quant(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<3x1x1x2xi8>, %arg2: tensor<3xi32>) -> tensor<4x10x10x3xi32> {
// CHECK-NOT: tosa.conv2d
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[400, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[4, 10, 10, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAR0:.*]] = tosa.reshape %arg0, %[[CONST0]]
// CHECK-SAME: -> tensor<400x2xi8>
// CHECK: %[[VAR1:.*]] = tosa.reshape %arg1, %[[CONST1]]
// CHECK-SAME: -> tensor<3x2xi8>
// CHECK: %[[VAR2:.*]] = tosa.fully_connected %[[VAR0]], %[[VAR1]], %arg2
// CHECK-SAME: {input_zp = 42 : i32, weight_zp = 24 : i32}
// CHECK-SAME: -> tensor<400x3xi32>
// CHECK: %[[VAR3:.*]] = tosa.reshape %[[VAR2]], %[[CONST2]]
// CHECK-SAME: -> tensor<4x10x10x3xi32>
// CHECK: return %[[VAR3]]
%input_zp = "tosa.const"() {value = dense<42> : tensor<1xi8>} : () -> tensor<1xi8>
%weight_zp = "tosa.const"() {value = dense<24> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xi8>, tensor<3x1x1x2xi8>, tensor<3xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<4x10x10x3xi32>
return %0 : tensor<4x10x10x3xi32>
}
// -----
// CHECK-LABEL: func.func @conv_with_dynamic_dim(
func.func @conv_with_dynamic_dim(%arg0: tensor<?x14x14x64xi8>, %arg1: tensor<384x1x1x64xi8>, %arg2: tensor<384xi32>) -> tensor<?x14x14x384xi32> {
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[-1, 64]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[384, 64]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[-1, 14, 14, 384]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAL_3:.*]] = tosa.reshape %arg0, %[[CONST0]]
// CHECK: %[[VAL_4:.*]] = tosa.reshape %arg1, %[[CONST1]] : (tensor<384x1x1x64xi8>, !tosa.shape<2>) -> tensor<384x64xi8>
// CHECK: %[[VAL_5:.*]] = tosa.fully_connected %[[VAL_3]], %[[VAL_4]], %arg2 {input_zp = -6 : i32, weight_zp = 11 : i32} : (tensor<?x64xi8>, tensor<384x64xi8>, tensor<384xi32>) -> tensor<?x384xi32>
// CHECK: %[[VAL_6:.*]] = tosa.reshape %[[VAL_5]], %[[CONST2]] : (tensor<?x384xi32>, !tosa.shape<4>) -> tensor<?x14x14x384xi32>
// CHECK: return %[[VAL_6]] : tensor<?x14x14x384xi32>
// CHECK: }
%input_zp = "tosa.const"() {value = dense<-6> : tensor<1xi8>} : () -> tensor<1xi8>
%weight_zp = "tosa.const"() {value = dense<11> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<?x14x14x64xi8>, tensor<384x1x1x64xi8>, tensor<384xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<?x14x14x384xi32>
return %0 : tensor<?x14x14x384xi32>
}
// -----
// CHECK-LABEL: @conv2d_as_fully_connected_padded
func.func @conv2d_as_fully_connected_padded(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<3x1x1x2xi8>, %arg2: tensor<3xi32>) -> tensor<4x12x12x3xi32> {
// CHECK-DAG: %[[FULLY_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[4, 12, 12, 3]> : tensor<4xindex>}
// CHECK-DAG: %[[INPUT_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[576, 2]> : tensor<2xindex>}
// CHECK-DAG: %[[FILTER_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>}
// CHECK-DAG: %[[PAD_SHAPE:.+]] = tosa.const_shape {value = dense<[0, 0, 1, 1, 1, 1, 0, 0]> : tensor<8xindex>} : () -> !tosa.shape<8>
// CHECK-DAG: %[[PAD_VAL:.+]] = "tosa.const"() <{value = dense<42> : tensor<i8>}
// CHECK-DAG: %[[PAD:.+]] = tosa.pad %arg0, %[[PAD_SHAPE]], %[[PAD_VAL]] : (tensor<4x10x10x2xi8>, !tosa.shape<8>, tensor<i8>) -> tensor<4x12x12x2xi8>
// CHECK-DAG: %[[RESHAPE_INPUT:.+]] = tosa.reshape %[[PAD]], %[[INPUT_NEW_SHAPE]]
// CHECK-DAG: %[[RESHAPE_FILTER:.+]] = tosa.reshape %arg1, %[[FILTER_NEW_SHAPE]]
// CHECK-DAG: %[[FULLY:.+]] = tosa.fully_connected %[[RESHAPE_INPUT]], %[[RESHAPE_FILTER]], %arg2 {input_zp = 42 : i32, weight_zp = 24 : i32}
// CHECK: %[[RESHAPE:.+]] = tosa.reshape %[[FULLY]], %[[FULLY_NEW_SHAPE]]
%input_zp = "tosa.const"() {value = dense<42> : tensor<1xi8>} : () -> tensor<1xi8>
%weight_zp = "tosa.const"() {value = dense<24> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 1, 1, 1, 1>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xi8>, tensor<3x1x1x2xi8>, tensor<3xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<4x12x12x3xi32>
return %0 : tensor<4x12x12x3xi32>
}

View File

@@ -273,51 +273,6 @@ func.func @test_dynamic_argmax(%arg0 : tensor<2x?xi32>) -> () {
// -----
// CHECK-LABEL: @test_static_fully_connected
func.func @test_static_fully_connected(%arg0 : tensor<3x4xf32>, %arg1 : tensor<5x4xf32>, %arg2 : tensor<5xf32>) -> () {
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<5x4xf32>, tensor<5xf32>) -> tensor<3x5xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<5x4xf32>, tensor<5xf32>) -> tensor<?x?xf32>
return
}
// -----
// CHECK-LABEL: @test_static_input_fully_connected
func.func @test_static_input_fully_connected(%arg0 : tensor<3x4xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?xf32>) -> () {
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<?x?xf32>, tensor<?xf32>) -> tensor<3x?xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<?x?xf32>, tensor<?xf32>) -> tensor<?x?xf32>
return
}
// -----
// CHECK-LABEL: @test_static_weight_fully_connected
func.func @test_static_weight_fully_connected(%arg0 : tensor<?x?xf32>, %arg1 : tensor<5x4xf32>, %arg2 : tensor<?xf32>) -> () {
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<5x4xf32>, tensor<?xf32>) -> tensor<?x5xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<5x4xf32>, tensor<?xf32>) -> tensor<?x?xf32>
return
}
// -----
// CHECK-LABEL: @test_static_bias_fully_connected
func.func @test_static_bias_fully_connected(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<5xf32>) -> () {
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x5xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x?xf32>
return
}
// -----
// CHECK-LABEL: @test_static_out_fully_connected
func.func @test_static_out_fully_connected(%arg0 : tensor<3x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<5xf32>) -> () {
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<3x5xf32>
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x?xf32>
return
}
// -----
// CHECK-LABEL: @test_static_matmul
func.func @test_static_matmul(%arg0 : tensor<2x3x4xi32>, %arg1 : tensor<2x4x5xi32>) -> () {
// CHECK: tosa.matmul %arg0, %arg1 : (tensor<2x3x4xi32>, tensor<2x4x5xi32>) -> tensor<2x3x5xi32>

View File

@@ -1,36 +0,0 @@
// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(tosa-to-linalg-named,tosa-to-linalg,tosa-to-arith))" | \
// RUN: mlir-opt -one-shot-bufferize="bufferize-function-boundaries" -buffer-deallocation-pipeline -test-lower-to-llvm | \
// RUN: mlir-runner -O3 -e main -entry-point-result=void \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: | FileCheck %s
func.func private @printMemrefF32(tensor<*xf32>)
func.func @main() {
%A = arith.constant dense<[
[8.0, 1.0, 6.0],
[3.0, 5.0, 7.0],
[4.0, 9.0, 2.0]
]> : tensor<3x3xf32>
%B = arith.constant dense<[
[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0]
]> : tensor<3x3xf32>
%C = arith.constant dense<[0.0, 1.0, 2.0]> : tensor<3xf32>
%result = tosa.fully_connected %A, %B, %C : (tensor<3x3xf32>, tensor<3x3xf32>, tensor<3xf32>) -> tensor<3x3xf32>
%result_unranked = tensor.cast %result : tensor<3x3xf32> to tensor<*xf32>
call @printMemrefF32(%result_unranked) : (tensor<*xf32>) -> ()
return
}
// CHECK: Unranked Memref base@ = {{.*}} rank = 2 offset = 0 sizes = [3, 3] strides = [3, 1] data =
// CHECK-NEXT: [
// CHECK-SAME: [15, 16, 17]
// CHECK-NEXT: [15, 16, 17]
// CHECK-NEXT: [15, 16, 17]
// CHECK-SAME: ]