[mlir][tosa] Remove FullyConnectedOp from TOSA Dialect (#126152)
This patch removes FullyConncected Operator from the TOSA Dialect and all associated tests and transforms. This is part of the TOSA v1.0 alignment effort: https://discourse.llvm.org/t/rfc-tosa-dialect-increment-to-v1-0/83708 Signed-off-by: Tai Ly <tai.ly@arm.com> Co-authored-by: Tai Ly <tai.ly@arm.com>
This commit is contained in:
@@ -150,15 +150,6 @@ def Tosa_TransConvOpQuantInfoBuilder : OpBuilder<
|
||||
outputShape, acc_type);
|
||||
}]>;
|
||||
|
||||
// The tosa.fully_connected op has its own builder as it does not have
|
||||
// strides/dilation/padding.
|
||||
def Tosa_FCOpQuantInfoBuilder : OpBuilder<
|
||||
(ins "Type":$outputType, "Value":$input, "Value":$weight, "Value":$bias),
|
||||
[{
|
||||
buildFCOpWithQuantInfo($_builder, $_state, outputType,
|
||||
input, weight, bias);
|
||||
}]>;
|
||||
|
||||
// The tosa.matmul op is also intended to be generated where a fully_connected
|
||||
// op must be constructed where the weight is not a constant. In this case,
|
||||
// the fully_connected op must be expressed using matmul.
|
||||
|
||||
@@ -224,32 +224,6 @@ def Tosa_FFT2dOp : Tosa_InferShapedTypeOp<"fft2d"> {
|
||||
}];
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Operator: fully_connected
|
||||
//===----------------------------------------------------------------------===//
|
||||
def Tosa_FullyConnectedOp : Tosa_InferShapedTypeOp<"fully_connected"> {
|
||||
let summary = "Fully Connected operator";
|
||||
|
||||
let description = [{
|
||||
Performs a fully connected network.
|
||||
}];
|
||||
|
||||
let arguments = (ins
|
||||
Tosa_Tensor2D:$input,
|
||||
TosaTensorRankOf<[Tosa_Weight], [2]>:$weight,
|
||||
Tosa_Tensor1D:$bias,
|
||||
OptionalAttr<I32Attr>:$input_zp,
|
||||
OptionalAttr<I32Attr>:$weight_zp
|
||||
);
|
||||
|
||||
let results = (outs
|
||||
Tosa_Tensor2D:$output
|
||||
);
|
||||
|
||||
let builders = [Tosa_FCOpQuantInfoBuilder];
|
||||
let hasVerifier = 1;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Operator: matmul
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@@ -81,7 +81,7 @@ def Tosa_AnyNumber : AnyTypeOf<[Tosa_Int, Tosa_QuantizedInt, AnyFloat],
|
||||
"number">;
|
||||
|
||||
// For weight tensors from tosa::Conv2DOp, tosa::Conv3DOp,
|
||||
// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp, tosa::FullyConnectedOp
|
||||
// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp
|
||||
def Tosa_Weight : AnyTypeOf<[Tosa_Int4, Tosa_Int8,
|
||||
Tosa_QuantizedInt, AnyFloat]>;
|
||||
|
||||
|
||||
@@ -26,7 +26,6 @@ namespace tosa {
|
||||
|
||||
// Expose Rewrite Functions that decompose TOSA Ops into further TOSA Ops.
|
||||
// The rewrites can be selectively added to a conversion pass.
|
||||
void populateTosaDecomposeConv2D(MLIRContext *ctx, RewritePatternSet &patterns);
|
||||
void populateTosaDecomposeTransposeConv(MLIRContext *ctx,
|
||||
RewritePatternSet &patterns);
|
||||
void populateTosaDecomposeDepthwise(MLIRContext *ctx,
|
||||
|
||||
@@ -607,84 +607,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class FullyConnectedConverter
|
||||
: public OpConversionPattern<tosa::FullyConnectedOp> {
|
||||
public:
|
||||
using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const final {
|
||||
Location loc = op.getLoc();
|
||||
auto outputTy = cast<ShapedType>(op.getType());
|
||||
auto input = op.getInput();
|
||||
auto inputTy = cast<ShapedType>(input.getType());
|
||||
|
||||
auto bias = op.getBias();
|
||||
|
||||
auto weight = op.getWeight();
|
||||
auto weightTy = cast<ShapedType>(weight.getType());
|
||||
auto weightShape = weightTy.getShape();
|
||||
|
||||
auto outputETy = outputTy.getElementType();
|
||||
|
||||
SmallVector<Value> dynDims;
|
||||
dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
|
||||
|
||||
if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
|
||||
dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
|
||||
}
|
||||
|
||||
if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
|
||||
dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
|
||||
}
|
||||
|
||||
SmallVector<Value> filteredDims = condenseValues(dynDims);
|
||||
|
||||
SmallVector<int64_t> permutation = {1, 0};
|
||||
auto permutationAttr = rewriter.getI64TensorAttr(permutation);
|
||||
Value permutationValue =
|
||||
rewriter.create<arith::ConstantOp>(loc, permutationAttr);
|
||||
|
||||
SmallVector<int64_t> newWeightShape = {weightShape[1], weightShape[0]};
|
||||
Type newWeightTy =
|
||||
RankedTensorType::get(newWeightShape, weightTy.getElementType());
|
||||
|
||||
Value transposedWeight = rewriter.create<tosa::TransposeOp>(
|
||||
loc, newWeightTy, weight, permutationValue);
|
||||
|
||||
Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
|
||||
loc, outputTy.getShape(), outputETy, filteredDims);
|
||||
|
||||
Value broadcastBias =
|
||||
linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
|
||||
|
||||
if (!op.getInputZp() && !op.getWeightZp()) {
|
||||
Value matmul = rewriter
|
||||
.create<linalg::MatmulOp>(
|
||||
loc, TypeRange{op.getType()},
|
||||
ValueRange{input, transposedWeight}, broadcastBias)
|
||||
->getResult(0);
|
||||
|
||||
rewriter.replaceOp(op, matmul);
|
||||
return success();
|
||||
}
|
||||
|
||||
auto inputZp = rewriter.create<arith::ConstantOp>(loc, op.getInputZpAttr());
|
||||
auto outputZp =
|
||||
rewriter.create<arith::ConstantOp>(loc, op.getWeightZpAttr());
|
||||
Value matmul =
|
||||
rewriter
|
||||
.create<linalg::QuantizedMatmulOp>(
|
||||
loc, TypeRange{op.getType()},
|
||||
ValueRange{input, transposedWeight, inputZp, outputZp},
|
||||
broadcastBias)
|
||||
->getResult(0);
|
||||
|
||||
rewriter.replaceOp(op, matmul);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
class MaxPool2dConverter : public OpConversionPattern<tosa::MaxPool2dOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
@@ -1090,7 +1012,6 @@ void mlir::tosa::populateTosaToLinalgNamedConversionPatterns(
|
||||
DepthwiseConvConverter,
|
||||
MatMulConverter,
|
||||
AvgPool2dConverter,
|
||||
FullyConnectedConverter,
|
||||
TransposeConverter
|
||||
>(patterns->getContext());
|
||||
|
||||
|
||||
@@ -62,7 +62,6 @@ public:
|
||||
target.addIllegalOp<tosa::MaxPool2dOp>();
|
||||
target.addIllegalOp<tosa::AvgPool2dOp>();
|
||||
target.addIllegalOp<tosa::MatMulOp>();
|
||||
target.addIllegalOp<tosa::FullyConnectedOp>();
|
||||
target.addIllegalOp<tosa::TransposeOp>();
|
||||
|
||||
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
|
||||
|
||||
@@ -566,26 +566,9 @@ static void buildTransConvOpWithQuantInfo(
|
||||
result.addTypes(finalOutputType);
|
||||
}
|
||||
|
||||
/// The tosa.fully_connected op has its own builder as it does not have
|
||||
/// strides/dilation/padding.
|
||||
static void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
|
||||
Type outputType, Value input, Value weight,
|
||||
Value bias) {
|
||||
|
||||
result.addOperands({input, weight, bias});
|
||||
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
|
||||
if (quantAttr) {
|
||||
result.addAttribute("quantization_info", quantAttr);
|
||||
result.addTypes(
|
||||
buildConvOpResultTypeInfo(builder, outputType, input, weight));
|
||||
} else {
|
||||
result.addTypes(outputType);
|
||||
}
|
||||
}
|
||||
|
||||
/// The tosa.matmul op is also intended to be generated where a
|
||||
/// fully_connected op must be constructed where the weight is not a constant.
|
||||
/// In this case, the fully_connected op must be expressed using matmul.
|
||||
/// The tosa.matmul op is also intended to be generated where a fully_connected
|
||||
/// op must be constructed where the weight is not a constant. In this case,
|
||||
/// the fully_connected op must be expressed using matmul.
|
||||
/// TODO: Add link to the leglization document explaining this.
|
||||
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
|
||||
OperationState &result, Type outputType,
|
||||
@@ -889,76 +872,6 @@ bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
|
||||
return succeeded(verifyCompatibleShape(l[0], r[0]));
|
||||
}
|
||||
|
||||
LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
|
||||
MLIRContext *context, ::std::optional<Location> location,
|
||||
FullyConnectedOp::Adaptor adaptor,
|
||||
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
||||
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
||||
ShapeAdaptor weightShape(adaptor.getWeight().getType());
|
||||
ShapeAdaptor biasShape(adaptor.getBias().getType());
|
||||
|
||||
// All shapes are dynamic.
|
||||
SmallVector<int64_t> outShape;
|
||||
outShape.resize(2, ShapedType::kDynamic);
|
||||
|
||||
if (inputShape.hasRank()) {
|
||||
outShape[0] = inputShape.getDimSize(0);
|
||||
}
|
||||
|
||||
if (weightShape.hasRank()) {
|
||||
outShape[1] = weightShape.getDimSize(0);
|
||||
}
|
||||
|
||||
if (biasShape.hasRank()) {
|
||||
outShape[1] = outShape[1] == ShapedType::kDynamic ? biasShape.getDimSize(0)
|
||||
: outShape[1];
|
||||
}
|
||||
|
||||
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult FullyConnectedOp::verify() {
|
||||
// All TOSA conv ops have an input() and weight().
|
||||
auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
|
||||
|
||||
RankedTensorType weightType =
|
||||
llvm::dyn_cast<RankedTensorType>(getWeight().getType());
|
||||
|
||||
// Must be ranked tensor types
|
||||
if (!inputType) {
|
||||
emitOpError("expect a ranked tensor for input, got ") << getInput();
|
||||
return failure();
|
||||
}
|
||||
if (!weightType) {
|
||||
emitOpError("expect a ranked tensor for weight, got ") << getWeight();
|
||||
return failure();
|
||||
}
|
||||
|
||||
auto inputEType = inputType.getElementType();
|
||||
auto weightEType = weightType.getElementType();
|
||||
|
||||
bool inputIsQuant = !llvm::isa<FloatType>(inputEType);
|
||||
bool weightIsQuant = !llvm::isa<FloatType>(weightEType);
|
||||
|
||||
// Either both must be quantized or both unquantized.
|
||||
if (inputIsQuant != weightIsQuant) {
|
||||
emitOpError(
|
||||
"expect both input and weight to be float or not together, got ")
|
||||
<< inputEType << " and " << weightEType;
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Quantized type must have constructed the quantizationattr, and unquantized
|
||||
// types should not have a quantizationattr.
|
||||
if ((inputIsQuant && !getInputZp()) || (!inputIsQuant && getInputZp())) {
|
||||
emitOpError("input zero point is required for quantized type, and not "
|
||||
"allowed for float type");
|
||||
return failure();
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
|
||||
MLIRContext *context, ::std::optional<Location> location,
|
||||
MatMulOp::Adaptor adaptor,
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
add_mlir_dialect_library(MLIRTosaTransforms
|
||||
TosaDecomposeTransposeConv.cpp
|
||||
TosaDecomposeConv2D.cpp
|
||||
TosaDecomposeDepthwise.cpp
|
||||
TosaFolders.cpp
|
||||
TosaInferShapes.cpp
|
||||
|
||||
@@ -1,161 +0,0 @@
|
||||
//===- TosaDecomposeConv2D.cpp --------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Decompose TOSA Conv2D operation to a series of TOSA Ops specifically
|
||||
// (1) Convert a 1x1 Convolution to a Reshape->FC->Reshape
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
||||
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
||||
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::tosa;
|
||||
|
||||
namespace {
|
||||
|
||||
struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
|
||||
explicit Conv2DIsFullyConnected(MLIRContext *context)
|
||||
: OpRewritePattern(context) {}
|
||||
|
||||
LogicalResult matchAndRewrite(tosa::Conv2DOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Value input = op.getInput();
|
||||
Value weight = op.getWeight();
|
||||
ShapedType inputType = cast<ShapedType>(input.getType());
|
||||
ShapedType weightType = cast<ShapedType>(weight.getType());
|
||||
ShapedType resultType = cast<ShapedType>(op.getType());
|
||||
|
||||
auto numDynamic =
|
||||
llvm::count_if(inputType.getShape(), ShapedType::isDynamic);
|
||||
if (numDynamic > 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "at most one dim in input may be dynamic");
|
||||
if (!weightType.hasRank())
|
||||
return rewriter.notifyMatchFailure(op, "unranked weight input");
|
||||
|
||||
if (!llvm::all_of(op.getStride(), [](int64_t v) { return v == 1; }))
|
||||
return failure();
|
||||
|
||||
// Only works for a 1x1 kernel.
|
||||
ArrayRef<int64_t> weightShape = weightType.getShape();
|
||||
if (weightShape[1] != 1 || weightShape[2] != 1)
|
||||
return failure();
|
||||
|
||||
llvm::ArrayRef<int64_t> padAttr = op.getPad();
|
||||
llvm::SmallVector<int64_t> pad(8, 0);
|
||||
for (const auto &it : llvm::enumerate(padAttr))
|
||||
pad[it.index() + 2] = it.value();
|
||||
|
||||
Type inputETy = inputType.getElementType();
|
||||
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
|
||||
auto failureOrMaybeZps = extractConvZpPair(op, rewriter);
|
||||
if (failed(failureOrMaybeZps))
|
||||
return failure();
|
||||
|
||||
auto maybeZps = failureOrMaybeZps.value();
|
||||
|
||||
Attribute zeroAttr =
|
||||
maybeZps ? rewriter.getIntegerAttr(inputETy, maybeZps->inputZp)
|
||||
: rewriter.getZeroAttr(inputETy);
|
||||
|
||||
llvm::SmallVector<int64_t> newShape(inputType.getShape());
|
||||
|
||||
for (int i = 0, s = newShape.size(); i < s; ++i) {
|
||||
if (newShape[i] != ShapedType::kDynamic) {
|
||||
newShape[i] += pad[i * 2] + pad[i * 2 + 1];
|
||||
}
|
||||
}
|
||||
|
||||
Value padSizeVal = getTosaConstShape(rewriter, op->getLoc(), pad);
|
||||
|
||||
auto padTy = RankedTensorType::get({}, inputETy);
|
||||
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
|
||||
Value padVal =
|
||||
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
|
||||
inputType = RankedTensorType::get(newShape, inputETy);
|
||||
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
|
||||
padSizeVal, padVal);
|
||||
}
|
||||
|
||||
// Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
|
||||
ArrayRef<int64_t> inputShape = inputType.getShape();
|
||||
int64_t combined = ShapedType::kDynamic;
|
||||
if (numDynamic == 0)
|
||||
combined = inputShape[0] * inputShape[1] * inputShape[2];
|
||||
llvm::SmallVector<int64_t, 2> revisedInputShape{combined, inputShape[3]};
|
||||
auto revisedInputShapeType =
|
||||
RankedTensorType::get(revisedInputShape, inputType.getElementType());
|
||||
auto revisedInputShapeValue = getTosaConstShape(
|
||||
rewriter, op.getLoc(), convertFromMlirShape(revisedInputShape));
|
||||
auto reshapedInput =
|
||||
rewriter
|
||||
.create<tosa::ReshapeOp>(op.getLoc(), revisedInputShapeType, input,
|
||||
revisedInputShapeValue)
|
||||
.getResult();
|
||||
|
||||
// Reshape kernel to [OC,KH,KW,IC] -> [OC, IC].
|
||||
llvm::SmallVector<int64_t, 2> revisedWeightShape{weightShape[0],
|
||||
weightShape[3]};
|
||||
auto revisedWeightShapeType = RankedTensorType::get(
|
||||
revisedWeightShape,
|
||||
dyn_cast<RankedTensorType>(weight.getType()).getElementType());
|
||||
auto revisedWeightShapeValue = getTosaConstShape(
|
||||
rewriter, op.getLoc(), convertFromMlirShape(revisedWeightShape));
|
||||
auto reshapedWeight =
|
||||
rewriter
|
||||
.create<tosa::ReshapeOp>(op.getLoc(), revisedWeightShapeType,
|
||||
weight, revisedWeightShapeValue)
|
||||
.getResult();
|
||||
|
||||
// Perform a fully connected network over the reshaped input and weight.
|
||||
llvm::SmallVector<int64_t, 2> fullyConnectedShape{combined, weightShape[0]};
|
||||
auto fullyConnectedShapeType =
|
||||
RankedTensorType::get(fullyConnectedShape, resultType.getElementType());
|
||||
|
||||
auto failureOrMaybeZps = extractConvZpPair(op, rewriter);
|
||||
if (failed(failureOrMaybeZps))
|
||||
return failure();
|
||||
|
||||
auto maybeZps = failureOrMaybeZps.value();
|
||||
Value fullyConnectedValue;
|
||||
if (maybeZps) {
|
||||
fullyConnectedValue =
|
||||
rewriter
|
||||
.create<tosa::FullyConnectedOp>(
|
||||
op.getLoc(), fullyConnectedShapeType, reshapedInput,
|
||||
reshapedWeight, op.getBias(),
|
||||
rewriter.getI32IntegerAttr(maybeZps->inputZp),
|
||||
rewriter.getI32IntegerAttr(maybeZps->weightZp))
|
||||
.getResult();
|
||||
} else {
|
||||
fullyConnectedValue = rewriter
|
||||
.create<tosa::FullyConnectedOp>(
|
||||
op.getLoc(), fullyConnectedShapeType,
|
||||
reshapedInput, reshapedWeight, op.getBias())
|
||||
.getResult();
|
||||
}
|
||||
|
||||
// Reshape output to [N, IH, IW, OC].
|
||||
llvm::SmallVector<int64_t, 4> outputShape{inputShape[0], inputShape[1],
|
||||
inputShape[2], weightShape[0]};
|
||||
auto outputShapeValue = getTosaConstShape(
|
||||
rewriter, op.getLoc(), convertFromMlirShape(outputShape));
|
||||
rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
|
||||
op, resultType, fullyConnectedValue, outputShapeValue);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void mlir::tosa::populateTosaDecomposeConv2D(MLIRContext *ctx,
|
||||
RewritePatternSet &patterns) {
|
||||
patterns.add<Conv2DIsFullyConnected>(ctx);
|
||||
}
|
||||
@@ -38,7 +38,6 @@ struct TosaOptionalDecompositions
|
||||
RewritePatternSet patterns(ctx);
|
||||
auto func = getOperation();
|
||||
|
||||
mlir::tosa::populateTosaDecomposeConv2D(ctx, patterns);
|
||||
mlir::tosa::populateTosaDecomposeTransposeConv(ctx, patterns);
|
||||
mlir::tosa::populateTosaDecomposeDepthwise(ctx, patterns);
|
||||
|
||||
|
||||
@@ -61,19 +61,6 @@ static LogicalResult checkConstantOperandTranspose(Operation *op) {
|
||||
return success();
|
||||
}
|
||||
|
||||
static LogicalResult checkConstantOperandFullyConnected(Operation *op) {
|
||||
if (auto fcOp = dyn_cast<tosa::FullyConnectedOp>(op)) {
|
||||
DenseElementsAttr weight;
|
||||
if (!matchPattern(fcOp.getWeight(), m_Constant(&weight)))
|
||||
return op->emitOpError("weight of fully_connected is not constant");
|
||||
|
||||
DenseElementsAttr bias;
|
||||
if (!matchPattern(fcOp.getBias(), m_Constant(&bias)))
|
||||
return op->emitOpError("bias of fully_connected is not constant");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
struct TosaLevel {
|
||||
int32_t MAX_RANK = 0;
|
||||
int32_t MAX_KERNEL = 0;
|
||||
@@ -123,7 +110,6 @@ private:
|
||||
void populateConstantOperandChecks() {
|
||||
constCheckers.emplace_back(checkConstantOperandPad);
|
||||
constCheckers.emplace_back(checkConstantOperandTranspose);
|
||||
constCheckers.emplace_back(checkConstantOperandFullyConnected);
|
||||
}
|
||||
|
||||
bool levelCheckKernel(Operation *op, int32_t v,
|
||||
|
||||
@@ -83,77 +83,6 @@ func.func @matmul_dyn_output(%arg0: tensor<1x1x8xf32>, %arg1: tensor<1x8x1xf32>)
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
|
||||
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
||||
|
||||
// CHECK-LABEL: @fully_connected
|
||||
func.func @fully_connected(%arg0: tensor<5x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<5x6xf32>) {
|
||||
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
|
||||
// CHECK: %[[TRANSPOSEDINIT:.+]] = tensor.empty() : tensor<3x6xf32>
|
||||
// CHECK: %[[TRANSPOSED:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xf32>) outs(%[[TRANSPOSEDINIT]] : tensor<3x6xf32>) permutation = [1, 0]
|
||||
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<5x6xf32>
|
||||
|
||||
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xf32>) outs(%[[INIT]] : tensor<5x6xf32>) {
|
||||
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
|
||||
// CHECK: linalg.yield %[[IN]] : f32
|
||||
// CHECK: } -> tensor<5x6xf32>
|
||||
|
||||
// CHECK: linalg.matmul ins(%arg0, %[[TRANSPOSED]] : tensor<5x3xf32>, tensor<3x6xf32>) outs(%[[BROADCAST]] : tensor<5x6xf32>) -> tensor<5x6xf32>
|
||||
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<5x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> tensor<5x6xf32>
|
||||
return %0 : tensor<5x6xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
|
||||
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
||||
|
||||
// CHECK-LABEL: @quantized_fully_connected
|
||||
func.func @quantized_fully_connected(%arg0: tensor<5x3xi8>, %arg1: tensor<6x3xi8>, %arg2: tensor<6xi32>) -> (tensor<5x6xi32>) {
|
||||
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
|
||||
// CHECK: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xi8>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x6xi8>) permutation = [1, 0]
|
||||
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<5x6xi32>
|
||||
|
||||
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xi32>) outs(%[[INIT]] : tensor<5x6xi32>) {
|
||||
// CHECK: ^bb0(%[[IN:.+]]: i32, %[[OUT:.+]]: i32):
|
||||
// CHECK: linalg.yield %[[IN]] : i32
|
||||
// CHECK: } -> tensor<5x6xi32>
|
||||
|
||||
// CHECK: %[[C1:.+]] = arith.constant 1 : i32
|
||||
// CHECK: %[[C2:.+]] = arith.constant 2 : i32
|
||||
// CHECK: linalg.quantized_matmul ins(%arg0, %[[TRANSPOSE]], %[[C1]], %[[C2]] : tensor<5x3xi8>, tensor<3x6xi8>, i32, i32) outs(%[[BROADCAST]] : tensor<5x6xi32>) -> tensor<5x6xi32>
|
||||
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 {input_zp = 1 : i32, weight_zp = 2 : i32} : (tensor<5x3xi8>, tensor<6x3xi8>, tensor<6xi32>) -> tensor<5x6xi32>
|
||||
return %0 : tensor<5x6xi32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d1)>
|
||||
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
||||
|
||||
// CHECK-LABEL: @fully_connected_dyn
|
||||
func.func @fully_connected_dyn(%arg0: tensor<?x3xf32>, %arg1: tensor<6x3xf32>, %arg2: tensor<6xf32>) -> (tensor<?x6xf32>) {
|
||||
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
||||
// CHECK: %[[DIM0:.+]] = tensor.dim %arg0, %c0 : tensor<?x3xf32>
|
||||
// CHECK: %[[PERM:.+]] = arith.constant dense<[1, 0]> : tensor<2xi64>
|
||||
// CHECK: %[[TRANSPOSED:.+]] = linalg.transpose ins(%arg1 : tensor<6x3xf32>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x6xf32>) permutation = [1, 0]
|
||||
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM0]]) : tensor<?x6xf32>
|
||||
|
||||
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg2 : tensor<6xf32>) outs(%[[INIT]] : tensor<?x6xf32>) {
|
||||
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
|
||||
// CHECK: linalg.yield %[[IN]] : f32
|
||||
// CHECK: } -> tensor<?x6xf32>
|
||||
|
||||
// CHECK: linalg.matmul ins(%arg0, %[[TRANSPOSED]] : tensor<?x3xf32>, tensor<3x6xf32>) outs(%[[BROADCAST]] : tensor<?x6xf32>) -> tensor<?x6xf32>
|
||||
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x3xf32>, tensor<6x3xf32>, tensor<6xf32>) -> tensor<?x6xf32>
|
||||
return %0 : tensor<?x6xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @max_pool
|
||||
func.func @max_pool(%arg0: tensor<1x6x34x62xf32>) -> () {
|
||||
// CHECK-DAG: [[CONST:%.+]] = arith.constant -3.40282347E+38
|
||||
|
||||
@@ -332,28 +332,6 @@ func.func @test_transpose_element_type_mismatch(%arg0: tensor<2x3xi32>) -> tenso
|
||||
|
||||
// -----
|
||||
|
||||
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2x3xf32>) -> tensor<273x2xf32> {
|
||||
%0 = "tosa.const"() {value = dense<0.000000e+00> : tensor<2xf32>} : () -> tensor<2xf32>
|
||||
%3 = tosa.const_shape {value = dense<[273, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
%1 = tosa.reshape %arg0, %3 : (tensor<13x21x3xf32>, !tosa.shape<2>) -> tensor<273x3xf32>
|
||||
// expected-error@+1 {{'tosa.fully_connected' op weight of fully_connected is not constant}}
|
||||
%2 = tosa.fully_connected %1, %arg1, %0 : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
|
||||
return %2 : tensor<273x2xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2xf32>) -> tensor<273x2xf32> {
|
||||
%0 = "tosa.const"() {value = dense<[[-0.613216758, -0.63714242, -0.73500061], [0.180762768, 0.773053169, -0.933686495]]> : tensor<2x3xf32>} : () -> tensor<2x3xf32>
|
||||
%3 = tosa.const_shape {value = dense<[273, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
%1 = tosa.reshape %arg0, %3 : (tensor<13x21x3xf32>, !tosa.shape<2>) -> tensor<273x3xf32>
|
||||
// expected-error@+1 {{'tosa.fully_connected' op bias of fully_connected is not constant}}
|
||||
%2 = tosa.fully_connected %1, %0, %arg1 : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
|
||||
return %2 : tensor<273x2xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func.func @test_reduce_sum_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
|
||||
// expected-error@+2 {{failed to infer returned types}}
|
||||
// expected-error@+1 {{'tosa.reduce_sum' op inferred type(s) 'tensor<1x3x4x5xf32>' are incompatible with return type(s) of operation 'tensor<1x3x4x5xi32>'}}
|
||||
|
||||
@@ -127,13 +127,6 @@ func.func @test_fft2d_with_local_bound(%arg0: tensor<1x4x8xf32>, %arg1: tensor<1
|
||||
return %0, %1 : tensor<1x4x8xf32>, tensor<1x4x8xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
// CHECK-LABEL: fully_connected
|
||||
func.func @test_fully_connected(%arg0: tensor<14x19xf32>, %arg1: tensor<19x28xf32>, %arg2: tensor<28xf32>) -> tensor<14x28xf32> {
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<14x19xf32>, tensor<19x28xf32>, tensor<28xf32>) -> tensor<14x28xf32>
|
||||
return %0 : tensor<14x28xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
// CHECK-LABEL: test_matmul
|
||||
func.func @test_matmul(%arg0: tensor<1x14x19xf32>, %arg1: tensor<1x19x28xf32>) -> tensor<1x14x28xf32> {
|
||||
|
||||
@@ -1,86 +0,0 @@
|
||||
// RUN: mlir-opt --split-input-file --tosa-optional-decompositions %s | FileCheck %s
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @conv2d_as_fully_connected
|
||||
func.func @conv2d_as_fully_connected(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<3x1x1x2xf32>, %arg2: tensor<3xf32>) -> tensor<4x10x10x3xf32> {
|
||||
// CHECK-NOT: tosa.conv2d
|
||||
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[400, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[4, 10, 10, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
|
||||
// CHECK: %[[VAR0:.*]] = tosa.reshape %arg0, %[[CONST0]]
|
||||
// CHECK-SAME: -> tensor<400x2xf32>
|
||||
// CHECK: %[[VAR1:.*]] = tosa.reshape %arg1, %[[CONST1]]
|
||||
// CHECK-SAME: -> tensor<3x2xf32>
|
||||
// CHECK: %[[VAR2:.*]] = tosa.fully_connected %[[VAR0]], %[[VAR1]], %arg2
|
||||
// CHECK-SAME: -> tensor<400x3xf32>
|
||||
// CHECK: %[[VAR3:.*]] = tosa.reshape %[[VAR2]], %[[CONST2]]
|
||||
// CHECK-SAME: -> tensor<4x10x10x3xf32>
|
||||
// CHECK: return %[[VAR3]]
|
||||
%0 = tosa.conv2d %arg0, %arg1, %arg2 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x10x10x3xf32>
|
||||
return %0 : tensor<4x10x10x3xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @conv2d_as_fully_connected_quant
|
||||
func.func @conv2d_as_fully_connected_quant(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<3x1x1x2xi8>, %arg2: tensor<3xi32>) -> tensor<4x10x10x3xi32> {
|
||||
// CHECK-NOT: tosa.conv2d
|
||||
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[400, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[4, 10, 10, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
|
||||
// CHECK: %[[VAR0:.*]] = tosa.reshape %arg0, %[[CONST0]]
|
||||
// CHECK-SAME: -> tensor<400x2xi8>
|
||||
// CHECK: %[[VAR1:.*]] = tosa.reshape %arg1, %[[CONST1]]
|
||||
// CHECK-SAME: -> tensor<3x2xi8>
|
||||
// CHECK: %[[VAR2:.*]] = tosa.fully_connected %[[VAR0]], %[[VAR1]], %arg2
|
||||
// CHECK-SAME: {input_zp = 42 : i32, weight_zp = 24 : i32}
|
||||
// CHECK-SAME: -> tensor<400x3xi32>
|
||||
// CHECK: %[[VAR3:.*]] = tosa.reshape %[[VAR2]], %[[CONST2]]
|
||||
// CHECK-SAME: -> tensor<4x10x10x3xi32>
|
||||
// CHECK: return %[[VAR3]]
|
||||
%input_zp = "tosa.const"() {value = dense<42> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%weight_zp = "tosa.const"() {value = dense<24> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xi8>, tensor<3x1x1x2xi8>, tensor<3xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<4x10x10x3xi32>
|
||||
return %0 : tensor<4x10x10x3xi32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @conv_with_dynamic_dim(
|
||||
func.func @conv_with_dynamic_dim(%arg0: tensor<?x14x14x64xi8>, %arg1: tensor<384x1x1x64xi8>, %arg2: tensor<384xi32>) -> tensor<?x14x14x384xi32> {
|
||||
// CHECK-DAG: %[[CONST0:.*]] = tosa.const_shape {value = dense<[-1, 64]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST1:.*]] = tosa.const_shape {value = dense<[384, 64]> : tensor<2xindex>} : () -> !tosa.shape<2>
|
||||
// CHECK-DAG: %[[CONST2:.*]] = tosa.const_shape {value = dense<[-1, 14, 14, 384]> : tensor<4xindex>} : () -> !tosa.shape<4>
|
||||
// CHECK: %[[VAL_3:.*]] = tosa.reshape %arg0, %[[CONST0]]
|
||||
// CHECK: %[[VAL_4:.*]] = tosa.reshape %arg1, %[[CONST1]] : (tensor<384x1x1x64xi8>, !tosa.shape<2>) -> tensor<384x64xi8>
|
||||
// CHECK: %[[VAL_5:.*]] = tosa.fully_connected %[[VAL_3]], %[[VAL_4]], %arg2 {input_zp = -6 : i32, weight_zp = 11 : i32} : (tensor<?x64xi8>, tensor<384x64xi8>, tensor<384xi32>) -> tensor<?x384xi32>
|
||||
// CHECK: %[[VAL_6:.*]] = tosa.reshape %[[VAL_5]], %[[CONST2]] : (tensor<?x384xi32>, !tosa.shape<4>) -> tensor<?x14x14x384xi32>
|
||||
// CHECK: return %[[VAL_6]] : tensor<?x14x14x384xi32>
|
||||
// CHECK: }
|
||||
%input_zp = "tosa.const"() {value = dense<-6> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%weight_zp = "tosa.const"() {value = dense<11> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<?x14x14x64xi8>, tensor<384x1x1x64xi8>, tensor<384xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<?x14x14x384xi32>
|
||||
return %0 : tensor<?x14x14x384xi32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @conv2d_as_fully_connected_padded
|
||||
func.func @conv2d_as_fully_connected_padded(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<3x1x1x2xi8>, %arg2: tensor<3xi32>) -> tensor<4x12x12x3xi32> {
|
||||
// CHECK-DAG: %[[FULLY_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[4, 12, 12, 3]> : tensor<4xindex>}
|
||||
// CHECK-DAG: %[[INPUT_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[576, 2]> : tensor<2xindex>}
|
||||
// CHECK-DAG: %[[FILTER_NEW_SHAPE:.+]] = tosa.const_shape {value = dense<[3, 2]> : tensor<2xindex>}
|
||||
// CHECK-DAG: %[[PAD_SHAPE:.+]] = tosa.const_shape {value = dense<[0, 0, 1, 1, 1, 1, 0, 0]> : tensor<8xindex>} : () -> !tosa.shape<8>
|
||||
// CHECK-DAG: %[[PAD_VAL:.+]] = "tosa.const"() <{value = dense<42> : tensor<i8>}
|
||||
// CHECK-DAG: %[[PAD:.+]] = tosa.pad %arg0, %[[PAD_SHAPE]], %[[PAD_VAL]] : (tensor<4x10x10x2xi8>, !tosa.shape<8>, tensor<i8>) -> tensor<4x12x12x2xi8>
|
||||
// CHECK-DAG: %[[RESHAPE_INPUT:.+]] = tosa.reshape %[[PAD]], %[[INPUT_NEW_SHAPE]]
|
||||
// CHECK-DAG: %[[RESHAPE_FILTER:.+]] = tosa.reshape %arg1, %[[FILTER_NEW_SHAPE]]
|
||||
// CHECK-DAG: %[[FULLY:.+]] = tosa.fully_connected %[[RESHAPE_INPUT]], %[[RESHAPE_FILTER]], %arg2 {input_zp = 42 : i32, weight_zp = 24 : i32}
|
||||
// CHECK: %[[RESHAPE:.+]] = tosa.reshape %[[FULLY]], %[[FULLY_NEW_SHAPE]]
|
||||
%input_zp = "tosa.const"() {value = dense<42> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%weight_zp = "tosa.const"() {value = dense<24> : tensor<1xi8>} : () -> tensor<1xi8>
|
||||
%0 = tosa.conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 1, 1, 1, 1>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xi8>, tensor<3x1x1x2xi8>, tensor<3xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<4x12x12x3xi32>
|
||||
return %0 : tensor<4x12x12x3xi32>
|
||||
}
|
||||
|
||||
@@ -273,51 +273,6 @@ func.func @test_dynamic_argmax(%arg0 : tensor<2x?xi32>) -> () {
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_fully_connected
|
||||
func.func @test_static_fully_connected(%arg0 : tensor<3x4xf32>, %arg1 : tensor<5x4xf32>, %arg2 : tensor<5xf32>) -> () {
|
||||
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<5x4xf32>, tensor<5xf32>) -> tensor<3x5xf32>
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<5x4xf32>, tensor<5xf32>) -> tensor<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_input_fully_connected
|
||||
func.func @test_static_input_fully_connected(%arg0 : tensor<3x4xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?xf32>) -> () {
|
||||
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<?x?xf32>, tensor<?xf32>) -> tensor<3x?xf32>
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x4xf32>, tensor<?x?xf32>, tensor<?xf32>) -> tensor<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_weight_fully_connected
|
||||
func.func @test_static_weight_fully_connected(%arg0 : tensor<?x?xf32>, %arg1 : tensor<5x4xf32>, %arg2 : tensor<?xf32>) -> () {
|
||||
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<5x4xf32>, tensor<?xf32>) -> tensor<?x5xf32>
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<5x4xf32>, tensor<?xf32>) -> tensor<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_bias_fully_connected
|
||||
func.func @test_static_bias_fully_connected(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<5xf32>) -> () {
|
||||
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x5xf32>
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_out_fully_connected
|
||||
func.func @test_static_out_fully_connected(%arg0 : tensor<3x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<5xf32>) -> () {
|
||||
// CHECK: tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<3x5xf32>
|
||||
%0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<3x?xf32>, tensor<?x?xf32>, tensor<5xf32>) -> tensor<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @test_static_matmul
|
||||
func.func @test_static_matmul(%arg0 : tensor<2x3x4xi32>, %arg1 : tensor<2x4x5xi32>) -> () {
|
||||
// CHECK: tosa.matmul %arg0, %arg1 : (tensor<2x3x4xi32>, tensor<2x4x5xi32>) -> tensor<2x3x5xi32>
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(tosa-to-linalg-named,tosa-to-linalg,tosa-to-arith))" | \
|
||||
// RUN: mlir-opt -one-shot-bufferize="bufferize-function-boundaries" -buffer-deallocation-pipeline -test-lower-to-llvm | \
|
||||
// RUN: mlir-runner -O3 -e main -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_runner_utils \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
func.func private @printMemrefF32(tensor<*xf32>)
|
||||
|
||||
func.func @main() {
|
||||
%A = arith.constant dense<[
|
||||
[8.0, 1.0, 6.0],
|
||||
[3.0, 5.0, 7.0],
|
||||
[4.0, 9.0, 2.0]
|
||||
]> : tensor<3x3xf32>
|
||||
|
||||
%B = arith.constant dense<[
|
||||
[1.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[1.0, 1.0, 1.0]
|
||||
]> : tensor<3x3xf32>
|
||||
|
||||
%C = arith.constant dense<[0.0, 1.0, 2.0]> : tensor<3xf32>
|
||||
|
||||
%result = tosa.fully_connected %A, %B, %C : (tensor<3x3xf32>, tensor<3x3xf32>, tensor<3xf32>) -> tensor<3x3xf32>
|
||||
|
||||
%result_unranked = tensor.cast %result : tensor<3x3xf32> to tensor<*xf32>
|
||||
call @printMemrefF32(%result_unranked) : (tensor<*xf32>) -> ()
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: Unranked Memref base@ = {{.*}} rank = 2 offset = 0 sizes = [3, 3] strides = [3, 1] data =
|
||||
// CHECK-NEXT: [
|
||||
// CHECK-SAME: [15, 16, 17]
|
||||
// CHECK-NEXT: [15, 16, 17]
|
||||
// CHECK-NEXT: [15, 16, 17]
|
||||
// CHECK-SAME: ]
|
||||
Reference in New Issue
Block a user