[mlir][PartialReductionTilingInterface] Add support for ReductionTilingStrategy::PartialReductionOuterParallel in tileUsingSCF. (#143988)

Following up from https://github.com/llvm/llvm-project/pull/143467,
this PR adds support for
`ReductionTilingStrategy::PartialReductionOuterParallel` to
`tileUsingSCF`. The implementation of
`PartialReductionTilingInterface` for `Linalg` ops has been updated to
support this strategy as well. This makes the `tileUsingSCF` come on
par with `linalg::tileReductionUsingForall` which will be deprecated
subsequently.

Changes summary
- `PartialReductionTilingInterface` changes :
  - `tileToPartialReduction` method needed to get the induction
    variables of the generated tile loops. This was needed to keep the
    generated code similar to `linalg::tileReductionUsingForall`,
    specifically to create a simplified access for slicing the
intermediate partial results tensor when tiled in `num_threads` mode.
  - `getPartialResultTilePosition` methods needs the induction
    varialbes for the generated tile loops for the same reason above,
    and also needs the `tilingStrategy` to be passed in to generate
    correct code.

The tests in `transform-tile-reduction.mlir` testing the
`linalg::tileReductionUsingForall` have been moved over to test
`scf::tileUsingSCF` with
`ReductionTilingStrategy::PartialReductionOuterParallel`
strategy. Some of the test that were doing further cyclic distribution
of the transformed code from tiling are removed. Those seem like two
separate transformation that were merged into one. Ideally that would
need to happen when resolving the `scf.forall` rather than during
tiling.

Please review only the top commit. Depends on
https://github.com/llvm/llvm-project/pull/143467

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
This commit is contained in:
MaheshRavishankar
2025-06-23 12:27:26 -07:00
committed by GitHub
parent 6c232f440f
commit 7bc956d3d6
9 changed files with 535 additions and 265 deletions

View File

@@ -2019,6 +2019,7 @@ def TileReductionUsingForallOp :
// TODO: support mixed static-dynamic (see TileUsingForallOp).
let arguments = (ins TransformHandleTypeInterface:$target,
DefaultValuedAttr<I64ArrayAttr, "{}">:$reduction_dims,
DefaultValuedAttr<DenseI64ArrayAttr, "{}">:$num_threads,
DefaultValuedAttr<DenseI64ArrayAttr, "{}">:$tile_sizes,
OptionalAttr<DeviceMappingArrayAttr>:$mapping);
@@ -2036,10 +2037,11 @@ def TileReductionUsingForallOp :
let assemblyFormat = [{
$target
(`reduction_dims` `=` $reduction_dims^)?
`by`
(`num_threads` `=` $num_threads^)?
(`,` `tile_sizes` `=` $tile_sizes^)?
(`,` `mapping` `=` $mapping^)?
(`tile_sizes` `=` $tile_sizes^)?
(`mapping` `=` $mapping^)?
attr-dict
`:` functional-type(operands, results)
}];

View File

@@ -156,7 +156,7 @@ SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
/// corresponding pair of arrays. This is the inverse function of
/// `getMixedValues`.
std::pair<SmallVector<int64_t>, SmallVector<Value>>
decomposeMixedValues(const SmallVectorImpl<OpFoldResult> &mixedValues);
decomposeMixedValues(ArrayRef<OpFoldResult> mixedValues);
/// Helper to sort `values` according to matching `keys`.
SmallVector<Value>

View File

@@ -367,15 +367,20 @@ def PartialReductionOpInterface :
OpInterface<"PartialReductionOpInterface", [TilingInterface]> {
let description = [{
Interface for allowing operations to expose information needed to
tile reductions using partial reduction followed by merge. This is
complementary to TilingInterface to tile reductions.
tile reductions using partial reduction followed by merge. This
extends the `TilingInterface` to allow splitting a reduction
dimension into a parallel dimension and reduction dimension.
The materialized inter-tile loop could either be the reduction dimension
(i.e. `ReductionTilingStrategy::PartialReductionOuterReduction`) or
the parallel dimension (i.e
`ReductionTilingStrategy::PartialReductionOuterReduction`).
}];
let cppNamespace = "::mlir";
let methods = [
InterfaceMethod<
/*desc=*/[{
Method to generate a tensor initalized with the identity value of the
operation reduction. The tensor shape is equal to operation result
reduction operator. The tensor shape is equal to operation result
shape with new dimension for each non zero tile size.
}],
/*retType=*/"::mlir::FailureOr<SmallVector<Value>>",
@@ -383,7 +388,7 @@ def PartialReductionOpInterface :
/*args=*/(ins
"::mlir::OpBuilder &":$b,
"Location":$loc,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$sizes,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$tileSizes,
"const ::mlir::SetVector<unsigned> &":$reductionDims),
/*methodBody=*/"",
/*defaultImplementation=*/[{
@@ -396,6 +401,11 @@ def PartialReductionOpInterface :
reduction dimension are converted to parallel dimensions with a size
less or equal to the tile size. This is meant to be used with
`mergeReductions` method which will combine the partial reductions.
The method recieves the `offset` and `sizes` for all iteration space
dimensions, as well as the iteration number of the tiled reduction
dimensions (which is the induction variable of the inter-tile loop
for the reduction dimension divided by the step of the loop) in
`splitReductionIvs`.
}],
/*retType=*/"::mlir::FailureOr<TilingResult>",
/*methodName=*/"tileToPartialReduction",
@@ -406,7 +416,8 @@ def PartialReductionOpInterface :
"ValueRange":$init,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$offsets,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$sizes,
"const ::llvm::SetVector<unsigned> &":$reductionDims),
"const ::llvm::SetVector<unsigned> &":$reductionDims,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$splitReductionIvs),
/*methodBody=*/"",
/*defaultImplementation=*/[{
return failure();
@@ -436,15 +447,22 @@ def PartialReductionOpInterface :
the tiled operation. This is same as
TilingInterface:::getResultTilePosition, but determines the result
tile position for partial reduction.
The method recieves the `offset` and `sizes` for all iteration space
dimensions, as well as the iteration number of the tiled reduction
dimensions (which is the induction variable of the inter-tile loop
for the reduction dimension divided by the tile size specified) in
`splitReductionIvs`.
}],
/*retType=*/"::llvm::LogicalResult",
/*methodName=*/"getPartialResultTilePosition",
/*args=*/(ins
"::mlir::OpBuilder &":$b,
"unsigned":$resultNumber,
"ReductionTilingStrategy":$tilingStrategy,
"::mlir::ArrayRef<::mlir::OpFoldResult> ":$offsets,
"::mlir::ArrayRef<::mlir::OpFoldResult> ":$sizes,
"const ::mlir::SetVector<unsigned> &":$reductionDims,
"::mlir::ArrayRef<::mlir::OpFoldResult>":$splitReductionIvs,
"::mlir::SmallVector<::mlir::OpFoldResult> &":$resultOffsets,
"::mlir::SmallVector<::mlir::OpFoldResult> &":$resultSizes),
/*methodBody=*/"",

View File

@@ -3022,6 +3022,7 @@ void transform::TileReductionUsingForallOp::build(
build(builder, result,
/*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy},
/*target=*/target,
/*reduction_dims=*/{},
/*num_threads=*/staticNumThreadsAttr,
/*tile_sizes=*/staticTileSizesAttr,
/*mapping=*/mapping);
@@ -3036,23 +3037,45 @@ DiagnosedSilenceableFailure transform::TileReductionUsingForallOp::applyToOne(
getAsOpFoldResult(rewriter.getI64ArrayAttr(getNumThreads()));
SmallVector<OpFoldResult> tileSizes =
getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes()));
FailureOr<linalg::ForallReductionTilingResult> result =
linalg::tileReductionUsingForall(
rewriter, cast<PartialReductionOpInterface>(target.getOperation()),
numThreads, tileSizes, getMapping());
scf::SCFTilingOptions options;
options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp);
options.setReductionTilingStrategy(
ReductionTilingStrategy::PartialReductionOuterParallel);
if (!getNumThreads().empty()) {
options.setNumThreads(numThreads);
} else {
options.setTileSizes(tileSizes);
}
if (auto mapping = getMapping()) {
options.setMapping(mapping.value().getValue());
}
SmallVector<unsigned> reductionDims =
extractFromIntegerArrayAttr<unsigned>(getReductionDims());
if (reductionDims.empty()) {
for (auto [idx, iteratorType] :
llvm::enumerate(target.getIteratorTypesArray())) {
if (iteratorType == utils::IteratorType::reduction)
reductionDims.push_back(idx);
}
}
options.setReductionDims(reductionDims);
FailureOr<scf::SCFTilingResult> result = scf::tileUsingSCF(
rewriter, cast<TilingInterface>(target.getOperation()), options);
if (failed(result)) {
auto diag = emitSilenceableError() << "could not tile reduction";
diag.attachNote(target.getLoc()) << "target operation";
return diag;
}
rewriter.replaceOp(target, result->replacements);
for (Value initValue : result->initialValues)
results.push_back(initValue.getDefiningOp());
for (auto parallelTiledOp : result->parallelTiledOps)
for (auto parallelTiledOp : result->tiledOps)
results.push_back(parallelTiledOp);
for (auto mergeOp : result->mergeOps)
results.push_back(mergeOp);
results.push_back(result->loops);
results.push_back(result->loops.front());
return DiagnosedSilenceableFailure::success();
}

View File

@@ -328,6 +328,17 @@ struct LinalgOpTilingInterface
// External Model for implementing `PartialReductionInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//
/// In a given set vector, get the position of a particular element.
std::optional<int> getPositionIn(const llvm::SetVector<unsigned> &reductionDims,
unsigned value) {
for (auto [index, reductionDim] : llvm::enumerate(reductionDims)) {
if (reductionDim == value) {
return index;
}
}
return std::nullopt;
}
/// Return an AffineMaps to use for the `outs` operands of the linalg op
/// generated for partial results. The new AffineMap is the AffineMap of the
/// untiled op with reduction dimensions appended at end in order in which they
@@ -348,28 +359,86 @@ getPartialResultAffineMaps(LinalgOp linalgOp,
return partialReductionMaps;
}
/// Return the slice of the `initValue` to use as input to the partial reduction
/// op generated.
static Operation *getInitSliceForOuterReduction(
OpBuilder &b, Location loc, Value initValue, ArrayRef<OpFoldResult> offsets,
struct InitSliceInfo {
SmallVector<int64_t> resultShape;
SmallVector<OpFoldResult> offsets;
SmallVector<OpFoldResult> sizes;
SmallVector<OpFoldResult> strides;
};
/// Return the result shape, offsets, sizes and strides of the slice of the
/// `initValue` to use as the destination of the partial reduction op generated
/// with outer reduction strategy.
static InitSliceInfo getInitSliceInfoForOuterReduction(
MLIRContext *context, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, const SetVector<unsigned> &reductionDims,
AffineMap partialReductionMap) {
ArrayRef<OpFoldResult> splitReductionIvs, AffineMap partialReductionMap) {
int64_t initRank = partialReductionMap.getNumResults();
SmallVector<OpFoldResult> initOffsets, initSizes;
SmallVector<OpFoldResult> initStrides(initRank, b.getIndexAttr(1));
Attribute zero = IntegerAttr::get(IndexType::get(context), 0);
Attribute one = IntegerAttr::get(IndexType::get(context), 1);
SmallVector<OpFoldResult> initStrides(initRank, one);
for (AffineExpr dimExpr : partialReductionMap.getResults()) {
unsigned dim = cast<AffineDimExpr>(dimExpr).getPosition();
if (reductionDims.contains(dim)) {
initOffsets.push_back(b.getIndexAttr(0));
initOffsets.push_back(zero);
} else {
initOffsets.push_back(offsets[dim]);
}
initSizes.push_back(sizes[dim]);
}
// TODO: Use SubsetExtractOpInterface here once available.
auto extractSlice = b.create<tensor::ExtractSliceOp>(
loc, initValue, initOffsets, initSizes, initStrides);
return extractSlice;
SmallVector<int64_t> resultShape;
std::tie(resultShape, std::ignore) = decomposeMixedValues(initSizes);
return {resultShape, initOffsets, initSizes, initStrides};
}
/// Return the result shape, offsets, sizes and strides of the slice of the
/// `initValue` to use as destination of the partial reduction op generated with
/// outer parallel strategy.
static InitSliceInfo getInitSliceInfoForOuterParallel(
MLIRContext *context, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, const SetVector<unsigned> &reductionDims,
ArrayRef<OpFoldResult> splitReductionIvs, AffineMap partialReductionMap) {
int64_t initRank = partialReductionMap.getNumResults();
SmallVector<OpFoldResult> initOffsets, initSizes;
Attribute one = IntegerAttr::get(IndexType::get(context), 1);
SmallVector<OpFoldResult> initStrides(initRank, one);
SmallVector<OpFoldResult> resultShape;
for (AffineExpr dimExpr : partialReductionMap.getResults()) {
unsigned dim = cast<AffineDimExpr>(dimExpr).getPosition();
if (std::optional<unsigned> dimPos = getPositionIn(reductionDims, dim)) {
initOffsets.push_back(splitReductionIvs[dimPos.value()]);
initSizes.push_back(one);
} else {
initOffsets.push_back(offsets[dim]);
initSizes.push_back(sizes[dim]);
resultShape.push_back(sizes[dim]);
}
}
SmallVector<int64_t> staticShapes;
std::tie(staticShapes, std::ignore) = decomposeMixedValues(resultShape);
return {staticShapes, initOffsets, initSizes, initStrides};
}
/// Return the result shape, offsets, sizes and strides of the slice of the
/// `initValue` to use as destination of the partial reduction op.
static InitSliceInfo getInitSliceInfo(MLIRContext *context,
ReductionTilingStrategy strategy,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
const SetVector<unsigned> &reductionDims,
ArrayRef<OpFoldResult> splitReductionIvs,
AffineMap partialReductionMap) {
if (strategy == ReductionTilingStrategy::PartialReductionOuterReduction) {
return getInitSliceInfoForOuterReduction(context, offsets, sizes,
reductionDims, splitReductionIvs,
partialReductionMap);
}
assert(strategy == ReductionTilingStrategy::PartialReductionOuterParallel &&
"unexpected ReductionTilingStrategy");
return getInitSliceInfoForOuterParallel(context, offsets, sizes,
reductionDims, splitReductionIvs,
partialReductionMap);
}
/// External model implementation of PartialReductionInterface for
@@ -390,21 +459,6 @@ struct LinalgOpPartialReductionInterface
SmallVector<AffineMap> partialResultMaps =
getPartialResultAffineMaps(linalgOp, reductionDims);
// LinalgOp implements TilingInterface.
auto tilingInterfaceOp = cast<TilingInterface>(linalgOp.getOperation());
SmallVector<OpFoldResult> shape =
llvm::map_to_vector(tilingInterfaceOp.getIterationDomain(b),
[](Range x) { return x.size; });
SmallVector<OpFoldResult> tiledShape;
for (auto [tileSize, dimSize] : llvm::zip_equal(sizes, shape)) {
if (isZeroInteger(tileSize)) {
tiledShape.push_back(dimSize);
} else {
tiledShape.push_back(tileSize);
}
}
SmallVector<Value> inits;
for (auto [initIdx, result, partialMap] :
llvm::enumerate(linalgOp->getResults(), partialResultMaps)) {
@@ -424,7 +478,7 @@ struct LinalgOpPartialReductionInterface
SmallVector<OpFoldResult> partialResultShape;
for (AffineExpr dimExpr : partialMap.getResults()) {
auto dim = cast<AffineDimExpr>(dimExpr);
partialResultShape.push_back(tiledShape[dim.getPosition()]);
partialResultShape.push_back(sizes[dim.getPosition()]);
}
Type elType = getElementTypeOrSelf(result.getType());
@@ -444,13 +498,8 @@ struct LinalgOpPartialReductionInterface
ReductionTilingStrategy tilingStrategy,
ValueRange init, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
const SetVector<unsigned> &reductionDims) const {
if (tilingStrategy !=
ReductionTilingStrategy::PartialReductionOuterReduction) {
// TODO: Add support for `PartialReductionOuterParallel` strategy.
return op->emitOpError("unsupported partial reduction tiling with "
"`PartialReductionOuterParallel` strategy");
}
const SetVector<unsigned> &reductionDims,
ArrayRef<OpFoldResult> splitReductionIvs) const {
OpBuilder::InsertionGuard guard(b);
auto linalgOp = cast<LinalgOp>(op);
@@ -459,7 +508,16 @@ struct LinalgOpPartialReductionInterface
// Step 1. Extend init maps to have reduction dimension dims, since we
// are converting them to parallel dimensions.
SmallVector<AffineMap> newInitMaps = partialReductionMaps;
SmallVector<AffineMap> newInitMaps;
if (tilingStrategy ==
ReductionTilingStrategy::PartialReductionOuterReduction) {
newInitMaps = llvm::to_vector(partialReductionMaps);
} else {
newInitMaps = llvm::map_to_vector(
linalgOp.getDpsInitsMutable(), [&](OpOperand &opOperand) {
return linalgOp.getMatchingIndexingMap(&opOperand);
});
}
// Step 2a: Extract a slice of the input operands.
SmallVector<Value> tiledInputs = makeTiledShapes(
@@ -473,10 +531,17 @@ struct LinalgOpPartialReductionInterface
SmallVector<Value, 1> tiledInits;
for (auto [partialReductionMap, valueToTile] :
llvm::zip_equal(partialReductionMaps, init)) {
Operation *sliceOp =
getInitSliceForOuterReduction(b, loc, valueToTile, offsets, sizes,
reductionDims, partialReductionMap);
tiledInits.push_back(sliceOp->getResult(0));
InitSliceInfo sliceInfo = getInitSliceInfo(
b.getContext(), tilingStrategy, offsets, sizes, reductionDims,
splitReductionIvs, partialReductionMap);
auto valueToTileType = cast<RankedTensorType>(valueToTile.getType());
RankedTensorType sliceResultType = RankedTensorType::get(
sliceInfo.resultShape, valueToTileType.getElementType(),
valueToTileType.getEncoding());
auto sliceOp = b.create<tensor::ExtractSliceOp>(
loc, sliceResultType, valueToTile, sliceInfo.offsets, sliceInfo.sizes,
sliceInfo.strides);
tiledInits.push_back(sliceOp.getResult());
generatedSlices.push_back(sliceOp);
}
@@ -491,19 +556,31 @@ struct LinalgOpPartialReductionInterface
// Step 3. Change the reduction dim iterator types.
SmallVector<utils::IteratorType> newIteratorTypes =
linalgOp.getIteratorTypesArray();
for (int dim : reductionDims)
newIteratorTypes[dim] = utils::IteratorType::parallel;
if (tilingStrategy ==
ReductionTilingStrategy::PartialReductionOuterReduction) {
for (int dim : reductionDims)
newIteratorTypes[dim] = utils::IteratorType::parallel;
}
// Step 4. Create the new generic op.
Operation *partialReductionOp;
auto resultTypes = ValueRange(tiledInits).getTypes();
auto genericOp = b.create<GenericOp>(loc, resultTypes, tiledInputs,
tiledInits, newMaps, newIteratorTypes);
IRMapping mapping;
op->getRegion(0).cloneInto(&genericOp.getRegion(),
genericOp.getRegion().begin(), mapping);
if (tilingStrategy ==
ReductionTilingStrategy::PartialReductionOuterReduction) {
auto genericOp = b.create<GenericOp>(
loc, resultTypes, tiledInputs, tiledInits, newMaps, newIteratorTypes);
IRMapping mapping;
op->getRegion(0).cloneInto(&genericOp.getRegion(),
genericOp.getRegion().begin(), mapping);
partialReductionOp = genericOp.getOperation();
} else {
SmallVector<Value> operands = std::move(tiledInputs);
llvm::append_range(operands, tiledInits);
partialReductionOp = mlir::clone(b, op, resultTypes, operands);
}
return TilingResult{
{genericOp.getOperation()},
llvm::map_to_vector(genericOp->getResults(),
{partialReductionOp},
llvm::map_to_vector(partialReductionOp->getResults(),
[](OpResult r) -> Value { return r; }),
generatedSlices};
}
@@ -558,26 +635,19 @@ struct LinalgOpPartialReductionInterface
LogicalResult getPartialResultTilePosition(
Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
const SetVector<unsigned> &reductionDims,
ReductionTilingStrategy tilingStrategy, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, const SetVector<unsigned> &reductionDims,
ArrayRef<OpFoldResult> splitReductionIvs,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
auto linalgOp = cast<LinalgOp>(op);
SmallVector<AffineMap> partialReductionMaps =
getPartialResultAffineMaps(linalgOp, reductionDims);
for (AffineExpr dimExpr : partialReductionMaps[resultNumber].getResults()) {
unsigned dim = cast<AffineDimExpr>(dimExpr).getPosition();
resultSizes.push_back(sizes[dim]);
if (llvm::is_contained(reductionDims, dim)) {
// Reduction dims are reduced, and are always outputed in the same
// place. So use offset 0 for them.
resultOffsets.push_back(b.getIndexAttr(0));
} else {
resultOffsets.push_back(offsets[dim]);
}
}
InitSliceInfo sliceInfo = getInitSliceInfo(
b.getContext(), tilingStrategy, offsets, sizes, reductionDims,
splitReductionIvs, partialReductionMaps[resultNumber]);
std::swap(resultOffsets, sliceInfo.offsets);
std::swap(resultSizes, sliceInfo.sizes);
return success();
}

View File

@@ -166,12 +166,11 @@ static LogicalResult checkTileSizes(TilingInterface op,
assert((numThreads.empty() || (numThreads.size() == iterators.size())) &&
"when specified, expected number of threads to use for each loop");
bool isParallelTiling = false, isReductionTiling = false;
bool isParallelTiling = false;
for (auto [index, iterator, tileSize] :
llvm::enumerate(iterators, tileSizes)) {
if (!isConstantIntValue(tileSize, 0)) {
isParallelTiling |= iterator == utils::IteratorType::parallel;
isReductionTiling |= iterator == utils::IteratorType::reduction;
}
if (loopType == scf::SCFTilingOptions::LoopType::ForallOp &&
@@ -199,15 +198,29 @@ static LogicalResult checkTileSizes(TilingInterface op,
}
}
if (isParallelTiling && isReductionTiling &&
reductionStrategy != ReductionTilingStrategy::FullReduction) {
return op->emitOpError(
"combined parallel and reduction tiling is not supported with partial "
"reduction tiling strategies");
if (reductionStrategy != ReductionTilingStrategy::FullReduction) {
if (isParallelTiling) {
return op->emitOpError("tiling parallel dimensions is not supported with "
"partial reduction tiling strategies");
}
}
return success();
}
/// Get the reduction dims that are tiled. This accounts for reduction dims
/// that are specified as tiled, but the tile size is 0.
static SetVector<unsigned>
getSanitizedReductionDims(ArrayRef<OpFoldResult> tileSizes,
const scf::SCFTilingOptions &options) {
SetVector<unsigned> reductionDims;
for (auto dim : options.reductionDims) {
if (isConstantIntValue(tileSizes[dim], 0))
continue;
reductionDims.insert(dim);
}
return reductionDims;
}
/// Check if `stride` evenly divides the trip count `size - offset`.
static bool tileDividesIterationDomain(Range loopRange) {
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
@@ -264,10 +277,12 @@ static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
/// `offset`s and `size`s of the tile of the iteration space that the
/// innermost loop body of the generated tiled loops corresponds to.
static std::tuple<SmallVector<OpFoldResult>, SmallVector<OpFoldResult>>
getTileOffsetAndSizes(RewriterBase &rewriter, Location loc, ValueRange ivs,
getTileOffsetAndSizes(RewriterBase &rewriter, Location loc,
ReductionTilingStrategy strategy, ValueRange ivs,
ArrayRef<Range> iterationDomain,
ArrayRef<OpFoldResult> tileSizes,
ArrayRef<OpFoldResult> numThreads) {
ArrayRef<OpFoldResult> numThreads,
const llvm::SetVector<unsigned> &reductionDims) {
SmallVector<OpFoldResult> offsets, sizes;
int materializedLoopNum = 0;
@@ -279,8 +294,8 @@ getTileOffsetAndSizes(RewriterBase &rewriter, Location loc, ValueRange ivs,
offsetExpr = d0 + d1 * s0;
residualTileSizeExpr = s1 - (d0 + d1 * s0);
for (auto [nt, tileSize, loopRange] :
llvm::zip_equal(numThreads, tileSizes, iterationDomain)) {
for (auto [index, nt, tileSize, loopRange] :
llvm::enumerate(numThreads, tileSizes, iterationDomain)) {
// Non-tiled cases, set the offset and size to the
// `loopRange.offset/size`.
@@ -564,9 +579,10 @@ static LogicalResult generateLoopNestUsingForallOp(
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNest(
RewriterBase &rewriter, Location loc, const scf::SCFTilingOptions &options,
ArrayRef<Range> loopRanges, ArrayRef<OpFoldResult> tileSizes,
ArrayRef<OpFoldResult> numThreads, ValueRange destinationTensors,
RewriterBase &rewriter, Location loc,
scf::SCFTilingOptions::LoopType loopType, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes, ArrayRef<OpFoldResult> numThreads,
ValueRange destinationTensors, ArrayRef<Attribute> mappingVector,
YieldTiledValuesFn tiledBodyFn, SmallVector<LoopLikeOpInterface> &loops) {
// If the tile sizes are all zero, no loops are generated. Just call the
// callback function to handle untiled case.
@@ -576,25 +592,26 @@ static LogicalResult generateLoopNest(
return tiledBodyFn(rewriter, loc, ValueRange{}, destinationTensors,
tiledResults, resultOffsets, resultSizes);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForOp) {
if (loopType == scf::SCFTilingOptions::LoopType::ForOp) {
return generateLoopNestUsingForOp(rewriter, loc, loopRanges, tileSizes,
destinationTensors, tiledBodyFn, loops);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForallOp) {
if (loopType == scf::SCFTilingOptions::LoopType::ForallOp) {
return generateLoopNestUsingForallOp(
rewriter, loc, loopRanges, tileSizes, numThreads, options.mappingVector,
rewriter, loc, loopRanges, tileSizes, numThreads, mappingVector,
destinationTensors, tiledBodyFn, loops);
}
return rewriter.notifyMatchFailure(loc, "unhandled loop type");
}
static FailureOr<SmallVector<Value>>
createInitialTensorsForTiling(RewriterBase &rewriter, TilingInterface op,
ArrayRef<OpFoldResult> tileSizes,
const scf::SCFTilingOptions &options) {
static FailureOr<SmallVector<Value>> createInitialTensorsForTiling(
RewriterBase &rewriter, TilingInterface op,
ReductionTilingStrategy reductionStrategy, ArrayRef<Range> iterationDomain,
ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
const SetVector<unsigned> &reductionDims) {
SmallVector<Value> initTensors;
Location loc = op->getLoc();
if (options.reductionStrategy == ReductionTilingStrategy::FullReduction) {
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
if (failed(tensor::getOrCreateDestinations(rewriter, loc, op, initTensors)))
return failure();
return initTensors;
@@ -602,20 +619,94 @@ createInitialTensorsForTiling(RewriterBase &rewriter, TilingInterface op,
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
if (!redOp) {
return rewriter.notifyMatchFailure(
op, "PartialReductionOuterReduction tiling strategy is only supported"
"for operations implementing PartialReductionOpInterface");
return op->emitOpError(
"PartialReductionOuterReduction tiling strategy is only supported for "
"operations implementing PartialReductionOpInterface");
}
return redOp.generateInitialTensorForPartialReduction(
rewriter, loc, tileSizes, options.reductionDims);
SmallVector<OpFoldResult> sizes(iterationDomain.size());
AffineExpr s0, s1, s2;
bindSymbols(rewriter.getContext(), s0, s1, s2);
AffineExpr sizeExpr = ((s0 - s1).ceilDiv(s2));
AffineExpr divExpr = s0.ceilDiv(s1);
for (auto [index, domain, tileSize] :
llvm::enumerate(iterationDomain, tileSizes)) {
if (!numThreads.empty()) {
// Untiled case.
if (isConstantIntValue(numThreads[index], 0)) {
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
continue;
}
sizes[index] = numThreads[index];
continue;
}
// Non reduction dimensions/non-tiled dimensions.
if (!reductionDims.contains(index) || isConstantIntValue(tileSize, 0)) {
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
continue;
}
if (reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterReduction) {
sizes[index] = tileSize;
continue;
}
assert(reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterParallel);
OpFoldResult normalizedRange = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), divExpr, {normalizedRange, tileSize});
}
return redOp.generateInitialTensorForPartialReduction(rewriter, loc, sizes,
reductionDims);
}
/// For the case of `ReductionTilingStrategy::PartialReductionOuterParallel`
/// the `PartialReductionOpInterface` methods need the index of the parallel
/// split reduction being executed.
static SmallVector<OpFoldResult>
getSplitReductionIvs(RewriterBase &rewriter, Location loc,
ReductionTilingStrategy reductionStrategy, ValueRange ivs,
ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> tileSizes,
const SetVector<unsigned> &reductionDims) {
SmallVector<OpFoldResult> splitReductionIvs;
splitReductionIvs.resize(reductionDims.size(), rewriter.getIndexAttr(0));
AffineExpr s0, s1;
bindSymbols(rewriter.getContext(), s0, s1);
AffineExpr divExpr = s0.ceilDiv(s1);
int ivIndex = 0;
if (reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterParallel) {
for (auto [index, reductionDim] : llvm::enumerate(reductionDims)) {
if (!numThreads.empty()) {
splitReductionIvs[index] = ivs[ivIndex++];
continue;
}
splitReductionIvs[index] = affine::makeComposedFoldedAffineApply(
rewriter, loc, divExpr,
ArrayRef<OpFoldResult>{ivs[ivIndex++], tileSizes[reductionDim]});
}
}
return splitReductionIvs;
}
static FailureOr<TilingResult>
getTiledImplementation(RewriterBase &rewriter, TilingInterface op,
ReductionTilingStrategy reductionStrategy,
ValueRange regionIterArg, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
const scf::SCFTilingOptions &options) {
if (options.reductionStrategy == ReductionTilingStrategy::FullReduction) {
ArrayRef<OpFoldResult> sizes, ValueRange ivs,
ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> tileSizes,
const SetVector<unsigned> &reductionDims) {
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
return op.getTiledImplementation(rewriter, offsets, sizes);
}
@@ -626,20 +717,25 @@ getTiledImplementation(RewriterBase &rewriter, TilingInterface op,
"supported for operations "
"implementing PartialReductionOpInterface");
}
return redOp.tileToPartialReduction(rewriter, op.getLoc(),
options.reductionStrategy, regionIterArg,
offsets, sizes, options.reductionDims);
SmallVector<OpFoldResult> splitReductionIvs =
getSplitReductionIvs(rewriter, op.getLoc(), reductionStrategy, ivs,
numThreads, tileSizes, reductionDims);
return redOp.tileToPartialReduction(rewriter, op.getLoc(), reductionStrategy,
regionIterArg, offsets, sizes,
reductionDims, splitReductionIvs);
}
static LogicalResult
getResultTilePosition(RewriterBase &rewriter, int64_t index, Value tiledResult,
TilingInterface op, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffset,
SmallVector<OpFoldResult> &resultSize,
const scf::SCFTilingOptions &options) {
static LogicalResult getResultTilePosition(
RewriterBase &rewriter, ReductionTilingStrategy reductionStrategy,
int64_t index, Value tiledResult, TilingInterface op,
ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
ValueRange ivs, ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> tileSizes, const SetVector<unsigned> &reductionDims,
SmallVector<OpFoldResult> &resultOffset,
SmallVector<OpFoldResult> &resultSize) {
if (options.reductionStrategy == ReductionTilingStrategy::FullReduction) {
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
return op.getResultTilePosition(rewriter, index, offsets, sizes,
resultOffset, resultSize);
}
@@ -649,16 +745,20 @@ getResultTilePosition(RewriterBase &rewriter, int64_t index, Value tiledResult,
op, "PartialReductionOuterReduction tiling strategy is only supported"
"for operations implementing PartialReductionOpInterface");
}
return redOp.getPartialResultTilePosition(rewriter, index, offsets, sizes,
options.reductionDims, resultOffset,
resultSize);
SmallVector<OpFoldResult> splitReductionIvs =
getSplitReductionIvs(rewriter, op.getLoc(), reductionStrategy, ivs,
numThreads, tileSizes, reductionDims);
return redOp.getPartialResultTilePosition(
rewriter, index, reductionStrategy, offsets, sizes, reductionDims,
splitReductionIvs, resultOffset, resultSize);
}
static FailureOr<MergeResult>
mergeTilingResults(RewriterBase &rewriter, TilingInterface op,
ValueRange partialResults,
const scf::SCFTilingOptions &options) {
assert(options.reductionStrategy != ReductionTilingStrategy::FullReduction &&
ReductionTilingStrategy reductionStrategy,
const SetVector<unsigned> &reductionDims,
ValueRange partialResults) {
assert(reductionStrategy != ReductionTilingStrategy::FullReduction &&
"expected merge to be called for only partial reduction cases");
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
@@ -669,7 +769,7 @@ mergeTilingResults(RewriterBase &rewriter, TilingInterface op,
"implementing PartialReductionOpInterface");
}
return redOp.mergeReductions(rewriter, op.getLoc(), partialResults,
options.reductionDims);
reductionDims);
}
/// Append the specified additional `newInitOperands` operands to the
@@ -911,6 +1011,10 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
return failure();
}
// Get the reduction dims
SetVector<unsigned> reductionDims =
getSanitizedReductionDims(tileSizes, options);
// 3. If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<int64_t> interchangeVector;
@@ -938,7 +1042,8 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
// 4a. Compute the `offsets` and `sizes` to use for tiling.
SmallVector<OpFoldResult> offsets, sizes;
std::tie(offsets, sizes) = getTileOffsetAndSizes(
rewriter, loc, ivs, iterationDomain, tileSizes, numThreads);
rewriter, loc, options.reductionStrategy, ivs, iterationDomain,
tileSizes, numThreads, reductionDims);
// 4b. If interchange was provided, apply inverse of the interchange
// to get back the offsets/sizes in the order to be specified.
@@ -966,8 +1071,9 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
}
// 5c. Tile the cloned operation.
tilingResult = getTiledImplementation(rewriter, clonedOp, regionIterArgs,
offsets, sizes, options);
tilingResult = getTiledImplementation(
rewriter, clonedOp, options.reductionStrategy, regionIterArgs, offsets,
sizes, ivs, numThreads, tileSizes, reductionDims);
if (failed(tilingResult)) {
rewriter.eraseOp(clonedOp);
return op.emitOpError("faild to tile operation");
@@ -982,9 +1088,10 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
llvm::enumerate(tilingResult->tiledValues)) {
tiledResults.push_back(tiledValue);
SmallVector<OpFoldResult> resultOffset, resultSize;
if (failed(getResultTilePosition(rewriter, index, tiledValue, op, offsets,
sizes, resultOffset, resultSize,
options))) {
if (failed(getResultTilePosition(
rewriter, options.reductionStrategy, index, tiledValue, op,
offsets, sizes, ivs, numThreads, tileSizes, reductionDims,
resultOffset, resultSize))) {
for (auto op : tilingResult->tiledOps) {
rewriter.eraseOp(op);
}
@@ -999,8 +1106,9 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
};
// 6. Find the destination tensors to use for the operation.
FailureOr<SmallVector<Value>> maybeInits =
createInitialTensorsForTiling(rewriter, op, tileSizes, options);
FailureOr<SmallVector<Value>> maybeInits = createInitialTensorsForTiling(
rewriter, op, options.reductionStrategy, iterationDomain, numThreads,
tileSizes, reductionDims);
if (failed(maybeInits)) {
return rewriter.notifyMatchFailure(
op, "unable to create initial tensors for tiling");
@@ -1009,8 +1117,9 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
// 7. Generate the tiled loops nest using the callback defined above.
SmallVector<LoopLikeOpInterface> loops;
if (failed(generateLoopNest(rewriter, op.getLoc(), options, iterationDomain,
tileSizes, numThreads, initTensors,
if (failed(generateLoopNest(rewriter, op.getLoc(), options.loopType,
iterationDomain, tileSizes, numThreads,
initTensors, options.mappingVector,
innerYieldTiledValuesFn, loops)))
return op.emitOpError("failed to generate tiling loops");
assert(succeeded(tilingResult) &&
@@ -1038,8 +1147,8 @@ mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
}
// The results of the loop needs to be merged.
FailureOr<MergeResult> mergeResult =
mergeTilingResults(rewriter, op, loopResults, options);
FailureOr<MergeResult> mergeResult = mergeTilingResults(
rewriter, op, options.reductionStrategy, reductionDims, loopResults);
if (failed(mergeResult)) {
return rewriter.notifyMatchFailure(
op, "Failed to merge partial results from tiling");

View File

@@ -2315,13 +2315,13 @@ RankedTensorType ExtractSliceOp::inferResultType(
RankedTensorType ExtractSliceOp::inferResultType(
RankedTensorType sourceTensorType, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
return ExtractSliceOp::inferResultType(sourceTensorType, staticOffsets,
staticSizes, staticStrides);
SmallVector<int64_t> staticSizes;
std::tie(staticSizes, std::ignore) = decomposeMixedValues(sizes);
assert(static_cast<int64_t>(staticSizes.size()) ==
sourceTensorType.getRank() &&
"unexpected staticSizes not equal to rank of source");
return RankedTensorType::get(staticSizes, sourceTensorType.getElementType(),
sourceTensorType.getEncoding());
}
/// If the rank is reduced (i.e. the desiredResultRank is smaller than the

View File

@@ -208,7 +208,7 @@ SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
/// Decompose a vector of mixed static or dynamic values into the corresponding
/// pair of arrays. This is the inverse function of `getMixedValues`.
std::pair<SmallVector<int64_t>, SmallVector<Value>>
decomposeMixedValues(const SmallVectorImpl<OpFoldResult> &mixedValues) {
decomposeMixedValues(ArrayRef<OpFoldResult> mixedValues) {
SmallVector<int64_t> staticValues;
SmallVector<Value> dynamicValues;
for (const auto &it : mixedValues) {

View File

@@ -112,7 +112,7 @@ module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by num_threads = [0, 5], tile_sizes = [] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
by num_threads = [0, 5] tile_sizes = [] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
@@ -134,10 +134,9 @@ module attributes {transform.with_named_sequence} {
// CHECK-DAG: %[[TS0:.+]] = affine.min #[[MAP0]](%[[IV]])[%[[D1]]]
// CHECK-DAG: %[[TS1:.+]] = affine.max #[[MAP1]](%[[TS0]])
// CHECK-DAG: %[[ET:.+]] = tensor.extract_slice %[[ARG3:.+]][0, %[[IV]]] [%[[D0]], 1] [1, 1] : tensor<?x5xf32> to tensor<?xf32>
// CHECK: %[[TINDEX:.+]] = affine.apply #[[MAP2]](%[[IV]])[%[[D1]]]
// CHECK: %[[INCHUNK:.+]] = tensor.extract_slice %[[ARG0]][0, %[[TINDEX]]] [%[[D0]], %[[TS1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[TEMPEXT:.+]] = tensor.extract_slice %[[ET]][0] [%[[D0]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK: %[[PARTIAL:.+]] = linalg.generic {indexing_maps = [#[[MAP3]], #[[MAP4]]], iterator_types = ["parallel", "reduction"]} ins(%[[INCHUNK]] : tensor<?x?xf32>) outs(%[[TEMPEXT]] : tensor<?xf32>) {
// CHECK-DAG: %[[TINDEX:.+]] = affine.apply #[[MAP2]](%[[IV]])[%[[D1]]]
// CHECK-DAG: %[[INCHUNK:.+]] = tensor.extract_slice %[[ARG0]][0, %[[TINDEX]]] [%[[D0]], %[[TS1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[PARTIAL:.+]] = linalg.generic {indexing_maps = [#[[MAP3]], #[[MAP4]]], iterator_types = ["parallel", "reduction"]} ins(%[[INCHUNK]] : tensor<?x?xf32>) outs(%[[ET]] : tensor<?xf32>) {
// CHECK: arith.mulf
// CHECK: arith.addf
// CHECK: linalg.yield
@@ -166,7 +165,7 @@ module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by num_threads = [0, 0, 5], tile_sizes = [] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
by num_threads = [0, 0, 5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
@@ -187,11 +186,10 @@ module attributes {transform.with_named_sequence} {
// CHECK-DAG: %[[TS0:.+]] = affine.min #[[MAP0]](%[[IV]])[%[[D1]]]
// CHECK-DAG: %[[TS1:.+]] = affine.max #[[MAP1]](%[[TS0]])
// CHECK-DAG: %[[ET:.+]] = tensor.extract_slice %[[ARG3:.+]][0, 0, %[[IV]]] [%[[D0]], %[[D2]], 1] [1, 1, 1] : tensor<?x?x5xf32> to tensor<?x?xf32>
// CHECK: %[[TINDEX:.+]] = affine.apply #[[MAP2]](%[[IV]])[%[[D1]]]
// CHECK: %[[INCHUNKA:.+]] = tensor.extract_slice %[[ARG0]][0, %[[TINDEX]]] [%[[D0]], %[[TS1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[INCHUNKB:.+]] = tensor.extract_slice %[[ARG1]][%[[TINDEX]], 0] [%[[TS1]], %[[D2]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[TEMPEXT:.+]] = tensor.extract_slice %[[ET]][0, 0] [%[[D0]], %[[D2]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[PARTIAL:.+]] = linalg.matmul ins(%[[INCHUNKA]], %[[INCHUNKB]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[TEMPEXT]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK-DAG: %[[TINDEX:.+]] = affine.apply #[[MAP2]](%[[IV]])[%[[D1]]]
// CHECK-DAG: %[[INCHUNKA:.+]] = tensor.extract_slice %[[ARG0]][0, %[[TINDEX]]] [%[[D0]], %[[TS1]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK-DAG: %[[INCHUNKB:.+]] = tensor.extract_slice %[[ARG1]][%[[TINDEX]], 0] [%[[TS1]], %[[D2]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[PARTIAL:.+]] = linalg.matmul ins(%[[INCHUNKA]], %[[INCHUNKB]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[ET]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[PARTIAL]] into %[[ARG3]][0, 0, %[[IV]]] [%[[D0]], %[[D2]], 1] [1, 1, 1] : tensor<?x?xf32> into tensor<?x?x5xf32>
// CHECK: }
@@ -204,113 +202,9 @@ module attributes {transform.with_named_sequence} {
// -----
func.func @reduction_tile_parallel_cyclic_dist(
%arg0: tensor<?x?xf32>, %out: tensor<?xf32>) -> tensor<?xf32> {
%red = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0 : tensor<?x?xf32>)
outs(%out : tensor<?xf32>) {
^bb0(%arg7: f32, %arg9: f32):
%1 = arith.mulf %arg7, %arg7 : f32
%2 = arith.addf %1, %arg9 : f32
linalg.yield %2 : f32
} -> tensor<?xf32>
return %red : tensor<?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by num_threads = [0, 5], tile_sizes = [0, 3], mapping = [#gpu.thread<x>] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 * 3)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0, 3)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK: func @reduction_tile_parallel_cyclic_dist(%[[ARG0:.+]]: tensor<?x?xf32>, %[[ARG1:.+]]: tensor<?xf32>
// CHECK-DAG: %[[I:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index
// CHECK-DAG: %[[D0:.*]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x?xf32>
// CHECK: %[[E:.*]] = tensor.empty(%[[D0]]) : tensor<?x5xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[I]] : f32) outs(%[[E]] : tensor<?x5xf32>) -> tensor<?x5xf32>
// CHECK: %[[L:.*]] = scf.forall (%[[IV:.+]]) in (5) shared_outs(%[[ARG3:.+]] = %[[F]]) -> (tensor<?x5xf32>) {
// CHECK: %[[ET:.+]] = tensor.extract_slice %[[ARG3:.+]][0, %[[IV]]] [%[[D0]], 1] [1, 1] : tensor<?x5xf32> to tensor<?xf32>
// CHECK: %[[D1:.*]] = tensor.dim %[[ARG0]], %[[C1]] : tensor<?x?xf32>
// CHECK: %[[LB:.+]] = affine.apply #[[MAP0]]()[%[[IV]]]
// CHECK: %[[CARRY:.+]] = scf.for %[[IV1:.+]] = %[[LB]] to %[[D1]] step %[[C15]] iter_args(%[[ACC:.+]] = %[[ET]]) -> (tensor<?xf32>) {
// CHECK: %[[TS0:.+]] = affine.min #[[MAP1]](%[[IV1]])[%[[D1]]]
// CHECK: %[[D3:.+]] = tensor.dim %[[ACC]], %[[C0]] : tensor<?xf32>
// CHECK: %[[INCHUNK:.+]] = tensor.extract_slice %[[ARG0]][0, %[[IV1]]] [%[[D0]], %[[TS0]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[TEMPEXT:.+]] = tensor.extract_slice %[[ACC]][0] [%[[D3]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK: %[[PARTIAL:.+]] = linalg.generic {indexing_maps = [#[[MAP2]], #[[MAP3]]], iterator_types = ["parallel", "reduction"]} ins(%[[INCHUNK]] : tensor<?x?xf32>) outs(%[[TEMPEXT]] : tensor<?xf32>) {
// CHECK: arith.mulf
// CHECK: arith.addf
// CHECK: linalg.yield
// CHECK: } -> tensor<?xf32>
// CHECK: %[[INS:.+]] = tensor.insert_slice %[[PARTIAL]] into %[[ACC]][0] [%[[D3]]] [1] : tensor<?xf32> into tensor<?xf32>
// CHECK: scf.yield %[[INS]] : tensor<?xf32>
// CHECK: }
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[CARRY]] into %[[ARG3]][0, %[[IV]]] [%[[D0]], 1] [1, 1] : tensor<?xf32> into tensor<?x5xf32>
// CHECK: }
// CHECK: }
// CHECK: %[[R:.*]] = linalg.reduce ins(%[[L]] : tensor<?x5xf32>) outs(%[[ARG1]] : tensor<?xf32>) dimensions = [1]
// CHECK: arith.addf
// CHECK: linalg.yield
// CHECK: }
// CHECK: return %[[R]] : tensor<?xf32>
// -----
func.func @reduction_tile_parallel_cyclic_dist(
%arg0: tensor<?x?xf32>, %out: tensor<?xf32>) -> tensor<?xf32> {
%red = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0 : tensor<?x?xf32>)
outs(%out : tensor<?xf32>) {
^bb0(%arg7: f32, %arg9: f32):
%1 = arith.mulf %arg7, %arg7 : f32
%2 = arith.addf %1, %arg9 : f32
linalg.yield %2 : f32
} -> tensor<?xf32>
return %red : tensor<?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by num_threads = [0, 5], tile_sizes = [0, 3], mapping = [#gpu.thread<x>] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// CHECK: expecting fill
// CHECK-NEXT: linalg.fill
transform.print %1 {name = "expecting fill"} : !transform.any_op
// CHECK: expecting parallel reduction
// CHECK-NEXT: linalg.generic
// CHECK: iterator_types = ["parallel", "reduction"]
transform.print %2 {name = "expecting parallel reduction"} : !transform.any_op
// CHECK: expecting parallel reduction
// CHECK-NEXT: linalg.reduce
// CHECK: iterator_types = ["parallel", "reduction"]
transform.print %3 {name = "expecting parallel reduction"} : !transform.any_op
transform.yield
}
}
// -----
func.func @reduction_untiled_forall(
%arg0: tensor<?x?xf32>, %out: tensor<?xf32>) -> tensor<?xf32> {
// expected-note @below {{target operation}}
// expected-error @below {{tiling parallel dimensions is not supported with partial reduction tiling strategies}}
%red = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
@@ -329,9 +223,8 @@ module attributes {transform.with_named_sequence} {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{could not tile reduction}}
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by num_threads = [5], tile_sizes = [3], mapping = [#gpu.thread<x>] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
by num_threads = [5] tile_sizes = [3] mapping = [#gpu.thread<x>] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
@@ -643,3 +536,158 @@ module {
// CHECK-SAME: outs(%[[INIT]] :
// CHECK-SAME: dimensions = [1, 2]
// CHECK: return %[[REDUCE]]
// -----
func.func @reduction_tile_parallel_using_tile_sizes(
%arg0: tensor<?x?xf32>, %out: tensor<?xf32>) -> tensor<?xf32> {
%red = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0 : tensor<?x?xf32>)
outs(%out : tensor<?xf32>) {
^bb0(%arg7: f32, %arg9: f32):
%1 = arith.mulf %arg7, %arg7 : f32
%2 = arith.addf %1, %arg9 : f32
linalg.yield %2 : f32
} -> tensor<?xf32>
return %red : tensor<?xf32>
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 ceildiv 5)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0, 5)>
// CHECK: func @reduction_tile_parallel_using_tile_sizes(%[[ARG0:.+]]: tensor<?x?xf32>, %[[ARG1:.+]]: tensor<?xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[D0:.*]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x?xf32>
// CHECK-DAG: %[[D1:.*]] = tensor.dim %[[ARG0]], %[[C1]] : tensor<?x?xf32>
// CHECK-DAG: %[[PARALLEL_DIM:.+]] = affine.apply #[[MAP0]]()[%[[D1]]]
// CHECK: %[[E:.*]] = tensor.empty(%[[D0]], %[[PARALLEL_DIM]]) : tensor<?x?xf32>
// CHECK: %[[F:.*]] = linalg.fill
// CHECK-SAME: outs(%[[E]] :
// CHECK: %[[L:.*]] = scf.forall (%[[IV:.+]]) = (0) to (%[[D1]]) step (5) shared_outs(%[[ARG3:.+]] = %[[F]])
// CHECK-DAG: %[[TS0:.+]] = affine.min #[[MAP1]](%[[IV]])[%[[D1]]]
// CHECK-DAG: %[[INIT_OFFSET:.+]] = affine.apply #[[MAP0]]()[%[[IV]]]
// CHECK-DAG: %[[INCHUNK:.+]] = tensor.extract_slice %[[ARG0]][0, %[[IV]]] [%[[D0]], %[[TS0]]] [1, 1]
// CHECK-DAG: %[[ET:.+]] = tensor.extract_slice %[[ARG3]][0, %[[INIT_OFFSET]]] [%[[D0]], 1] [1, 1]
// CHECK: %[[PARTIAL:.+]] = linalg.generic
// CHECK-SAME: ins(%[[INCHUNK]] :
// CHECK-SAME: outs(%[[ET]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[PARTIAL]] into %[[ARG3]][0, %[[INIT_OFFSET]]] [%[[D0]], 1] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: %[[R:.*]] = linalg.reduce ins(%[[L]]
// CHECK-SAME: outs(%[[ARG1]] :
// CHECK: return %[[R]] : tensor<?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %2, %3, %loop = transform.structured.tile_reduction_using_forall %0
by tile_sizes = [0, 5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
// Check that only one of the reduction dimension can be tiled (in this case inner).
#map = affine_map<(d0, d1, d2) -> (d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0)>
module {
func.func @reduction_using_forall_tile_single_of_multiple_reduction_inner(
%arg0: tensor<86x128xf32>, %arg1: tensor<4096x86x128xf32>, %arg2: tensor<4096xf32>) -> tensor<4096xf32> {
%0 = linalg.generic {
indexing_maps = [#map, #map1, #map2],
iterator_types = ["parallel", "reduction", "reduction"]}
ins(%arg0, %arg1 : tensor<86x128xf32>, tensor<4096x86x128xf32>) outs(%arg2 : tensor<4096xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%1 = arith.mulf %in, %in_0 : f32
%2 = arith.addf %1, %out : f32
linalg.yield %2 : f32
} -> tensor<4096xf32>
return %0 : tensor<4096xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%fill_op, %split_linalg_op, %combining_linalg_op, %for_op =
transform.structured.tile_reduction_using_forall %0 reduction_dims = [2] by tile_sizes = [0, 0, 64]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 ceildiv 64)>
// CHECK: func @reduction_using_forall_tile_single_of_multiple_reduction_inner(%[[ARG0:.+]]: tensor<86x128xf32>, %[[ARG1:.+]]: tensor<4096x86x128xf32>, %[[ARG2:.+]]: tensor<4096xf32>)
// CHECK: %[[E:.*]] = tensor.empty() : tensor<4096x2xf32>
// CHECK: %[[F:.*]] = linalg.fill
// CHECK-SAME: outs(%[[E]] :
// CHECK: %[[L:.*]] = scf.forall (%[[IV:.+]]) = (0) to (128) step (64) shared_outs(%[[ARG3:.+]] = %[[F]])
// CHECK-DAG: %[[INIT_OFFSET:.+]] = affine.apply #[[MAP0]]()[%[[IV]]]
// CHECK-DAG: %[[ARG0_SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %[[IV]]] [86, 64] [1, 1]
// CHECK-DAG: %[[ARG1_SLICE:.+]] = tensor.extract_slice %[[ARG1]][0, 0, %[[IV]]] [4096, 86, 64] [1, 1, 1]
// CHECK-DAG: %[[ET:.+]] = tensor.extract_slice %[[ARG3]][0, %[[INIT_OFFSET]]] [4096, 1] [1, 1]
// CHECK: %[[PARTIAL:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0_SLICE]], %[[ARG1_SLICE]] :
// CHECK-SAME: outs(%[[ET]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[PARTIAL]] into %[[ARG3]][0, %[[INIT_OFFSET]]] [4096, 1] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: %[[R:.*]] = linalg.reduce ins(%[[L]]
// CHECK-SAME: outs(%[[ARG2]] :
// CHECK: return %[[R]]
// -----
// Check that specifying both reduction dimensions, but setting tile size to 0 for one of them behaves consistent with specifying single reduction dimension.
#map = affine_map<(d0, d1, d2) -> (d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0)>
module {
func.func @reduction_using_forall_tilesize_0_of_multiple_reduction_inner(
%arg0: tensor<86x128xf32>, %arg1: tensor<4096x86x128xf32>, %arg2: tensor<4096xf32>) -> tensor<4096xf32> {
%0 = linalg.generic {
indexing_maps = [#map, #map1, #map2],
iterator_types = ["parallel", "reduction", "reduction"]}
ins(%arg0, %arg1 : tensor<86x128xf32>, tensor<4096x86x128xf32>) outs(%arg2 : tensor<4096xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%1 = arith.mulf %in, %in_0 : f32
%2 = arith.addf %1, %out : f32
linalg.yield %2 : f32
} -> tensor<4096xf32>
return %0 : tensor<4096xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%fill_op, %split_linalg_op, %combining_linalg_op, %for_op =
transform.structured.tile_reduction_using_forall %0 reduction_dims = [1, 2] by tile_sizes = [0, 0, 64]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
}
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 ceildiv 64)>
// CHECK: func @reduction_using_forall_tilesize_0_of_multiple_reduction_inner(%[[ARG0:.+]]: tensor<86x128xf32>, %[[ARG1:.+]]: tensor<4096x86x128xf32>, %[[ARG2:.+]]: tensor<4096xf32>)
// CHECK: %[[E:.*]] = tensor.empty() : tensor<4096x2xf32>
// CHECK: %[[F:.*]] = linalg.fill
// CHECK-SAME: outs(%[[E]] :
// CHECK: %[[L:.*]] = scf.forall (%[[IV:.+]]) = (0) to (128) step (64) shared_outs(%[[ARG3:.+]] = %[[F]])
// CHECK-DAG: %[[INIT_OFFSET:.+]] = affine.apply #[[MAP0]]()[%[[IV]]]
// CHECK-DAG: %[[ARG0_SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %[[IV]]] [86, 64] [1, 1]
// CHECK-DAG: %[[ARG1_SLICE:.+]] = tensor.extract_slice %[[ARG1]][0, 0, %[[IV]]] [4096, 86, 64] [1, 1, 1]
// CHECK-DAG: %[[ET:.+]] = tensor.extract_slice %[[ARG3]][0, %[[INIT_OFFSET]]] [4096, 1] [1, 1]
// CHECK: %[[PARTIAL:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0_SLICE]], %[[ARG1_SLICE]] :
// CHECK-SAME: outs(%[[ET]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[PARTIAL]] into %[[ARG3]][0, %[[INIT_OFFSET]]] [4096, 1] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: %[[R:.*]] = linalg.reduce ins(%[[L]]
// CHECK-SAME: outs(%[[ARG2]] :
// CHECK: return %[[R]]