[CIR] Implement EqualOp for ComplexType (#145769)

This change adds support for equal operation for ComplexType


https://github.com/llvm/llvm-project/issues/141365
This commit is contained in:
Amr Hesham
2025-06-26 18:06:22 +02:00
committed by GitHub
parent 07e3c859b0
commit 9d91b07e1e
5 changed files with 167 additions and 13 deletions

View File

@@ -2455,6 +2455,31 @@ def ComplexImagOp : CIR_Op<"complex.imag", [Pure]> {
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// ComplexEqualOp
//===----------------------------------------------------------------------===//
def ComplexEqualOp : CIR_Op<"complex.eq", [Pure, SameTypeOperands]> {
let summary = "Computes whether two complex values are equal";
let description = [{
The `complex.equal` op takes two complex numbers and returns whether
they are equal.
```mlir
%r = cir.complex.eq %a, %b : !cir.complex<!cir.float>
```
}];
let results = (outs CIR_BoolType:$result);
let arguments = (ins CIR_ComplexType:$lhs, CIR_ComplexType:$rhs);
let assemblyFormat = [{
$lhs `,` $rhs
`:` qualified(type($lhs)) attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Assume Operations
//===----------------------------------------------------------------------===//

View File

@@ -894,9 +894,17 @@ public:
}
} else {
// Complex Comparison: can only be an equality comparison.
assert(!cir::MissingFeatures::complexType());
cgf.cgm.errorNYI(loc, "complex comparison");
result = builder.getBool(false, loc);
assert(e->getOpcode() == BO_EQ || e->getOpcode() == BO_NE);
BinOpInfo boInfo = emitBinOps(e);
if (e->getOpcode() == BO_EQ) {
result =
builder.create<cir::ComplexEqualOp>(loc, boInfo.lhs, boInfo.rhs);
} else {
assert(!cir::MissingFeatures::complexType());
cgf.cgm.errorNYI(loc, "complex not equal");
result = builder.getBool(false, loc);
}
}
return emitScalarConversion(result, cgf.getContext().BoolTy, e->getType(),

View File

@@ -1900,29 +1900,30 @@ void ConvertCIRToLLVMPass::runOnOperation() {
CIRToLLVMBrOpLowering,
CIRToLLVMCallOpLowering,
CIRToLLVMCmpOpLowering,
CIRToLLVMComplexCreateOpLowering,
CIRToLLVMComplexEqualOpLowering,
CIRToLLVMComplexImagOpLowering,
CIRToLLVMComplexRealOpLowering,
CIRToLLVMConstantOpLowering,
CIRToLLVMExpectOpLowering,
CIRToLLVMFuncOpLowering,
CIRToLLVMGetGlobalOpLowering,
CIRToLLVMGetMemberOpLowering,
CIRToLLVMSelectOpLowering,
CIRToLLVMSwitchFlatOpLowering,
CIRToLLVMShiftOpLowering,
CIRToLLVMStackSaveOpLowering,
CIRToLLVMStackRestoreOpLowering,
CIRToLLVMStackSaveOpLowering,
CIRToLLVMSwitchFlatOpLowering,
CIRToLLVMTrapOpLowering,
CIRToLLVMUnaryOpLowering,
CIRToLLVMVecCmpOpLowering,
CIRToLLVMVecCreateOpLowering,
CIRToLLVMVecExtractOpLowering,
CIRToLLVMVecInsertOpLowering,
CIRToLLVMVecCmpOpLowering,
CIRToLLVMVecSplatOpLowering,
CIRToLLVMVecShuffleOpLowering,
CIRToLLVMVecShuffleDynamicOpLowering,
CIRToLLVMVecTernaryOpLowering,
CIRToLLVMComplexCreateOpLowering,
CIRToLLVMComplexRealOpLowering,
CIRToLLVMComplexImagOpLowering
CIRToLLVMVecShuffleOpLowering,
CIRToLLVMVecSplatOpLowering,
CIRToLLVMVecTernaryOpLowering
// clang-format on
>(converter, patterns.getContext());
@@ -2244,6 +2245,43 @@ mlir::LogicalResult CIRToLLVMComplexImagOpLowering::matchAndRewrite(
return mlir::success();
}
mlir::LogicalResult CIRToLLVMComplexEqualOpLowering::matchAndRewrite(
cir::ComplexEqualOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Value lhs = adaptor.getLhs();
mlir::Value rhs = adaptor.getRhs();
auto complexType = mlir::cast<cir::ComplexType>(op.getLhs().getType());
mlir::Type complexElemTy =
getTypeConverter()->convertType(complexType.getElementType());
mlir::Location loc = op.getLoc();
auto lhsReal =
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, complexElemTy, lhs, 0);
auto lhsImag =
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, complexElemTy, lhs, 1);
auto rhsReal =
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, complexElemTy, rhs, 0);
auto rhsImag =
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, complexElemTy, rhs, 1);
if (complexElemTy.isInteger()) {
auto realCmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, lhsReal, rhsReal);
auto imagCmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, lhsImag, rhsImag);
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, realCmp, imagCmp);
return mlir::success();
}
auto realCmp = rewriter.create<mlir::LLVM::FCmpOp>(
loc, mlir::LLVM::FCmpPredicate::oeq, lhsReal, rhsReal);
auto imagCmp = rewriter.create<mlir::LLVM::FCmpOp>(
loc, mlir::LLVM::FCmpPredicate::oeq, lhsImag, rhsImag);
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(op, realCmp, imagCmp);
return mlir::success();
}
std::unique_ptr<mlir::Pass> createConvertCIRToLLVMPass() {
return std::make_unique<ConvertCIRToLLVMPass>();
}

View File

@@ -463,6 +463,16 @@ public:
mlir::ConversionPatternRewriter &) const override;
};
class CIRToLLVMComplexEqualOpLowering
: public mlir::OpConversionPattern<cir::ComplexEqualOp> {
public:
using mlir::OpConversionPattern<cir::ComplexEqualOp>::OpConversionPattern;
mlir::LogicalResult
matchAndRewrite(cir::ComplexEqualOp op, OpAdaptor,
mlir::ConversionPatternRewriter &) const override;
};
} // namespace direct
} // namespace cir

View File

@@ -368,4 +368,77 @@ int foo17(int _Complex a, int _Complex b) {
// OGCG: %[[B_REAL:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[COMPLEX_B]], i32 0, i32 0
// OGCG: %[[TMP_B:.*]] = load i32, ptr %[[B_REAL]], align 4
// OGCG: %[[ADD:.*]] = add nsw i32 %[[TMP_A]], %[[TMP_B]]
// OGCG: ret i32 %[[ADD]]
// OGCG: ret i32 %[[ADD]]
bool foo18(int _Complex a, int _Complex b) {
return a == b;
}
// CIR: %[[COMPLEX_A:.*]] = cir.load{{.*}} {{.*}} : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
// CIR: %[[COMPLEX_B:.*]] = cir.load{{.*}} {{.*}} : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
// CIR: %[[RESULT:.*]] = cir.complex.eq %[[COMPLEX_A]], %[[COMPLEX_B]] : !cir.complex<!s32i>
// LLVM: %[[COMPLEX_A:.*]] = load { i32, i32 }, ptr {{.*}}, align 4
// LLVM: %[[COMPLEX_B:.*]] = load { i32, i32 }, ptr {{.*}}, align 4
// LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[COMPLEX_A]], 0
// LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[COMPLEX_A]], 1
// LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[COMPLEX_B]], 0
// LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[COMPLEX_B]], 1
// LLVM: %[[CMP_REAL:.*]] = icmp eq i32 %[[A_REAL]], %[[B_REAL]]
// LLVM: %[[CMP_IMAG:.*]] = icmp eq i32 %[[A_IMAG]], %[[B_IMAG]]
// LLVM: %[[RESULT:.*]] = and i1 %[[CMP_REAL]], %[[CMP_IMAG]]
// OGCG: %[[COMPLEX_A:.*]] = alloca { i32, i32 }, align 4
// OGCG: %[[COMPLEX_B:.*]] = alloca { i32, i32 }, align 4
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[COMPLEX_A]], i32 0, i32 0
// OGCG: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[COMPLEX_A]], i32 0, i32 1
// OGCG: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[COMPLEX_B]], i32 0, i32 0
// OGCG: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[COMPLEX_B]], i32 0, i32 1
// OGCG: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4
// OGCG: %[[CMP_REAL:.*]] = icmp eq i32 %[[A_REAL]], %[[B_REAL]]
// OGCG: %[[CMP_IMAG:.*]] = icmp eq i32 %[[A_IMAG]], %[[B_IMAG]]
// OGCG: %[[RESULT:.*]] = and i1 %[[CMP_REAL]], %[[CMP_IMAG]]
bool foo19(double _Complex a, double _Complex b) {
return a == b;
}
// CIR: %[[COMPLEX_A:.*]] = cir.load{{.*}} {{.*}} : !cir.ptr<!cir.complex<!cir.double>>, !cir.complex<!cir.double>
// CIR: %[[COMPLEX_B:.*]] = cir.load{{.*}} {{.*}} : !cir.ptr<!cir.complex<!cir.double>>, !cir.complex<!cir.double>
// CIR: %[[RESULT:.*]] = cir.complex.eq %[[COMPLEX_A]], %[[COMPLEX_B]] : !cir.complex<!cir.double>
// LLVM: %[[COMPLEX_A:.*]] = load { double, double }, ptr {{.*}}, align 8
// LLVM: %[[COMPLEX_B:.*]] = load { double, double }, ptr {{.*}}, align 8
// LLVM: %[[A_REAL:.*]] = extractvalue { double, double } %[[COMPLEX_A]], 0
// LLVM: %[[A_IMAG:.*]] = extractvalue { double, double } %[[COMPLEX_A]], 1
// LLVM: %[[B_REAL:.*]] = extractvalue { double, double } %[[COMPLEX_B]], 0
// LLVM: %[[B_IMAG:.*]] = extractvalue { double, double } %[[COMPLEX_B]], 1
// LLVM: %[[CMP_REAL:.*]] = fcmp oeq double %[[A_REAL]], %[[B_REAL]]
// LLVM: %[[CMP_IMAG:.*]] = fcmp oeq double %[[A_IMAG]], %[[B_IMAG]]
// LLVM: %[[RESULT:.*]] = and i1 %[[CMP_REAL]], %[[CMP_IMAG]]
// OGCG: %[[COMPLEX_A:.*]] = alloca { double, double }, align 8
// OGCG: %[[COMPLEX_B:.*]] = alloca { double, double }, align 8
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_A]], i32 0, i32 0
// OGCG: store double {{.*}}, ptr %[[A_REAL_PTR]], align 8
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_A]], i32 0, i32 1
// OGCG: store double {{.*}}, ptr %[[A_IMAG_PTR]], align 8
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_B]], i32 0, i32 0
// OGCG: store double {{.*}}, ptr %[[B_REAL_PTR]], align 8
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_B]], i32 0, i32 1
// OGCG: store double {{.*}}, ptr %[[B_IMAG_PTR]], align 8
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_A]], i32 0, i32 0
// OGCG: %[[A_REAL:.*]] = load double, ptr %[[A_REAL_PTR]], align 8
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_A]], i32 0, i32 1
// OGCG: %[[A_IMAG:.*]] = load double, ptr %[[A_IMAG_PTR]], align 8
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_B]], i32 0, i32 0
// OGCG: %[[B_REAL:.*]] = load double, ptr %[[B_REAL_PTR]], align 8
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { double, double }, ptr %[[COMPLEX_B]], i32 0, i32 1
// OGCG: %[[B_IMAG:.*]] = load double, ptr %[[B_IMAG_PTR]], align 8
// OGCG: %[[CMP_REAL:.*]] = fcmp oeq double %[[A_REAL]], %[[B_REAL]]
// OGCG: %[[CMP_IMAG:.*]] = fcmp oeq double %[[A_IMAG]], %[[B_IMAG]]
// OGCG: %[[RESULT:.*]] = and i1 %[[CMP_REAL]], %[[CMP_IMAG]]