[mlir][Vector] Support efficient shape cast lowering for n-D vectors (#123497)
This PR implements a generalization of the existing more efficient lowering of shape casts from 2-D to 1D and 1-D to 2-D vectors. This significantly reduces code size and generates more performant code for n-D shape casts that make their way to LLVM/SPIR-V.
This commit is contained in:
@@ -11,122 +11,142 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||||
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
||||
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/SCF/IR/SCF.h"
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
||||
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
|
||||
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
|
||||
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
||||
#include "mlir/IR/BuiltinAttributeInterfaces.h"
|
||||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
||||
#include "mlir/IR/Location.h"
|
||||
#include "mlir/IR/Matchers.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/IR/TypeUtilities.h"
|
||||
#include "mlir/Interfaces/VectorInterfaces.h"
|
||||
|
||||
#define DEBUG_TYPE "vector-shape-cast-lowering"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::vector;
|
||||
|
||||
namespace {
|
||||
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
|
||||
/// vectors progressively on the way to target llvm.matrix intrinsics.
|
||||
/// This iterates over the most major dimension of the 2-D vector and performs
|
||||
/// rewrites into:
|
||||
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
|
||||
class ShapeCastOp2DDownCastRewritePattern
|
||||
: public OpRewritePattern<vector::ShapeCastOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto sourceVectorType = op.getSourceVectorType();
|
||||
auto resultVectorType = op.getResultVectorType();
|
||||
|
||||
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
|
||||
return failure();
|
||||
|
||||
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
|
||||
return failure();
|
||||
|
||||
auto loc = op.getLoc();
|
||||
Value desc = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
|
||||
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
|
||||
Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
|
||||
desc = rewriter.create<vector::InsertStridedSliceOp>(
|
||||
loc, vec, desc,
|
||||
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
|
||||
}
|
||||
rewriter.replaceOp(op, desc);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
|
||||
/// vectors progressively.
|
||||
/// This iterates over the most major dimension of the 2-D vector and performs
|
||||
/// rewrites into:
|
||||
/// vector.extract_strided_slice from 1-D + vector.insert into 2-D
|
||||
/// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
|
||||
class ShapeCastOp2DUpCastRewritePattern
|
||||
: public OpRewritePattern<vector::ShapeCastOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto sourceVectorType = op.getSourceVectorType();
|
||||
auto resultVectorType = op.getResultVectorType();
|
||||
|
||||
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
|
||||
return failure();
|
||||
|
||||
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
|
||||
return failure();
|
||||
|
||||
auto loc = op.getLoc();
|
||||
Value desc = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
|
||||
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
|
||||
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
|
||||
loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
|
||||
/*sizes=*/mostMinorVectorSize,
|
||||
/*strides=*/1);
|
||||
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
|
||||
}
|
||||
rewriter.replaceOp(op, desc);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
static void incIdx(llvm::MutableArrayRef<int64_t> idx, VectorType tp,
|
||||
int dimIdx, int initialStep = 1) {
|
||||
int step = initialStep;
|
||||
for (int d = dimIdx; d >= 0; d--) {
|
||||
idx[d] += step;
|
||||
if (idx[d] >= tp.getDimSize(d)) {
|
||||
idx[d] = 0;
|
||||
step = 1;
|
||||
} else {
|
||||
/// Increments n-D `indices` by `step` starting from the innermost dimension.
|
||||
static void incIdx(SmallVectorImpl<int64_t> &indices, VectorType vecType,
|
||||
int step = 1) {
|
||||
for (int dim : llvm::reverse(llvm::seq<int>(0, indices.size()))) {
|
||||
assert(indices[dim] < vecType.getDimSize(dim) &&
|
||||
"Indices are out of bound");
|
||||
indices[dim] += step;
|
||||
if (indices[dim] < vecType.getDimSize(dim))
|
||||
break;
|
||||
}
|
||||
|
||||
indices[dim] = 0;
|
||||
step = 1;
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
/// ShapeOp n-D -> 1-D downcast serves the purpose of flattening N-D to 1-D
|
||||
/// vectors progressively. This iterates over the n-1 major dimensions of the
|
||||
/// n-D vector and performs rewrites into:
|
||||
/// vector.extract from n-D + vector.insert_strided_slice offset into 1-D
|
||||
class ShapeCastOpNDDownCastRewritePattern
|
||||
: public OpRewritePattern<vector::ShapeCastOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto sourceVectorType = op.getSourceVectorType();
|
||||
auto resultVectorType = op.getResultVectorType();
|
||||
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
|
||||
return failure();
|
||||
|
||||
int64_t srcRank = sourceVectorType.getRank();
|
||||
int64_t resRank = resultVectorType.getRank();
|
||||
if (srcRank < 2 || resRank != 1)
|
||||
return failure();
|
||||
|
||||
// Compute the number of 1-D vector elements involved in the reshape.
|
||||
int64_t numElts = 1;
|
||||
for (int64_t dim = 0; dim < srcRank - 1; ++dim)
|
||||
numElts *= sourceVectorType.getDimSize(dim);
|
||||
|
||||
auto loc = op.getLoc();
|
||||
SmallVector<int64_t> srcIdx(srcRank - 1, 0);
|
||||
SmallVector<int64_t> resIdx(resRank, 0);
|
||||
int64_t extractSize = sourceVectorType.getShape().back();
|
||||
Value result = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
|
||||
// Compute the indices of each 1-D vector element of the source extraction
|
||||
// and destination slice insertion and generate such instructions.
|
||||
for (int64_t i = 0; i < numElts; ++i) {
|
||||
if (i != 0) {
|
||||
incIdx(srcIdx, sourceVectorType, /*step=*/1);
|
||||
incIdx(resIdx, resultVectorType, /*step=*/extractSize);
|
||||
}
|
||||
|
||||
Value extract =
|
||||
rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
|
||||
result = rewriter.create<vector::InsertStridedSliceOp>(
|
||||
loc, extract, result,
|
||||
/*offsets=*/resIdx, /*strides=*/1);
|
||||
}
|
||||
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
/// ShapeOp 1-D -> n-D upcast serves the purpose of unflattening n-D from 1-D
|
||||
/// vectors progressively. This iterates over the n-1 major dimension of the n-D
|
||||
/// vector and performs rewrites into:
|
||||
/// vector.extract_strided_slice from 1-D + vector.insert into n-D
|
||||
/// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
|
||||
class ShapeCastOpNDUpCastRewritePattern
|
||||
: public OpRewritePattern<vector::ShapeCastOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto sourceVectorType = op.getSourceVectorType();
|
||||
auto resultVectorType = op.getResultVectorType();
|
||||
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
|
||||
return failure();
|
||||
|
||||
int64_t srcRank = sourceVectorType.getRank();
|
||||
int64_t resRank = resultVectorType.getRank();
|
||||
if (srcRank != 1 || resRank < 2)
|
||||
return failure();
|
||||
|
||||
// Compute the number of 1-D vector elements involved in the reshape.
|
||||
int64_t numElts = 1;
|
||||
for (int64_t dim = 0; dim < resRank - 1; ++dim)
|
||||
numElts *= resultVectorType.getDimSize(dim);
|
||||
|
||||
// Compute the indices of each 1-D vector element of the source slice
|
||||
// extraction and destination insertion and generate such instructions.
|
||||
auto loc = op.getLoc();
|
||||
SmallVector<int64_t> srcIdx(srcRank, 0);
|
||||
SmallVector<int64_t> resIdx(resRank - 1, 0);
|
||||
int64_t extractSize = resultVectorType.getShape().back();
|
||||
Value result = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
for (int64_t i = 0; i < numElts; ++i) {
|
||||
if (i != 0) {
|
||||
incIdx(srcIdx, sourceVectorType, /*step=*/extractSize);
|
||||
incIdx(resIdx, resultVectorType, /*step=*/1);
|
||||
}
|
||||
|
||||
Value extract = rewriter.create<vector::ExtractStridedSliceOp>(
|
||||
loc, op.getSource(), /*offsets=*/srcIdx, /*sizes=*/extractSize,
|
||||
/*strides=*/1);
|
||||
result = rewriter.create<vector::InsertOp>(loc, extract, result, resIdx);
|
||||
}
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
// We typically should not lower general shape cast operations into data
|
||||
// movement instructions, since the assumption is that these casts are
|
||||
// optimized away during progressive lowering. For completeness, however,
|
||||
@@ -145,18 +165,14 @@ public:
|
||||
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
|
||||
return failure();
|
||||
|
||||
// Special case 2D / 1D lowerings with better implementations.
|
||||
// TODO: make is ND / 1D to allow generic ND -> 1D -> MD.
|
||||
// Special case for n-D / 1-D lowerings with better implementations.
|
||||
int64_t srcRank = sourceVectorType.getRank();
|
||||
int64_t resRank = resultVectorType.getRank();
|
||||
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
|
||||
if ((srcRank > 1 && resRank == 1) || (srcRank == 1 && resRank > 1))
|
||||
return failure();
|
||||
|
||||
// Generic ShapeCast lowering path goes all the way down to unrolled scalar
|
||||
// extract/insert chains.
|
||||
// TODO: consider evolving the semantics to only allow 1D source or dest and
|
||||
// drop this potentially very expensive lowering.
|
||||
// Compute number of elements involved in the reshape.
|
||||
int64_t numElts = 1;
|
||||
for (int64_t r = 0; r < srcRank; r++)
|
||||
numElts *= sourceVectorType.getDimSize(r);
|
||||
@@ -166,14 +182,14 @@ public:
|
||||
// x[0,1,0] = y[0,2]
|
||||
// etc., incrementing the two index vectors "row-major"
|
||||
// within the source and result shape.
|
||||
SmallVector<int64_t> srcIdx(srcRank);
|
||||
SmallVector<int64_t> resIdx(resRank);
|
||||
SmallVector<int64_t> srcIdx(srcRank, 0);
|
||||
SmallVector<int64_t> resIdx(resRank, 0);
|
||||
Value result = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
for (int64_t i = 0; i < numElts; i++) {
|
||||
if (i != 0) {
|
||||
incIdx(srcIdx, sourceVectorType, srcRank - 1);
|
||||
incIdx(resIdx, resultVectorType, resRank - 1);
|
||||
incIdx(srcIdx, sourceVectorType);
|
||||
incIdx(resIdx, resultVectorType);
|
||||
}
|
||||
|
||||
Value extract;
|
||||
@@ -252,7 +268,7 @@ public:
|
||||
// have a single trailing scalable dimension. This is because there are no
|
||||
// legal representation of other scalable types in LLVM (and likely won't be
|
||||
// soon). There are also (currently) no operations that can index or extract
|
||||
// from >= 2D scalable vectors or scalable vectors of fixed vectors.
|
||||
// from >= 2-D scalable vectors or scalable vectors of fixed vectors.
|
||||
if (!isTrailingDimScalable(sourceVectorType) ||
|
||||
!isTrailingDimScalable(resultVectorType)) {
|
||||
return failure();
|
||||
@@ -278,8 +294,8 @@ public:
|
||||
Value result = rewriter.create<arith::ConstantOp>(
|
||||
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
||||
|
||||
SmallVector<int64_t> srcIdx(srcRank);
|
||||
SmallVector<int64_t> resIdx(resRank);
|
||||
SmallVector<int64_t> srcIdx(srcRank, 0);
|
||||
SmallVector<int64_t> resIdx(resRank, 0);
|
||||
|
||||
// TODO: Try rewriting this with StaticTileOffsetRange (from IndexingUtils)
|
||||
// once D150000 lands.
|
||||
@@ -334,8 +350,8 @@ public:
|
||||
|
||||
// 4. Increment the insert/extract indices, stepping by minExtractionSize
|
||||
// for the trailing dimensions.
|
||||
incIdx(srcIdx, sourceVectorType, srcRank - 1, minExtractionSize);
|
||||
incIdx(resIdx, resultVectorType, resRank - 1, minExtractionSize);
|
||||
incIdx(srcIdx, sourceVectorType, /*step=*/minExtractionSize);
|
||||
incIdx(resIdx, resultVectorType, /*step=*/minExtractionSize);
|
||||
}
|
||||
|
||||
rewriter.replaceOp(op, result);
|
||||
@@ -352,8 +368,8 @@ public:
|
||||
|
||||
void mlir::vector::populateVectorShapeCastLoweringPatterns(
|
||||
RewritePatternSet &patterns, PatternBenefit benefit) {
|
||||
patterns.add<ShapeCastOp2DDownCastRewritePattern,
|
||||
ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern,
|
||||
patterns.add<ShapeCastOpNDDownCastRewritePattern,
|
||||
ShapeCastOpNDUpCastRewritePattern, ShapeCastOpRewritePattern,
|
||||
ScalableShapeCastOpRewritePattern>(patterns.getContext(),
|
||||
benefit);
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s
|
||||
// RUN: mlir-opt %s --transform-interpreter | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: func @nop_shape_cast
|
||||
// CHECK-SAME: %[[A:.*]]: vector<16xf32>
|
||||
@@ -82,19 +82,16 @@ func.func @shape_cast_2d2d(%arg0 : vector<3x2xf32>) -> vector<2x3xf32> {
|
||||
// CHECK-LABEL: func @shape_cast_3d1d
|
||||
// CHECK-SAME: %[[A:.*]]: vector<1x3x2xf32>
|
||||
// CHECK: %[[C:.*]] = arith.constant dense<0.000000e+00> : vector<6xf32>
|
||||
// CHECK: %[[T0:.*]] = vector.extract %[[A]][0, 0, 0] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T1:.*]] = vector.insert %[[T0]], %[[C]] [0] : f32 into vector<6xf32>
|
||||
// CHECK: %[[T2:.*]] = vector.extract %[[A]][0, 0, 1] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T3:.*]] = vector.insert %[[T2]], %[[T1]] [1] : f32 into vector<6xf32>
|
||||
// CHECK: %[[T4:.*]] = vector.extract %[[A]][0, 1, 0] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T5:.*]] = vector.insert %[[T4]], %[[T3]] [2] : f32 into vector<6xf32>
|
||||
// CHECK: %[[T6:.*]] = vector.extract %[[A]][0, 1, 1] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T7:.*]] = vector.insert %[[T6]], %[[T5]] [3] : f32 into vector<6xf32>
|
||||
// CHECK: %[[T8:.*]] = vector.extract %[[A]][0, 2, 0] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T9:.*]] = vector.insert %[[T8]], %[[T7]] [4] : f32 into vector<6xf32>
|
||||
// CHECK: %[[T10:.*]] = vector.extract %[[A]][0, 2, 1] : f32 from vector<1x3x2xf32>
|
||||
// CHECK: %[[T11:.*]] = vector.insert %[[T10]], %[[T9]] [5] : f32 into vector<6xf32>
|
||||
// CHECK: return %[[T11]] : vector<6xf32>
|
||||
// CHECK: %[[T0:.*]] = vector.extract %[[A]][0, 0] : vector<2xf32> from vector<1x3x2xf32>
|
||||
// CHECK: %[[T1:.*]] = vector.insert_strided_slice %[[T0]], %[[C]]
|
||||
// CHECK-SAME: {offsets = [0], strides = [1]} : vector<2xf32> into vector<6xf32>
|
||||
// CHECK: %[[T2:.*]] = vector.extract %[[A]][0, 1] : vector<2xf32> from vector<1x3x2xf32>
|
||||
// CHECK: %[[T3:.*]] = vector.insert_strided_slice %[[T2]], %[[T1]]
|
||||
// CHECK-SAME: {offsets = [2], strides = [1]} : vector<2xf32> into vector<6xf32>
|
||||
// CHECK: %[[T4:.*]] = vector.extract %[[A]][0, 2] : vector<2xf32> from vector<1x3x2xf32>
|
||||
// CHECK: %[[T5:.*]] = vector.insert_strided_slice %[[T4]], %[[T3]]
|
||||
// CHECK-SAME: {offsets = [4], strides = [1]} : vector<2xf32> into vector<6xf32>
|
||||
// CHECK: return %[[T5]] : vector<6xf32>
|
||||
|
||||
func.func @shape_cast_3d1d(%arg0 : vector<1x3x2xf32>) -> vector<6xf32> {
|
||||
%s = vector.shape_cast %arg0 : vector<1x3x2xf32> to vector<6xf32>
|
||||
@@ -104,19 +101,13 @@ func.func @shape_cast_3d1d(%arg0 : vector<1x3x2xf32>) -> vector<6xf32> {
|
||||
// CHECK-LABEL: func @shape_cast_1d3d
|
||||
// CHECK-SAME: %[[A:.*]]: vector<6xf32>
|
||||
// CHECK: %[[C:.*]] = arith.constant dense<0.000000e+00> : vector<2x1x3xf32>
|
||||
// CHECK: %[[T0:.*]] = vector.extract %[[A]][0] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T1:.*]] = vector.insert %[[T0]], %[[C]] [0, 0, 0] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: %[[T2:.*]] = vector.extract %[[A]][1] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T3:.*]] = vector.insert %[[T2]], %[[T1]] [0, 0, 1] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: %[[T4:.*]] = vector.extract %[[A]][2] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T5:.*]] = vector.insert %[[T4]], %[[T3]] [0, 0, 2] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: %[[T6:.*]] = vector.extract %[[A]][3] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T7:.*]] = vector.insert %[[T6]], %[[T5]] [1, 0, 0] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: %[[T8:.*]] = vector.extract %[[A]][4] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T9:.*]] = vector.insert %[[T8]], %[[T7]] [1, 0, 1] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: %[[T10:.*]] = vector.extract %[[A]][5] : f32 from vector<6xf32>
|
||||
// CHECK: %[[T11:.*]] = vector.insert %[[T10]], %[[T9]] [1, 0, 2] : f32 into vector<2x1x3xf32>
|
||||
// CHECK: return %[[T11]] : vector<2x1x3xf32>
|
||||
// CHECK: %[[T0:.*]] = vector.extract_strided_slice %[[A]]
|
||||
// CHECK-SAME: {offsets = [0], sizes = [3], strides = [1]} : vector<6xf32> to vector<3xf32>
|
||||
// CHECK: %[[T1:.*]] = vector.insert %[[T0]], %[[C]] [0, 0] : vector<3xf32> into vector<2x1x3xf32>
|
||||
// CHECK: %[[T2:.*]] = vector.extract_strided_slice %[[A]]
|
||||
// CHECK: {offsets = [3], sizes = [3], strides = [1]} : vector<6xf32> to vector<3xf32>
|
||||
// CHECK: %[[T3:.*]] = vector.insert %[[T2]], %[[T1]] [1, 0] : vector<3xf32> into vector<2x1x3xf32>
|
||||
// CHECK: return %[[T3]] : vector<2x1x3xf32>
|
||||
|
||||
func.func @shape_cast_1d3d(%arg0 : vector<6xf32>) -> vector<2x1x3xf32> {
|
||||
%s = vector.shape_cast %arg0 : vector<6xf32> to vector<2x1x3xf32>
|
||||
|
||||
Reference in New Issue
Block a user