Implement C++ [temp.deduct.call]p6, template argument deduction for overloaded

arguments.  Fix a bug where incomplete explicit specializations were being
passed through as legitimate.  Fix a bug where the absence of an explicit
specialization in an overload set was causing overall deduction to fail.

Fixes PR6191.

llvm-svn: 95052
This commit is contained in:
John McCall
2010-02-02 02:21:27 +00:00
parent 339975e5d5
commit c1f69989b1
2 changed files with 207 additions and 31 deletions

View File

@@ -1306,6 +1306,106 @@ Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
return TDK_Success;
}
static QualType GetTypeOfFunction(ASTContext &Context,
bool isAddressOfOperand,
FunctionDecl *Fn) {
if (!isAddressOfOperand) return Fn->getType();
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
if (Method->isInstance())
return Context.getMemberPointerType(Fn->getType(),
Context.getTypeDeclType(Method->getParent()).getTypePtr());
return Context.getPointerType(Fn->getType());
}
/// Apply the deduction rules for overload sets.
///
/// \return the null type if this argument should be treated as an
/// undeduced context
static QualType
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
Expr *Arg, QualType ParamType) {
bool isAddressOfOperand = false;
Arg = Arg->IgnoreParens();
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
assert(UnOp->getOpcode() == UnaryOperator::AddrOf);
isAddressOfOperand = true;
Arg = UnOp->getSubExpr()->IgnoreParens();
}
const UnresolvedSetImpl *Decls;
bool HasExplicitArgs;
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg)) {
Decls = &ULE->getDecls();
HasExplicitArgs = ULE->hasExplicitTemplateArgs();
} else {
UnresolvedMemberExpr *UME = cast<UnresolvedMemberExpr>(Arg);
Decls = &UME->getDecls();
HasExplicitArgs = ULE->hasExplicitTemplateArgs();
}
// If there were explicit template arguments, we can only find
// something via C++ [temp.arg.explicit]p3, i.e. if the arguments
// unambiguously name a full specialization.
if (HasExplicitArgs) {
// But we can still look for an explicit specialization.
if (FunctionDecl *ExplicitSpec
= S.ResolveSingleFunctionTemplateSpecialization(Arg))
return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
return QualType();
}
// C++0x [temp.deduct.call]p6:
// When P is a function type, pointer to function type, or pointer
// to member function type:
if (!ParamType->isFunctionType() &&
!ParamType->isFunctionPointerType() &&
!ParamType->isMemberFunctionPointerType())
return QualType();
QualType Match;
for (UnresolvedSetIterator I = Decls->begin(),
E = Decls->end(); I != E; ++I) {
NamedDecl *D = (*I)->getUnderlyingDecl();
// - If the argument is an overload set containing one or more
// function templates, the parameter is treated as a
// non-deduced context.
if (isa<FunctionTemplateDecl>(D))
return QualType();
FunctionDecl *Fn = cast<FunctionDecl>(D);
QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
// - If the argument is an overload set (not containing function
// templates), trial argument deduction is attempted using each
// of the members of the set. If deduction succeeds for only one
// of the overload set members, that member is used as the
// argument value for the deduction. If deduction succeeds for
// more than one member of the overload set the parameter is
// treated as a non-deduced context.
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
// Type deduction is done independently for each P/A pair, and
// the deduced template argument values are then combined.
// So we do not reject deductions which were made elsewhere.
llvm::SmallVector<TemplateArgument, 8> Deduced(TemplateParams->size());
Sema::TemplateDeductionInfo Info(S.Context);
unsigned TDF = 0;
Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S.Context, TemplateParams,
ParamType, ArgType,
Info, Deduced, TDF);
if (Result) continue;
if (!Match.isNull()) return QualType();
Match = ArgType;
}
return Match;
}
/// \brief Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
@@ -1384,6 +1484,15 @@ Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ParamType = ParamTypes[I];
QualType ArgType = Args[I]->getType();
// Overload sets usually make this parameter an undeduced
// context, but there are sometimes special circumstances.
if (ArgType == Context.OverloadTy) {
ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
Args[I], ParamType);
if (ArgType.isNull())
continue;
}
// C++ [temp.deduct.call]p2:
// If P is not a reference type:
QualType CanonParamType = Context.getCanonicalType(ParamType);
@@ -1454,36 +1563,6 @@ Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
ParamType->getAs<PointerType>()->getPointeeType())))
TDF |= TDF_DerivedClass;
// FIXME: C++0x [temp.deduct.call] paragraphs 6-9 deal with function
// pointer parameters.
if (Context.hasSameUnqualifiedType(ArgType, Context.OverloadTy)) {
// We know that template argument deduction will fail if the argument is
// still an overloaded function. Check whether we can resolve this
// argument as a single function template specialization per
// C++ [temp.arg.explicit]p3.
FunctionDecl *ExplicitSpec
= ResolveSingleFunctionTemplateSpecialization(Args[I]);
Expr *ResolvedArg = 0;
if (ExplicitSpec)
ResolvedArg = FixOverloadedFunctionReference(Args[I], ExplicitSpec);
if (!ExplicitSpec || !ResolvedArg) {
// Template argument deduction fails if we can't resolve the overloaded
// function.
return TDK_FailedOverloadResolution;
}
// Get the type of the resolved argument, and adjust it per
// C++0x [temp.deduct.call]p3.
ArgType = ResolvedArg->getType();
if (!ParamWasReference && ArgType->isFunctionType())
ArgType = Context.getPointerType(ArgType);
if (ArgType->isPointerType() || ArgType->isMemberPointerType())
TDF |= TDF_IgnoreQualifiers;
ResolvedArg->Destroy(Context);
}
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(Context, TemplateParams,
ParamType, ArgType, Info, Deduced,
@@ -1548,9 +1627,10 @@ Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
// Trap any errors that might occur.
SFINAETrap Trap(*this);
Deduced.resize(TemplateParams->size());
if (!ArgFunctionType.isNull()) {
// Deduce template arguments from the function type.
Deduced.resize(TemplateParams->size());
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(Context, TemplateParams,
FunctionType, ArgFunctionType, Info,

View File

@@ -0,0 +1,96 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s
namespace test0 {
// FIXME: this second note is horrible.
template<class T> void apply(T x, void (*f)(T)) { f(x); } // expected-note 2 {{failed template argument deduction}}\
// expected-note {{no known conversion from '<overloaded function type>' to 'void (*)(int)'}}
template<class A> void temp(A);
void test0() {
// okay: deduce T=int from first argument, A=int during overload
apply(0, &temp);
apply(0, &temp<>);
// okay: deduce T=int from first and second arguments
apply(0, &temp<int>);
// deduction failure: T=int from first, T=long from second
apply(0, &temp<long>); // expected-error {{no matching function for call to 'apply'}}
}
void over(int);
int over(long);
void test1() {
// okay: deductions match
apply(0, &over);
// deduction failure: deduced T=long from first argument, T=int from second
apply(0L, &over); // expected-error {{no matching function for call to 'apply'}}
}
void over(short);
void test2() {
// deduce T=int from first arg, second arg is undeduced context,
// pick correct overload of 'over' during overload resolution for 'apply'
apply(0, &over);
}
template<class A, class B> B temp2(A);
void test3() {
// deduce T=int from first arg, A=int B=void during overload resolution
apply(0, &temp2);
apply(0, &temp2<>);
apply(0, &temp2<int>);
// overload failure
apply(0, &temp2<long>); // expected-error {{no matching function for call to 'apply'}}
}
}
namespace test1 {
template<class T> void invoke(void (*f)(T)) { f(T()); } // expected-note 6 {{couldn't infer template argument}} \
// expected-note {{failed template argument deduction}}
template<class T> void temp(T);
void test0() {
// deduction failure: overload has template => undeduced context
invoke(&temp); // expected-error {{no matching function for call to 'invoke'}}
invoke(&temp<>); // expected-error {{no matching function for call to 'invoke'}}
// okay: full template-id
invoke(&temp<int>);
}
void over(int);
int over(long);
void test1() {
// okay: only one overload matches
invoke(&over);
}
void over(short);
void test2() {
// deduction failure: overload has multiple matches => undeduced context
invoke(&over); // expected-error {{no matching function for call to 'invoke'}}
}
template<class A, class B> B temp2(A);
void test3() {
// deduction failure: overload has template => undeduced context
// (even though partial application temp2<int> could in theory
// let us infer T=int)
invoke(&temp2); // expected-error {{no matching function for call to 'invoke'}}
invoke(&temp2<>); // expected-error {{no matching function for call to 'invoke'}}
invoke(&temp2<int>); // expected-error {{no matching function for call to 'invoke'}}
// okay: full template-id
invoke(&temp2<int, void>);
// overload failure
invoke(&temp2<int, int>); // expected-error {{no matching function for call to 'invoke'}}
}
}