[MemProf] Context disambiguation cloning pass [patch 4/4]

Applies ThinLTO cloning decisions made during the thin link and
recorded in the summary index to the IR during the ThinLTO backend.

Depends on D141077.

Differential Revision: https://reviews.llvm.org/D149117
This commit is contained in:
Teresa Johnson
2023-01-05 09:55:33 -08:00
parent 8f0eee16d9
commit cfad2d3a3d
10 changed files with 783 additions and 33 deletions

View File

@@ -99,6 +99,10 @@ public:
ImmutablePass *
createImmutableModuleSummaryIndexWrapperPass(const ModuleSummaryIndex *Index);
/// Returns true if the instruction could have memprof metadata, used to ensure
/// consistency between summary analysis and the ThinLTO backend processing.
bool mayHaveMemprofSummary(const CallBase *CB);
} // end namespace llvm
#endif // LLVM_ANALYSIS_MODULESUMMARYANALYSIS_H

View File

@@ -18,13 +18,13 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include <functional>
namespace llvm {
class GlobalValueSummary;
class Module;
class ModuleSummaryIndex;
class OptimizationRemarkEmitter;
class MemProfContextDisambiguation
@@ -34,8 +34,19 @@ class MemProfContextDisambiguation
Module &M,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
/// In the ThinLTO backend, apply the cloning decisions in ImportSummary to
/// the IR.
bool applyImport(Module &M);
/// Import summary containing cloning decisions for the ThinLTO backend.
const ModuleSummaryIndex *ImportSummary;
// Owns the import summary specified by internal options for testing the
// ThinLTO backend via opt (to simulate distributed ThinLTO).
std::unique_ptr<ModuleSummaryIndex> ImportSummaryForTesting;
public:
MemProfContextDisambiguation() {}
MemProfContextDisambiguation(const ModuleSummaryIndex *Summary = nullptr);
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);

View File

@@ -284,6 +284,10 @@ static void computeFunctionSummary(
std::vector<CallsiteInfo> Callsites;
std::vector<AllocInfo> Allocs;
#ifndef NDEBUG
DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
#endif
bool HasInlineAsmMaybeReferencingInternal = false;
bool HasIndirBranchToBlockAddress = false;
bool HasUnknownCall = false;
@@ -427,6 +431,10 @@ static void computeFunctionSummary(
.updateHotness(getHotness(Candidate.Count, PSI));
}
// Summarize memprof related metadata. This is only needed for ThinLTO.
if (!IsThinLTO)
continue;
// TODO: Skip indirect calls for now. Need to handle these better, likely
// by creating multiple Callsites, one per target, then speculatively
// devirtualize while applying clone info in the ThinLTO backends. This
@@ -437,6 +445,14 @@ static void computeFunctionSummary(
if (!CalledFunction)
continue;
// Ensure we keep this analysis in sync with the handling in the ThinLTO
// backend (see MemProfContextDisambiguation::applyImport). Save this call
// so that we can skip it in checking the reverse case later.
assert(mayHaveMemprofSummary(CB));
#ifndef NDEBUG
CallsThatMayHaveMemprofSummary.insert(CB);
#endif
// Compute the list of stack ids first (so we can trim them from the stack
// ids on any MIBs).
CallStack<MDNode, MDNode::op_iterator> InstCallsite(
@@ -546,6 +562,25 @@ static void computeFunctionSummary(
? CalleeInfo::HotnessType::Cold
: CalleeInfo::HotnessType::Critical);
#ifndef NDEBUG
// Make sure that all calls we decided could not have memprof summaries get a
// false value for mayHaveMemprofSummary, to ensure that this handling remains
// in sync with the ThinLTO backend handling.
if (IsThinLTO) {
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (!CB)
continue;
// We already checked these above.
if (CallsThatMayHaveMemprofSummary.count(CB))
continue;
assert(!mayHaveMemprofSummary(CB));
}
}
}
#endif
bool NonRenamableLocal = isNonRenamableLocal(F);
bool NotEligibleForImport = NonRenamableLocal ||
HasInlineAsmMaybeReferencingInternal ||
@@ -1042,3 +1077,36 @@ ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
"Module summary info", false, true)
bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
if (!CB)
return false;
if (CB->isDebugOrPseudoInst())
return false;
auto *CI = dyn_cast<CallInst>(CB);
auto *CalledValue = CB->getCalledOperand();
auto *CalledFunction = CB->getCalledFunction();
if (CalledValue && !CalledFunction) {
CalledValue = CalledValue->stripPointerCasts();
// Stripping pointer casts can reveal a called function.
CalledFunction = dyn_cast<Function>(CalledValue);
}
// Check if this is an alias to a function. If so, get the
// called aliasee for the checks below.
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
assert(!CalledFunction &&
"Expected null called function in callsite for alias");
CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
}
// Check if this is a direct call to a known function or a known
// intrinsic, or an indirect call with profile data.
if (CalledFunction) {
if (CI && CalledFunction->isIntrinsic())
return false;
} else {
// TODO: For now skip indirect calls. See comments in
// computeFunctionSummary for what is needed to handle this.
return false;
}
return true;
}

View File

@@ -1531,6 +1531,11 @@ ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
ModulePassManager MPM;
if (ImportSummary) {
// For ThinLTO we must apply the context disambiguation decisions early, to
// ensure we can correctly match the callsites to summary data.
if (EnableMemProfContextDisambiguation)
MPM.addPass(MemProfContextDisambiguation(ImportSummary));
// These passes import type identifier resolutions for whole-program
// devirtualization and CFI. They must run early because other passes may
// disturb the specific instruction patterns that these passes look for,

View File

@@ -32,6 +32,7 @@
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
@@ -52,10 +53,30 @@ using namespace llvm::memprof;
STATISTIC(FunctionClonesAnalysis,
"Number of function clones created during whole program analysis");
STATISTIC(FunctionClonesThinBackend,
"Number of function clones created during ThinLTO backend");
STATISTIC(FunctionsClonedThinBackend,
"Number of functions that had clones created during ThinLTO backend");
STATISTIC(AllocTypeNotCold, "Number of not cold static allocations (possibly "
"cloned) during whole program analysis");
STATISTIC(AllocTypeCold, "Number of cold static allocations (possibly cloned) "
"during whole program analysis");
STATISTIC(AllocTypeNotColdThinBackend,
"Number of not cold static allocations (possibly cloned) during "
"ThinLTO backend");
STATISTIC(AllocTypeColdThinBackend, "Number of cold static allocations "
"(possibly cloned) during ThinLTO backend");
STATISTIC(OrigAllocsThinBackend,
"Number of original (not cloned) allocations with memprof profiles "
"during ThinLTO backend");
STATISTIC(
AllocVersionsThinBackend,
"Number of allocation versions (including clones) during ThinLTO backend");
STATISTIC(MaxAllocVersionsThinBackend,
"Maximum number of allocation versions created for an original "
"allocation during ThinLTO backend");
STATISTIC(UnclonableAllocsThinBackend,
"Number of unclonable ambigous allocations during ThinLTO backend");
static cl::opt<std::string> DotFilePathPrefix(
"memprof-dot-file-path-prefix", cl::init(""), cl::Hidden,
@@ -78,6 +99,11 @@ static cl::opt<bool>
VerifyNodes("memprof-verify-nodes", cl::init(false), cl::Hidden,
cl::desc("Perform frequent verification checks on nodes."));
static cl::opt<std::string> MemProfImportSummary(
"memprof-import-summary",
cl::desc("Import summary to use for testing the ThinLTO backend via opt"),
cl::Hidden);
/// CRTP base for graphs built from either IR or ThinLTO summary index.
///
/// The graph represents the call contexts in all memprof metadata on allocation
@@ -109,8 +135,8 @@ public:
/// Assign callsite clones to functions, cloning functions as needed to
/// accommodate the combinations of their callsite clones reached by callers.
/// For regular LTO this clones functions and callsites in the IR, but for
/// ThinLTO the cloning decisions are noted in the summaries and applied
/// later.
/// ThinLTO the cloning decisions are noted in the summaries and later applied
/// in applyImport.
bool assignFunctions();
void dump() const;
@@ -2779,6 +2805,358 @@ bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::assignFunctions() {
return Changed;
}
static SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> createFunctionClones(
Function &F, unsigned NumClones, Module &M, OptimizationRemarkEmitter &ORE,
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
&FuncToAliasMap) {
// The first "clone" is the original copy, we should only call this if we
// needed to create new clones.
assert(NumClones > 1);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
VMaps.reserve(NumClones - 1);
FunctionsClonedThinBackend++;
for (unsigned I = 1; I < NumClones; I++) {
VMaps.emplace_back(std::make_unique<ValueToValueMapTy>());
auto *NewF = CloneFunction(&F, *VMaps.back());
FunctionClonesThinBackend++;
// Strip memprof and callsite metadata from clone as they are no longer
// needed.
for (auto &BB : *NewF) {
for (auto &Inst : BB) {
Inst.setMetadata(LLVMContext::MD_memprof, nullptr);
Inst.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
std::string Name = getMemProfFuncName(F.getName(), I);
auto *PrevF = M.getFunction(Name);
if (PrevF) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevF->isDeclaration());
NewF->takeName(PrevF);
PrevF->replaceAllUsesWith(NewF);
PrevF->eraseFromParent();
} else
NewF->setName(Name);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", &F)
<< "created clone " << ore::NV("NewFunction", NewF));
// Now handle aliases to this function, and clone those as well.
if (!FuncToAliasMap.count(&F))
continue;
for (auto *A : FuncToAliasMap[&F]) {
std::string Name = getMemProfFuncName(A->getName(), I);
auto *PrevA = M.getNamedAlias(Name);
auto *NewA = GlobalAlias::create(A->getValueType(),
A->getType()->getPointerAddressSpace(),
A->getLinkage(), Name, NewF);
NewA->copyAttributesFrom(A);
if (PrevA) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevA->isDeclaration());
NewA->takeName(PrevA);
PrevA->replaceAllUsesWith(NewA);
PrevA->eraseFromParent();
}
}
}
return VMaps;
}
// Locate the summary for F. This is complicated by the fact that it might
// have been internalized or promoted.
static ValueInfo findValueInfoForFunc(const Function &F, const Module &M,
const ModuleSummaryIndex *ImportSummary) {
// FIXME: Ideally we would retain the original GUID in some fashion on the
// function (e.g. as metadata), but for now do our best to locate the
// summary without that information.
ValueInfo TheFnVI = ImportSummary->getValueInfo(F.getGUID());
if (!TheFnVI)
// See if theFn was internalized, by checking index directly with
// original name (this avoids the name adjustment done by getGUID() for
// internal symbols).
TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(F.getName()));
if (TheFnVI)
return TheFnVI;
// Now query with the original name before any promotion was performed.
StringRef OrigName =
ModuleSummaryIndex::getOriginalNameBeforePromote(F.getName());
std::string OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage, M.getSourceFileName());
TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(OrigId));
if (TheFnVI)
return TheFnVI;
// Could be a promoted local imported from another module. We need to pass
// down more info here to find the original module id. For now, try with
// the OrigName which might have been stored in the OidGuidMap in the
// index. This would not work if there were same-named locals in multiple
// modules, however.
auto OrigGUID =
ImportSummary->getGUIDFromOriginalID(GlobalValue::getGUID(OrigName));
if (OrigGUID)
TheFnVI = ImportSummary->getValueInfo(OrigGUID);
return TheFnVI;
}
bool MemProfContextDisambiguation::applyImport(Module &M) {
assert(ImportSummary);
bool Changed = false;
auto IsMemProfClone = [](const Function &F) {
return F.getName().contains(MemProfCloneSuffix);
};
// We also need to clone any aliases that reference cloned functions, because
// the modified callsites may invoke via the alias. Keep track of the aliases
// for each function.
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
FuncToAliasMap;
for (auto &A : M.aliases()) {
auto *Aliasee = A.getAliaseeObject();
if (auto *F = dyn_cast<Function>(Aliasee))
FuncToAliasMap[F].insert(&A);
}
for (auto &F : M) {
if (F.isDeclaration() || IsMemProfClone(F))
continue;
OptimizationRemarkEmitter ORE(&F);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
bool ClonesCreated = false;
unsigned NumClonesCreated = 0;
auto CloneFuncIfNeeded = [&](unsigned NumClones) {
// We should at least have version 0 which is the original copy.
assert(NumClones > 0);
// If only one copy needed use original.
if (NumClones == 1)
return;
// If we already performed cloning of this function, confirm that the
// requested number of clones matches (the thin link should ensure the
// number of clones for each constituent callsite is consistent within
// each function), before returning.
if (ClonesCreated) {
assert(NumClonesCreated == NumClones);
return;
}
VMaps = createFunctionClones(F, NumClones, M, ORE, FuncToAliasMap);
// The first "clone" is the original copy, which doesn't have a VMap.
assert(VMaps.size() == NumClones - 1);
Changed = true;
ClonesCreated = true;
NumClonesCreated = NumClones;
};
// Locate the summary for F.
ValueInfo TheFnVI = findValueInfoForFunc(F, M, ImportSummary);
// If not found, this could be an imported local (see comment in
// findValueInfoForFunc). Skip for now as it will be cloned in its original
// module (where it would have been promoted to global scope so should
// satisfy any reference in this module).
if (!TheFnVI)
continue;
auto *GVSummary =
ImportSummary->findSummaryInModule(TheFnVI, M.getModuleIdentifier());
if (!GVSummary)
// Must have been imported, use the first summary (might be multiple if
// this was a linkonce_odr).
GVSummary = TheFnVI.getSummaryList().front().get();
// If this was an imported alias skip it as we won't have the function
// summary, and it should be cloned in the original module.
if (isa<AliasSummary>(GVSummary))
continue;
auto *FS = cast<FunctionSummary>(GVSummary->getBaseObject());
if (FS->allocs().empty() && FS->callsites().empty())
continue;
auto SI = FS->callsites().begin();
auto AI = FS->allocs().begin();
// Assume for now that the instructions are in the exact same order
// as when the summary was created, but confirm this is correct by
// matching the stack ids.
for (auto &BB : F) {
for (auto &I : BB) {
auto *CB = dyn_cast<CallBase>(&I);
// Same handling as when creating module summary.
if (!mayHaveMemprofSummary(CB))
continue;
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
I.getMetadata(LLVMContext::MD_callsite));
auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
// Include allocs that were already assigned a memprof function
// attribute in the statistics.
if (CB->getAttributes().hasFnAttr("memprof")) {
assert(!MemProfMD);
CB->getAttributes().getFnAttr("memprof").getValueAsString() == "cold"
? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
OrigAllocsThinBackend++;
AllocVersionsThinBackend++;
if (!MaxAllocVersionsThinBackend)
MaxAllocVersionsThinBackend = 1;
// Remove any remaining callsite metadata and we can skip the rest of
// the handling for this instruction, since no cloning needed.
I.setMetadata(LLVMContext::MD_callsite, nullptr);
continue;
}
if (MemProfMD) {
// Consult the next alloc node.
assert(AI != FS->allocs().end());
auto &AllocNode = *(AI++);
// Sanity check that the MIB stack ids match between the summary and
// instruction metadata.
auto MIBIter = AllocNode.MIBs.begin();
for (auto &MDOp : MemProfMD->operands()) {
assert(MIBIter != AllocNode.MIBs.end());
auto StackIdIndexIter = MIBIter->StackIdIndices.begin();
auto *MIBMD = cast<const MDNode>(MDOp);
MDNode *StackMDNode = getMIBStackNode(MIBMD);
assert(StackMDNode);
SmallVector<unsigned> StackIdsFromMetadata;
CallStack<MDNode, MDNode::op_iterator> StackContext(StackMDNode);
for (auto ContextIter =
StackContext.beginAfterSharedPrefix(CallsiteContext);
ContextIter != StackContext.end(); ++ContextIter) {
// If this is a direct recursion, simply skip the duplicate
// entries, to be consistent with how the summary ids were
// generated during ModuleSummaryAnalysis.
if (!StackIdsFromMetadata.empty() &&
StackIdsFromMetadata.back() == *ContextIter)
continue;
assert(StackIdIndexIter != MIBIter->StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
*ContextIter);
StackIdIndexIter++;
}
MIBIter++;
}
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/AllocNode.Versions.size());
OrigAllocsThinBackend++;
AllocVersionsThinBackend += AllocNode.Versions.size();
if (MaxAllocVersionsThinBackend < AllocNode.Versions.size())
MaxAllocVersionsThinBackend = AllocNode.Versions.size();
// If there is only one version that means we didn't end up
// considering this function for cloning, and in that case the alloc
// will still be none type or should have gotten the default NotCold.
// Skip that after calling clone helper since that does some sanity
// checks that confirm we haven't decided yet that we need cloning.
if (AllocNode.Versions.size() == 1) {
assert((AllocationType)AllocNode.Versions[0] ==
AllocationType::NotCold ||
(AllocationType)AllocNode.Versions[0] ==
AllocationType::None);
UnclonableAllocsThinBackend++;
continue;
}
// All versions should have a singular allocation type.
assert(llvm::none_of(AllocNode.Versions, [](uint8_t Type) {
return Type == ((uint8_t)AllocationType::NotCold |
(uint8_t)AllocationType::Cold);
}));
// Update the allocation types per the summary info.
for (unsigned J = 0; J < AllocNode.Versions.size(); J++) {
// Ignore any that didn't get an assigned allocation type.
if (AllocNode.Versions[J] == (uint8_t)AllocationType::None)
continue;
AllocationType AllocTy = (AllocationType)AllocNode.Versions[J];
AllocTy == AllocationType::Cold ? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
std::string AllocTypeString = getAllocTypeAttributeString(AllocTy);
auto A = llvm::Attribute::get(F.getContext(), "memprof",
AllocTypeString);
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
// Since VMaps are only created for new clones, we index with
// clone J-1 (J==0 is the original clone and does not have a VMaps
// entry).
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
CBClone->addFnAttr(A);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", CBClone)
<< ore::NV("AllocationCall", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
} else if (!CallsiteContext.empty()) {
// Consult the next callsite node.
assert(SI != FS->callsites().end());
auto &StackNode = *(SI++);
#ifndef NDEBUG
// Sanity check that the stack ids match between the summary and
// instruction metadata.
auto StackIdIndexIter = StackNode.StackIdIndices.begin();
for (auto StackId : CallsiteContext) {
assert(StackIdIndexIter != StackNode.StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
StackId);
StackIdIndexIter++;
}
#endif
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/StackNode.Clones.size());
// Should have skipped indirect calls via mayHaveMemprofSummary.
assert(CB->getCalledFunction());
assert(!IsMemProfClone(*CB->getCalledFunction()));
// Update the calls per the summary info.
// Save orig name since it gets updated in the first iteration
// below.
auto CalleeOrigName = CB->getCalledFunction()->getName();
for (unsigned J = 0; J < StackNode.Clones.size(); J++) {
// Do nothing if this version calls the original version of its
// callee.
if (!StackNode.Clones[J])
continue;
auto NewF = M.getOrInsertFunction(
getMemProfFuncName(CalleeOrigName, StackNode.Clones[J]),
CB->getCalledFunction()->getFunctionType());
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
CBClone->setCalledFunction(NewF);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CBClone)
<< ore::NV("Call", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " assigned to call function clone "
<< ore::NV("Callee", NewF.getCallee()));
}
}
// Memprof and callsite metadata on memory allocations no longer needed.
I.setMetadata(LLVMContext::MD_memprof, nullptr);
I.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
}
return Changed;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::process() {
if (DumpCCG) {
@@ -2820,12 +3198,46 @@ bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::process() {
bool MemProfContextDisambiguation::processModule(
Module &M,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
bool Changed = false;
// If we have an import summary, then the cloning decisions were made during
// the thin link on the index. Apply them and return.
if (ImportSummary)
return applyImport(M);
ModuleCallsiteContextGraph CCG(M, OREGetter);
Changed = CCG.process();
return CCG.process();
}
return Changed;
MemProfContextDisambiguation::MemProfContextDisambiguation(
const ModuleSummaryIndex *Summary)
: ImportSummary(Summary) {
if (ImportSummary) {
// The MemProfImportSummary should only be used for testing ThinLTO
// distributed backend handling via opt, in which case we don't have a
// summary from the pass pipeline.
assert(MemProfImportSummary.empty());
return;
}
if (MemProfImportSummary.empty())
return;
auto ReadSummaryFile =
errorOrToExpected(MemoryBuffer::getFile(MemProfImportSummary));
if (!ReadSummaryFile) {
logAllUnhandledErrors(ReadSummaryFile.takeError(), errs(),
"Error loading file '" + MemProfImportSummary +
"': ");
return;
}
auto ImportSummaryForTestingOrErr = getModuleSummaryIndex(**ReadSummaryFile);
if (!ImportSummaryForTestingOrErr) {
logAllUnhandledErrors(ImportSummaryForTestingOrErr.takeError(), errs(),
"Error parsing file '" + MemProfImportSummary +
"': ");
return;
}
ImportSummaryForTesting = std::move(*ImportSummaryForTestingOrErr);
ImportSummary = ImportSummaryForTesting.get();
}
PreservedAnalyses MemProfContextDisambiguation::run(Module &M,

View File

@@ -44,12 +44,14 @@
; RUN: -memprof-export-to-dot -memprof-dot-file-path-prefix=%t. \
; RUN: -stats -pass-remarks=memprof-context-disambiguation -save-temps \
; RUN: -o %t.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
; RUN: --check-prefix=STATS --check-prefix=STATS-BE --check-prefix=REMARKS
; RUN: cat %t.ccg.postbuild.dot | FileCheck %s --check-prefix=DOT
;; We should have cloned bar, baz, and foo, for the cold memory allocation.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
; RUN: llvm-dis %t.out.1.4.opt.bc -o - | FileCheck %s --check-prefix=IR
;; Try again but with distributed ThinLTO
; RUN: llvm-lto2 run %t.o -enable-memprof-context-disambiguation \
@@ -71,11 +73,18 @@
;; Check distributed index
; RUN: llvm-dis %t.o.thinlto.bc -o - | FileCheck %s --check-prefix=DISTRIB
;; Run ThinLTO backend
; RUN: opt -passes=memprof-context-disambiguation \
; RUN: -memprof-import-summary=%t.o.thinlto.bc \
; RUN: -stats -pass-remarks=memprof-context-disambiguation \
; RUN: %t.o -S 2>&1 | FileCheck %s --check-prefix=IR \
; RUN: --check-prefix=STATS-BE --check-prefix=REMARKS
source_filename = "memprof-basic.ll"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define i32 @main() {
define i32 @main() #0 {
entry:
%call = call ptr @_Z3foov(), !callsite !0
%call1 = call ptr @_Z3foov(), !callsite !1
@@ -86,7 +95,7 @@ declare void @_ZdaPv()
declare i32 @sleep()
define internal ptr @_Z3barv() {
define internal ptr @_Z3barv() #0 {
entry:
%call = call ptr @_Znam(i64 0), !memprof !2, !callsite !7
ret ptr null
@@ -94,13 +103,13 @@ entry:
declare ptr @_Znam(i64)
define internal ptr @_Z3bazv() {
define internal ptr @_Z3bazv() #0 {
entry:
%call = call ptr @_Z3barv(), !callsite !8
ret ptr null
}
define internal ptr @_Z3foov() {
define internal ptr @_Z3foov() #0 {
entry:
%call = call ptr @_Z3bazv(), !callsite !9
ret ptr null
@@ -109,6 +118,8 @@ entry:
; uselistorder directives
uselistorder ptr @_Z3foov, { 1, 0 }
attributes #0 = { noinline optnone }
!0 = !{i64 8632435727821051414}
!1 = !{i64 -3421689549917153178}
!2 = !{!3, !5}
@@ -252,9 +263,50 @@ uselistorder ptr @_Z3foov, { 1, 0 }
; DUMP: Clone of [[BAR]]
; REMARKS: call in clone main assigned to call function clone _Z3foov.memprof.1
; REMARKS: created clone _Z3barv.memprof.1
; REMARKS: call in clone _Z3barv marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z3barv.memprof.1 marked with memprof allocation attribute cold
; REMARKS: created clone _Z3bazv.memprof.1
; REMARKS: call in clone _Z3bazv.memprof.1 assigned to call function clone _Z3barv.memprof.1
; REMARKS: created clone _Z3foov.memprof.1
; REMARKS: call in clone _Z3foov.memprof.1 assigned to call function clone _Z3bazv.memprof.1
; IR: define {{.*}} @main
;; The first call to foo does not allocate cold memory. It should call the
;; original functions, which ultimately call the original allocation decorated
;; with a "notcold" attribute.
; IR: call {{.*}} @_Z3foov()
;; The second call to foo allocates cold memory. It should call cloned functions
;; which ultimately call a cloned allocation decorated with a "cold" attribute.
; IR: call {{.*}} @_Z3foov.memprof.1()
; IR: define internal {{.*}} @_Z3barv()
; IR: call {{.*}} @_Znam(i64 0) #[[NOTCOLD:[0-9]+]]
; IR: define internal {{.*}} @_Z3bazv()
; IR: call {{.*}} @_Z3barv()
; IR: define internal {{.*}} @_Z3foov()
; IR: call {{.*}} @_Z3bazv()
; IR: define internal {{.*}} @_Z3barv.memprof.1()
; IR: call {{.*}} @_Znam(i64 0) #[[COLD:[0-9]+]]
; IR: define internal {{.*}} @_Z3bazv.memprof.1()
; IR: call {{.*}} @_Z3barv.memprof.1()
; IR: define internal {{.*}} @_Z3foov.memprof.1()
; IR: call {{.*}} @_Z3bazv.memprof.1()
; IR: attributes #[[NOTCOLD]] = { "memprof"="notcold" }
; IR: attributes #[[COLD]] = { "memprof"="cold" }
; STATS: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned) during ThinLTO backend
; STATS: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned) during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
; STATS: 3 memprof-context-disambiguation - Number of function clones created during whole program analysis
; STATS-BE: 3 memprof-context-disambiguation - Number of function clones created during ThinLTO backend
; STATS-BE: 3 memprof-context-disambiguation - Number of functions that had clones created during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Maximum number of allocation versions created for an original allocation during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend
; DOT: digraph "postbuild" {

View File

@@ -66,13 +66,15 @@
; RUN: -memprof-export-to-dot -memprof-dot-file-path-prefix=%t. \
; RUN: -stats -pass-remarks=memprof-context-disambiguation -save-temps \
; RUN: -o %t.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
; RUN: --check-prefix=STATS --check-prefix=STATS-BE --check-prefix=REMARKS
; RUN: cat %t.ccg.prestackupdate.dot | FileCheck %s --check-prefix=DOTPRE
; RUN: cat %t.ccg.postbuild.dot | FileCheck %s --check-prefix=DOTPOST
;; We should clone D once for the cold allocations via C.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
; RUN: llvm-dis %t.out.1.4.opt.bc -o - | FileCheck %s --check-prefix=IR
;; Try again but with distributed ThinLTO
; RUN: llvm-lto2 run %t.o -enable-memprof-context-disambiguation \
@@ -95,11 +97,18 @@
;; Check distributed index
; RUN: llvm-dis %t.o.thinlto.bc -o - | FileCheck %s --check-prefix=DISTRIB
;; Run ThinLTO backend
; RUN: opt -passes=memprof-context-disambiguation \
; RUN: -memprof-import-summary=%t.o.thinlto.bc \
; RUN: -stats -pass-remarks=memprof-context-disambiguation \
; RUN: %t.o -S 2>&1 | FileCheck %s --check-prefix=IR \
; RUN: --check-prefix=STATS-BE --check-prefix=REMARKS
source_filename = "duplicate-context-ids.ll"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define internal ptr @_Z1Dv() {
define internal ptr @_Z1Dv() #0 {
entry:
%call = call ptr @_Znam(i64 0), !memprof !0, !callsite !5
ret ptr null
@@ -107,31 +116,31 @@ entry:
declare ptr @_Znam(i64)
define internal ptr @_Z1Fv() {
define internal ptr @_Z1Fv() #0 {
entry:
%call = call ptr @_Z1Dv(), !callsite !6
ret ptr null
}
define internal ptr @_Z1Cv() {
define internal ptr @_Z1Cv() #0 {
entry:
%call = call ptr @_Z1Dv(), !callsite !7
ret ptr null
}
define internal ptr @_Z1Bv() {
define internal ptr @_Z1Bv() #0 {
entry:
%call.i = call ptr @_Z1Dv(), !callsite !8
ret ptr null
}
define internal ptr @_Z1Ev() {
define internal ptr @_Z1Ev() #0 {
entry:
%call.i = call ptr @_Z1Dv(), !callsite !9
ret ptr null
}
define i32 @main() {
define i32 @main() #0 {
entry:
call ptr @_Z1Bv()
call ptr @_Z1Ev()
@@ -143,6 +152,8 @@ declare void @_ZdaPv()
declare i32 @sleep()
attributes #0 = { noinline optnone}
!0 = !{!1, !3}
!1 = !{!2, !"cold"}
!2 = !{i64 6541423618768552252, i64 -6270142974039008131}
@@ -300,10 +311,43 @@ declare i32 @sleep()
; DUMP: Edge from Callee [[D2]] to Caller: [[B:0x[a-z0-9]+]] AllocTypes: Cold ContextIds: 4
; DUMP: Clone of [[D]]
; REMARKS: created clone _Z1Dv.memprof.1
; REMARKS: call in clone _Z1Dv marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z1Dv.memprof.1 marked with memprof allocation attribute cold
; REMARKS: call in clone _Z1Bv assigned to call function clone _Z1Dv.memprof.1
; REMARKS: call in clone _Z1Ev assigned to call function clone _Z1Dv.memprof.1
;; The allocation via F does not allocate cold memory. It should call the
;; original D, which ultimately call the original allocation decorated
;; with a "notcold" attribute.
; IR: define internal {{.*}} @_Z1Dv()
; IR: call {{.*}} @_Znam(i64 0) #[[NOTCOLD:[0-9]+]]
; IR: define internal {{.*}} @_Z1Fv()
; IR: call {{.*}} @_Z1Dv()
;; The allocations via B and E allocate cold memory. They should call the
;; cloned D, which ultimately call the cloned allocation decorated with a
;; "cold" attribute.
; IR: define internal {{.*}} @_Z1Bv()
; IR: call {{.*}} @_Z1Dv.memprof.1()
; IR: define internal {{.*}} @_Z1Ev()
; IR: call {{.*}} @_Z1Dv.memprof.1()
; IR: define internal {{.*}} @_Z1Dv.memprof.1()
; IR: call {{.*}} @_Znam(i64 0) #[[COLD:[0-9]+]]
; IR: attributes #[[NOTCOLD]] = { "memprof"="notcold" }
; IR: attributes #[[COLD]] = { "memprof"="cold" }
; STATS: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned) during ThinLTO backend
; STATS: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned) during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
; STATS: 1 memprof-context-disambiguation - Number of function clones created during whole program analysis
; STATS-BE: 1 memprof-context-disambiguation - Number of function clones created during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of functions that had clones created during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Maximum number of allocation versions created for an original allocation during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend
; DOTPRE: digraph "prestackupdate" {

View File

@@ -58,7 +58,9 @@
; RUN: -memprof-verify-ccg -memprof-verify-nodes -memprof-dump-ccg \
; RUN: -stats -pass-remarks=memprof-context-disambiguation -save-temps \
; RUN: -o %t.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
; RUN: --check-prefix=STATS --check-prefix=STATS-BE --check-prefix=REMARKS
; RUN: llvm-dis %t.out.1.4.opt.bc -o - | FileCheck %s --check-prefix=IR
;; Try again but with distributed ThinLTO
@@ -73,13 +75,20 @@
; RUN: -o %t2.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
;; Run ThinLTO backend
; RUN: opt -passes=memprof-context-disambiguation \
; RUN: -memprof-import-summary=%t.o.thinlto.bc \
; RUN: -stats -pass-remarks=memprof-context-disambiguation \
; RUN: %t.o -S 2>&1 | FileCheck %s --check-prefix=IR \
; RUN: --check-prefix=STATS-BE --check-prefix=REMARKS
source_filename = "funcassigncloning.ll"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; Function Attrs: noinline optnone
define internal void @_Z1EPPcS0_(ptr %buf1, ptr %buf2) {
define internal void @_Z1EPPcS0_(ptr %buf1, ptr %buf2) #0 {
entry:
%call = call ptr @_Znam(i64 noundef 10), !memprof !0, !callsite !7
%call1 = call ptr @_Znam(i64 noundef 10), !memprof !8, !callsite !15
@@ -107,7 +116,7 @@ entry:
}
; Function Attrs: noinline optnone
define i32 @main() {
define i32 @main() #0 {
entry:
call void @_Z1BPPcS0_()
call void @_Z1CPPcS0_()
@@ -122,6 +131,8 @@ declare i32 @sleep()
; uselistorder directives
uselistorder ptr @_Znam, { 1, 0 }
attributes #0 = { noinline optnone }
!0 = !{!1, !3, !5}
!1 = !{!2, !"cold"}
!2 = !{i64 -3461278137325233666, i64 -7799663586031895603}
@@ -230,6 +241,54 @@ uselistorder ptr @_Znam, { 1, 0 }
; DUMP: Clone of [[ENEW2ORIG]]
;; We greedily create a clone of E that is initially used by the clones of the
;; first call to new. However, we end up with an incompatible set of callers
;; given the second call to new which has clones with a different combination of
;; callers. Eventually, we create 2 more clones, and the first clone becomes dead.
; REMARKS: created clone _Z1EPPcS0_.memprof.1
; REMARKS: created clone _Z1EPPcS0_.memprof.2
; REMARKS: created clone _Z1EPPcS0_.memprof.3
; REMARKS: call in clone _Z1EPPcS0_ marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z1EPPcS0_.memprof.2 marked with memprof allocation attribute cold
; REMARKS: call in clone _Z1EPPcS0_.memprof.3 marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z1EPPcS0_ marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z1EPPcS0_.memprof.2 marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z1EPPcS0_.memprof.3 marked with memprof allocation attribute cold
; REMARKS: call in clone _Z1CPPcS0_ assigned to call function clone _Z1EPPcS0_.memprof.3
; REMARKS: call in clone _Z1DPPcS0_ assigned to call function clone _Z1EPPcS0_.memprof.2
;; Original version of E is used for the non-cold allocations, both from B.
; IR: define internal {{.*}} @_Z1EPPcS0_(
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[NOTCOLD:[0-9]+]]
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[NOTCOLD]]
; IR: define internal {{.*}} @_Z1BPPcS0_(
; IR: call {{.*}} @_Z1EPPcS0_(
;; C calls a clone of E with the first new allocating cold memory and the
;; second allocating non-cold memory.
; IR: define internal {{.*}} @_Z1CPPcS0_(
; IR: call {{.*}} @_Z1EPPcS0_.memprof.3(
;; D calls a clone of E with the first new allocating non-cold memory and the
;; second allocating cold memory.
; IR: define internal {{.*}} @_Z1DPPcS0_(
; IR: call {{.*}} @_Z1EPPcS0_.memprof.2(
; IR: define internal {{.*}} @_Z1EPPcS0_.memprof.2(
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[COLD:[0-9]+]]
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[NOTCOLD]]
; IR: define internal {{.*}} @_Z1EPPcS0_.memprof.3(
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[NOTCOLD]]
; IR: call {{.*}} @_Znam(i64 noundef 10) #[[COLD]]
; IR: attributes #[[NOTCOLD]] = { "memprof"="notcold" }
; IR: attributes #[[COLD]] = { "memprof"="cold" }
; STATS: 2 memprof-context-disambiguation - Number of cold static allocations (possibly cloned)
; STATS-BE: 2 memprof-context-disambiguation - Number of cold static allocations (possibly cloned) during ThinLTO backend
; STATS: 4 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned)
; STATS-BE: 4 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned) during ThinLTO backend
; STATS-BE: 8 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
; STATS: 3 memprof-context-disambiguation - Number of function clones created during whole program analysis
; STATS-BE: 3 memprof-context-disambiguation - Number of function clones created during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of functions that had clones created during ThinLTO backend
; STATS-BE: 4 memprof-context-disambiguation - Maximum number of allocation versions created for an original allocation during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend

View File

@@ -66,13 +66,15 @@
; RUN: -memprof-export-to-dot -memprof-dot-file-path-prefix=%t. \
; RUN: -stats -pass-remarks=memprof-context-disambiguation -save-temps \
; RUN: -o %t.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
; RUN: --check-prefix=STATS --check-prefix=STATS-BE --check-prefix=REMARKS
; RUN: cat %t.ccg.postbuild.dot | FileCheck %s --check-prefix=DOT
;; We should only create a single clone of foo, for the direct call
;; from main allocating cold memory.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
; RUN: llvm-dis %t.out.1.4.opt.bc -o - | FileCheck %s --check-prefix=IR
;; Try again but with distributed ThinLTO
; RUN: llvm-lto2 run %t.o -enable-memprof-context-disambiguation \
@@ -94,6 +96,13 @@
;; from main allocating cold memory.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
;; Run ThinLTO backend
; RUN: opt -passes=memprof-context-disambiguation \
; RUN: -memprof-import-summary=%t.o.thinlto.bc \
; RUN: -stats -pass-remarks=memprof-context-disambiguation \
; RUN: %t.o -S 2>&1 | FileCheck %s --check-prefix=IR \
; RUN: --check-prefix=STATS-BE --check-prefix=REMARKS
source_filename = "indirectcall.ll"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@@ -101,12 +110,12 @@ target triple = "x86_64-unknown-linux-gnu"
@_ZTVN10__cxxabiv120__si_class_type_infoE = external global ptr
@_ZTVN10__cxxabiv117__class_type_infoE = external global ptr
define internal ptr @_Z3barP1A(ptr %a) {
define internal ptr @_Z3barP1A(ptr %a) #0 {
entry:
ret ptr null
}
define i32 @main() {
define i32 @main() #0 {
entry:
%call = call ptr @_Z3foov(), !callsite !0
%call1 = call ptr @_Z3foov(), !callsite !1
@@ -121,19 +130,19 @@ declare void @_ZdaPv()
declare i32 @sleep()
define internal ptr @_ZN1A1xEv() {
define internal ptr @_ZN1A1xEv() #0 {
entry:
%call = call ptr @_Z3foov(), !callsite !6
ret ptr null
}
define internal ptr @_ZN1B1xEv() {
define internal ptr @_ZN1B1xEv() #0 {
entry:
%call = call ptr @_Z3foov(), !callsite !7
ret ptr null
}
define internal ptr @_Z3foov() {
define internal ptr @_Z3foov() #0 {
entry:
%call = call ptr @_Znam(i64 0), !memprof !8, !callsite !21
ret ptr null
@@ -144,6 +153,8 @@ declare ptr @_Znam(i64)
; uselistorder directives
uselistorder ptr @_Z3foov, { 3, 2, 1, 0 }
attributes #0 = { noinline optnone }
!0 = !{i64 8632435727821051414}
!1 = !{i64 -3421689549917153178}
!2 = !{i64 6792096022461663180}
@@ -384,9 +395,39 @@ uselistorder ptr @_Z3foov, { 3, 2, 1, 0 }
; DUMP: Clone of [[FOO]]
; REMARKS: call in clone main assigned to call function clone _Z3foov.memprof.1
; REMARKS: created clone _Z3foov.memprof.1
; REMARKS: call in clone _Z3foov marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z3foov.memprof.1 marked with memprof allocation attribute cold
; IR: define {{.*}} @main(
; IR: call {{.*}} @_Z3foov()
;; Only the second call to foo, which allocates cold memory via direct calls,
;; is replaced with a call to a clone that calls a cold allocation.
; IR: call {{.*}} @_Z3foov.memprof.1()
; IR: call {{.*}} @_Z3barP1A(
; IR: call {{.*}} @_Z3barP1A(
; IR: call {{.*}} @_Z3barP1A(
; IR: call {{.*}} @_Z3barP1A(
; IR: define internal {{.*}} @_Z3foov()
; IR: call {{.*}} @_Znam(i64 0) #[[NOTCOLD:[0-9]+]]
; IR: define internal {{.*}} @_Z3foov.memprof.1()
; IR: call {{.*}} @_Znam(i64 0) #[[COLD:[0-9]+]]
; IR: attributes #[[NOTCOLD]] = { "memprof"="notcold" }
; IR: attributes #[[COLD]] = { "memprof"="cold" }
; STATS: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned) during ThinLTO backend
; STATS: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned) during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
; STATS: 1 memprof-context-disambiguation - Number of function clones created during whole program analysis
; STATS-BE: 1 memprof-context-disambiguation - Number of function clones created during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of functions that had clones created during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Maximum number of allocation versions created for an original allocation during ThinLTO backend
; STATS-BE: 1 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend
; DOT: digraph "postbuild" {

View File

@@ -54,13 +54,16 @@
; RUN: -memprof-export-to-dot -memprof-dot-file-path-prefix=%t. \
; RUN: -stats -pass-remarks=memprof-context-disambiguation -save-temps \
; RUN: -o %t.out 2>&1 | FileCheck %s --check-prefix=DUMP \
; RUN: --check-prefix=STATS
; RUN: --check-prefix=STATS --check-prefix=STATS-BE \
; RUN: --check-prefix=STATS-INPROCESS-BE --check-prefix=REMARKS
; RUN: cat %t.ccg.postbuild.dot | FileCheck %s --check-prefix=DOT
;; We should create clones for foo and bar for the call from main to allocate
;; cold memory.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
; RUN: llvm-dis %t.out.1.4.opt.bc -o - | FileCheck %s --check-prefix=IR
;; Try again but with distributed ThinLTO
; RUN: llvm-lto2 run %t.o -enable-memprof-context-disambiguation \
@@ -80,11 +83,19 @@
;; cold memory.
; RUN: cat %t.ccg.cloned.dot | FileCheck %s --check-prefix=DOTCLONED
;; Run ThinLTO backend
; RUN: opt -passes=memprof-context-disambiguation \
; RUN: -memprof-import-summary=%t.o.thinlto.bc \
; RUN: -stats -pass-remarks=memprof-context-disambiguation \
; RUN: %t.o -S 2>&1 | FileCheck %s --check-prefix=IR \
; RUN: --check-prefix=STATS-BE --check-prefix=STATS-DISTRIB-BE \
; RUN: --check-prefix=REMARKS
source_filename = "inlined.ll"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define internal ptr @_Z3barv() {
define internal ptr @_Z3barv() #0 {
entry:
%call = call ptr @_Znam(i64 0), !memprof !0, !callsite !5
ret ptr null
@@ -92,19 +103,19 @@ entry:
declare ptr @_Znam(i64)
define internal ptr @_Z3bazv() {
define internal ptr @_Z3bazv() #0 {
entry:
%call.i = call ptr @_Znam(i64 0), !memprof !0, !callsite !6
ret ptr null
}
define internal ptr @_Z3foov() {
define internal ptr @_Z3foov() #0 {
entry:
%call.i = call ptr @_Z3barv(), !callsite !7
ret ptr null
}
define i32 @main() {
define i32 @main() #0 {
entry:
%call = call ptr @_Z3foov(), !callsite !8
%call1 = call ptr @_Z3foov(), !callsite !9
@@ -115,6 +126,8 @@ declare void @_ZdaPv()
declare i32 @sleep()
attributes #0 = { noinline optnone }
!0 = !{!1, !3}
!1 = !{!2, !"notcold"}
!2 = !{i64 9086428284934609951, i64 -5964873800580613432, i64 2732490490862098848, i64 8632435727821051414}
@@ -281,9 +294,50 @@ declare i32 @sleep()
; DUMP: Clone of [[BAR]]
; REMARKS: created clone _Z3barv.memprof.1
; REMARKS: call in clone _Z3barv marked with memprof allocation attribute notcold
; REMARKS: call in clone _Z3barv.memprof.1 marked with memprof allocation attribute cold
; REMARKS: created clone _Z3foov.memprof.1
; REMARKS: call in clone _Z3foov.memprof.1 assigned to call function clone _Z3barv.memprof.1
; REMARKS: call in clone main assigned to call function clone _Z3foov.memprof.1
; IR: define internal {{.*}} @_Z3barv()
; IR: call {{.*}} @_Znam(i64 0) #[[NOTCOLD:[0-9]+]]
; IR: define internal {{.*}} @_Z3foov()
; IR: call {{.*}} @_Z3barv()
; IR: define {{.*}} @main()
;; The first call to foo does not allocate cold memory. It should call the
;; original functions, which ultimately call the original allocation decorated
;; with a "notcold" attribute.
; IR: call {{.*}} @_Z3foov()
;; The second call to foo allocates cold memory. It should call cloned functions
;; which ultimately call a cloned allocation decorated with a "cold" attribute.
; IR: call {{.*}} @_Z3foov.memprof.1()
; IR: define internal {{.*}} @_Z3barv.memprof.1()
; IR: call {{.*}} @_Znam(i64 0) #[[COLD:[0-9]+]]
; IR: define internal {{.*}} @_Z3foov.memprof.1()
; IR: call {{.*}} @_Z3barv.memprof.1()
; IR: attributes #[[NOTCOLD]] = { "memprof"="notcold" }
; IR: attributes #[[COLD]] = { "memprof"="cold" }
; STATS: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of cold static allocations (possibly cloned) during ThinLTO backend
; STATS: 2 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned)
; STATS-BE: 1 memprof-context-disambiguation - Number of not cold static allocations (possibly cloned) during ThinLTO backend
; STATS-INPROCESS-BE: 2 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
;; The distributed backend hasn't yet eliminated the now-dead baz with
;; the allocation from bar inlined, so it has one more allocation.
; STATS-DISTRIB-BE: 3 memprof-context-disambiguation - Number of allocation versions (including clones) during ThinLTO backend
; STATS: 2 memprof-context-disambiguation - Number of function clones created during whole program analysis
; STATS-BE: 2 memprof-context-disambiguation - Number of function clones created during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Number of functions that had clones created during ThinLTO backend
; STATS-BE: 2 memprof-context-disambiguation - Maximum number of allocation versions created for an original allocation during ThinLTO backend
; STATS-INPROCESS-BE: 1 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend
;; The distributed backend hasn't yet eliminated the now-dead baz with
;; the allocation from bar inlined, so it has one more allocation.
; STATS-DISTRIB-BE: 2 memprof-context-disambiguation - Number of original (not cloned) allocations with memprof profiles during ThinLTO backend
; DOT: digraph "postbuild" {