[Clang] Implement diagnostics for why std::is_standard_layout is false (#144161)

This commit is contained in:
Samarth Narang
2025-06-25 14:49:15 -04:00
committed by GitHub
parent 70333de6cf
commit d760f97387
4 changed files with 339 additions and 1 deletions

View File

@@ -1768,7 +1768,8 @@ def note_unsatisfied_trait
"%TriviallyRelocatable{trivially relocatable}|"
"%Replaceable{replaceable}|"
"%TriviallyCopyable{trivially copyable}|"
"%Empty{empty}"
"%Empty{empty}|"
"%StandardLayout{standard-layout}"
"}1">;
def note_unsatisfied_trait_reason
@@ -1792,6 +1793,12 @@ def note_unsatisfied_trait_reason
"%VirtualFunction{has a virtual function %1}|"
"%NonEmptyBase{has a base class %1 that is not empty}|"
"%NonZeroLengthField{field %1 is a non-zero-length bit-field}|"
"%NonStandardLayoutBase{has a non-standard-layout base %1}|"
"%MixedAccess{has mixed access specifiers}|"
"%MixedAccessField{field %1 has a different access specifier than field %2}|"
"%MultipleDataBase{has multiple base classes with data members}|"
"%NonStandardLayoutMember{has a non-standard-layout member %1 of type %2}|"
"%IndirectBaseWithFields{has an indirect base %1 with data members}|"
"%DeletedDtr{has a %select{deleted|user-provided}1 destructor}|"
"%UserProvidedCtr{has a user provided %select{copy|move}1 "
"constructor}|"

View File

@@ -1959,6 +1959,7 @@ static std::optional<TypeTrait> StdNameToTypeTrait(StringRef Name) {
.Case("is_trivially_copyable", TypeTrait::UTT_IsTriviallyCopyable)
.Case("is_assignable", TypeTrait::BTT_IsAssignable)
.Case("is_empty", TypeTrait::UTT_IsEmpty)
.Case("is_standard_layout", TypeTrait::UTT_IsStandardLayout)
.Default(std::nullopt);
}
@@ -2382,6 +2383,150 @@ static void DiagnoseIsEmptyReason(Sema &S, SourceLocation Loc, QualType T) {
}
}
static bool hasMultipleDataBaseClassesWithFields(const CXXRecordDecl *D) {
int NumBasesWithFields = 0;
for (const CXXBaseSpecifier &Base : D->bases()) {
const CXXRecordDecl *BaseRD = Base.getType()->getAsCXXRecordDecl();
if (!BaseRD || BaseRD->isInvalidDecl())
continue;
for (const FieldDecl *Field : BaseRD->fields()) {
if (!Field->isUnnamedBitField()) {
if (++NumBasesWithFields > 1)
return true; // found more than one base class with fields
break; // no need to check further fields in this base class
}
}
}
return false;
}
static void DiagnoseNonStandardLayoutReason(Sema &SemaRef, SourceLocation Loc,
const CXXRecordDecl *D) {
for (const CXXBaseSpecifier &B : D->bases()) {
assert(B.getType()->getAsCXXRecordDecl() && "invalid base?");
if (B.isVirtual()) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::VBase << B.getType()
<< B.getSourceRange();
}
if (!B.getType()->isStandardLayoutType()) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::NonStandardLayoutBase << B.getType()
<< B.getSourceRange();
}
}
// Check for mixed access specifiers in fields.
const FieldDecl *FirstField = nullptr;
AccessSpecifier FirstAccess = AS_none;
for (const FieldDecl *Field : D->fields()) {
if (Field->isUnnamedBitField())
continue;
// Record the first field we see
if (!FirstField) {
FirstField = Field;
FirstAccess = Field->getAccess();
continue;
}
// Check if the field has a different access specifier than the first one.
if (Field->getAccess() != FirstAccess) {
// Emit a diagnostic about mixed access specifiers.
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::MixedAccess;
SemaRef.Diag(FirstField->getLocation(), diag::note_defined_here)
<< FirstField;
SemaRef.Diag(Field->getLocation(), diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::MixedAccessField << Field
<< FirstField;
// No need to check further fields, as we already found mixed access.
break;
}
}
if (hasMultipleDataBaseClassesWithFields(D)) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::MultipleDataBase;
}
if (D->isPolymorphic()) {
// Find the best location to point “defined here” at.
const CXXMethodDecl *VirtualMD = nullptr;
// First, look for a virtual method.
for (const auto *M : D->methods()) {
if (M->isVirtual()) {
VirtualMD = M;
break;
}
}
if (VirtualMD) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::VirtualFunction << VirtualMD;
SemaRef.Diag(VirtualMD->getLocation(), diag::note_defined_here)
<< VirtualMD;
} else {
// If no virtual method, point to the record declaration itself.
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::VirtualFunction << D;
SemaRef.Diag(D->getLocation(), diag::note_defined_here) << D;
}
}
for (const FieldDecl *Field : D->fields()) {
if (!Field->getType()->isStandardLayoutType()) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::NonStandardLayoutMember << Field
<< Field->getType() << Field->getSourceRange();
}
}
// Find any indirect base classes that have fields.
if (D->hasDirectFields()) {
const CXXRecordDecl *Indirect = nullptr;
D->forallBases([&](const CXXRecordDecl *BaseDef) {
if (BaseDef->hasDirectFields()) {
Indirect = BaseDef;
return false; // stop traversal
}
return true; // continue to the next base
});
if (Indirect) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::IndirectBaseWithFields << Indirect
<< Indirect->getSourceRange();
}
}
}
static void DiagnoseNonStandardLayoutReason(Sema &SemaRef, SourceLocation Loc,
QualType T) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait)
<< T << diag::TraitName::StandardLayout;
// Check type-level exclusion first.
if (T->isVariablyModifiedType()) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::VLA;
return;
}
if (T->isReferenceType()) {
SemaRef.Diag(Loc, diag::note_unsatisfied_trait_reason)
<< diag::TraitNotSatisfiedReason::Ref;
return;
}
T = T.getNonReferenceType();
const CXXRecordDecl *D = T->getAsCXXRecordDecl();
if (!D || D->isInvalidDecl())
return;
if (D->hasDefinition())
DiagnoseNonStandardLayoutReason(SemaRef, Loc, D);
SemaRef.Diag(D->getLocation(), diag::note_defined_here) << D;
}
void Sema::DiagnoseTypeTraitDetails(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (E->containsErrors())
@@ -2408,6 +2553,9 @@ void Sema::DiagnoseTypeTraitDetails(const Expr *E) {
case UTT_IsEmpty:
DiagnoseIsEmptyReason(*this, E->getBeginLoc(), Args[0]);
break;
case UTT_IsStandardLayout:
DiagnoseNonStandardLayoutReason(*this, E->getBeginLoc(), Args[0]);
break;
default:
break;
}

View File

@@ -35,6 +35,13 @@ struct is_empty {
};
template <typename T>
constexpr bool is_empty_v = __is_empty(T);
template <typename T>
struct is_standard_layout {
static constexpr bool value = __is_standard_layout(T);
};
template <typename T>
constexpr bool is_standard_layout_v = __is_standard_layout(T);
#endif
#ifdef STD2
@@ -79,6 +86,17 @@ template <typename T>
using is_empty = __details_is_empty<T>;
template <typename T>
constexpr bool is_empty_v = __is_empty(T);
template <typename T>
struct __details_is_standard_layout {
static constexpr bool value = __is_standard_layout(T);
};
template <typename T>
using is_standard_layout = __details_is_standard_layout<T>;
template <typename T>
constexpr bool is_standard_layout_v = __is_standard_layout(T);
#endif
@@ -124,6 +142,13 @@ template <typename T>
using is_empty = __details_is_empty<T>;
template <typename T>
constexpr bool is_empty_v = is_empty<T>::value;
template <typename T>
struct __details_is_standard_layout : bool_constant<__is_standard_layout(T)> {};
template <typename T>
using is_standard_layout = __details_is_standard_layout<T>;
template <typename T>
constexpr bool is_standard_layout_v = is_standard_layout<T>::value;
#endif
}
@@ -150,6 +175,21 @@ static_assert(std::is_trivially_copyable_v<int&>);
// expected-note@-1 {{'int &' is not trivially copyable}} \
// expected-note@-1 {{because it is a reference type}}
// Direct tests
static_assert(std::is_standard_layout<int>::value);
static_assert(std::is_standard_layout_v<int>);
static_assert(std::is_standard_layout<int&>::value);
// expected-error-re@-1 {{static assertion failed due to requirement 'std::{{.*}}is_standard_layout<int &>::value'}} \
// expected-note@-1 {{'int &' is not standard-layout}} \
// expected-note@-1 {{because it is a reference type}}
static_assert(std::is_standard_layout_v<int&>);
// expected-error@-1 {{static assertion failed due to requirement 'std::is_standard_layout_v<int &>'}} \
// expected-note@-1 {{'int &' is not standard-layout}} \
// expected-note@-1 {{because it is a reference type}}
static_assert(!std::is_empty<int>::value);
static_assert(std::is_empty<int&>::value);
@@ -191,6 +231,16 @@ namespace test_namespace {
// expected-note@-1 {{'int &' is not trivially copyable}} \
// expected-note@-1 {{because it is a reference type}}
static_assert(is_standard_layout<int&>::value);
// expected-error-re@-1 {{static assertion failed due to requirement '{{.*}}is_standard_layout<int &>::value'}} \
// expected-note@-1 {{'int &' is not standard-layout}} \
// expected-note@-1 {{because it is a reference type}}
static_assert(is_standard_layout_v<int&>);
// expected-error@-1 {{static assertion failed due to requirement 'is_standard_layout_v<int &>'}} \
// expected-note@-1 {{'int &' is not standard-layout}} \
// expected-note@-1 {{because it is a reference type}}
static_assert(is_assignable<int&, void>::value);
// expected-error-re@-1 {{static assertion failed due to requirement '{{.*}}is_assignable<int &, void>::value'}} \
// expected-error@-1 {{assigning to 'int' from incompatible type 'void'}}

View File

@@ -634,3 +634,136 @@ namespace is_empty_tests {
// expected-note@#e-DependentBitField {{'DependentBitField<2>' defined here}}
}
namespace standard_layout_tests {
struct WithVirtual { // #sl-Virtual
virtual void foo(); // #sl-Virtual-Foo
};
static_assert(__is_standard_layout(WithVirtual));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::WithVirtual)'}} \
// expected-note@-1 {{'WithVirtual' is not standard-layout}} \
// expected-note@-1 {{because it has a virtual function 'foo'}} \
// expected-note@#sl-Virtual-Foo {{'foo' defined here}} \
// expected-note@#sl-Virtual {{'WithVirtual' defined here}}
struct MixedAccess { // #sl-Mixed
public:
int a; // #sl-MixedF1
private:
int b; // #sl-MixedF2
};
static_assert(__is_standard_layout(MixedAccess));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::MixedAccess)'}} \
// expected-note@-1 {{'MixedAccess' is not standard-layout}} \
// expected-note@-1 {{because it has mixed access specifiers}} \
// expected-note@#sl-MixedF1 {{'a' defined here}}
// expected-note@#sl-MixedF2 {{field 'b' has a different access specifier than field 'a'}}
// expected-note@#sl-Mixed {{'MixedAccess' defined here}}
struct VirtualBase { virtual ~VirtualBase(); }; // #sl-VirtualBase
struct VB : virtual VirtualBase {}; // #sl-VB
static_assert(__is_standard_layout(VB));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::VB)'}} \
// expected-note@-1 {{'VB' is not standard-layout}} \
// expected-note@-1 {{because it has a virtual base 'VirtualBase'}} \
// expected-note@-1 {{because it has a non-standard-layout base 'VirtualBase'}} \
// expected-note@-1 {{because it has a virtual function '~VB'}} \
// expected-note@#sl-VB {{'VB' defined here}}
// expected-note@#sl-VB {{'~VB' defined here}}
union U { // #sl-U
public:
int x; // #sl-UF1
private:
int y; // #sl-UF2
};
static_assert(__is_standard_layout(U));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::U)'}} \
// expected-note@-1 {{'U' is not standard-layout}} \
// expected-note@-1 {{because it has mixed access specifiers}}
// expected-note@#sl-UF1 {{'x' defined here}}
// expected-note@#sl-UF2 {{field 'y' has a different access specifier than field 'x'}}
// expected-note@#sl-U {{'U' defined here}}
// Single base class is OK
struct BaseClass{ int a; }; // #sl-BaseClass
struct DerivedOK : BaseClass {}; // #sl-DerivedOK
static_assert(__is_standard_layout(DerivedOK));
// Primitive types should be standard layout
static_assert(__is_standard_layout(int)); // #sl-Int
static_assert(__is_standard_layout(float)); // #sl-Float
// Multi-level inheritance: Non-standard layout
struct Base1 { int a; }; // #sl-Base1
struct Base2 { int b; }; // #sl-Base2
struct DerivedClass : Base1, Base2 {}; // #sl-DerivedClass
static_assert(__is_standard_layout(DerivedClass));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::DerivedClass)'}} \
// expected-note@-1 {{'DerivedClass' is not standard-layout}} \
// expected-note@-1 {{because it has multiple base classes with data members}} \
// expected-note@#sl-DerivedClass {{'DerivedClass' defined here}}
// Inheritance hierarchy with multiple classes having data members
struct BaseA { int a; }; // #sl-BaseA
struct BaseB : BaseA {}; // inherits BaseA, has no new members
struct BaseC: BaseB { int c; }; // #sl-BaseC
static_assert(__is_standard_layout(BaseC));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::BaseC)'}} \
// expected-note@-1 {{'BaseC' is not standard-layout}} \
// expected-note@-1 {{because it has an indirect base 'BaseA' with data members}} \
// expected-note@#sl-BaseC {{'BaseC' defined here}} \
// Multiple direct base classes with no data members --> standard layout
struct BaseX {}; // #sl-BaseX
struct BaseY {}; // #sl-BaseY
struct MultiBase : BaseX, BaseY {}; // #sl-MultiBase
static_assert(__is_standard_layout(MultiBase));
struct A {
int x;
};
struct B : A {
};
// Indirect base with data members
struct C : B { int y; }; // #sl-C
static_assert(__is_standard_layout(C));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::C)'}} \
// expected-note@-1 {{'C' is not standard-layout}} \
// expected-note@-1 {{because it has an indirect base 'A' with data members}} \
// expected-note@#sl-C {{'C' defined here}}
struct D {
union { int a; float b; };
}; // #sl-D
static_assert(__is_standard_layout(D)); // no diagnostics
// E inherits D but adds a new member
struct E : D { int x; }; // #sl-E
static_assert(__is_standard_layout(E));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::E)'}} \
// expected-note@-1 {{'E' is not standard-layout}} \
// expected-note@-1 {{because it has an indirect base 'D' with data members}} \
// expected-note@#sl-E {{'E' defined here}}
// F inherits D but only an unnamed bitfield
// This should still fail because F ends up with a
// base class with a data member and its own unnamed bitfield
// which is not allowed in standard layout
struct F : D { int : 0; }; // #sl-F
static_assert(__is_standard_layout(F));
// expected-error@-1 {{static assertion failed due to requirement '__is_standard_layout(standard_layout_tests::F)'}} \
// expected-note@-1 {{'F' is not standard-layout}} \
// expected-note@#sl-F {{'F' defined here}}
struct Empty {};
struct G { Empty a, b; }; // #sl-G
static_assert(__is_standard_layout(G)); // no diagnostics
struct H { Empty a; int x; }; // #sl-H
static_assert(__is_standard_layout(H)); // no diagnostics
struct I { Empty a; int : 0; int x; }; // #sl-I
static_assert(__is_standard_layout(I)); // no diagnostics
}