[flang][cuda] Carry over the stream information to kernel launch (#136217)
In CUDA Fortran the stream is encoded in an INTEGER(cuda_stream_kind) variable. This information is carried over the GPU dialect through the `cuf.stream_cast` and the token in the GPU ops. When converting the `gpu.launch_func` to runtime call, the `cuf.stream_cast` becomes a no-op and the reference to the stream is passed to the runtime. The runtime is adapted to take integer references instead of value for stream.
This commit is contained in:
committed by
GitHub
parent
ba273be3bd
commit
d79bb93278
@@ -17,7 +17,7 @@ extern "C" {
|
||||
|
||||
void RTDEF(CUFLaunchKernel)(const void *kernel, intptr_t gridX, intptr_t gridY,
|
||||
intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ,
|
||||
intptr_t stream, int32_t smem, void **params, void **extra) {
|
||||
int64_t *stream, int32_t smem, void **params, void **extra) {
|
||||
dim3 gridDim;
|
||||
gridDim.x = gridX;
|
||||
gridDim.y = gridY;
|
||||
@@ -77,13 +77,13 @@ void RTDEF(CUFLaunchKernel)(const void *kernel, intptr_t gridX, intptr_t gridY,
|
||||
}
|
||||
cudaStream_t defaultStream = 0;
|
||||
CUDA_REPORT_IF_ERROR(cudaLaunchKernel(kernel, gridDim, blockDim, params, smem,
|
||||
stream != kNoAsyncId ? (cudaStream_t)stream : defaultStream));
|
||||
stream != nullptr ? (cudaStream_t)(*stream) : defaultStream));
|
||||
}
|
||||
|
||||
void RTDEF(CUFLaunchClusterKernel)(const void *kernel, intptr_t clusterX,
|
||||
intptr_t clusterY, intptr_t clusterZ, intptr_t gridX, intptr_t gridY,
|
||||
intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ,
|
||||
intptr_t stream, int32_t smem, void **params, void **extra) {
|
||||
int64_t *stream, int32_t smem, void **params, void **extra) {
|
||||
cudaLaunchConfig_t config;
|
||||
config.gridDim.x = gridX;
|
||||
config.gridDim.y = gridY;
|
||||
@@ -141,8 +141,8 @@ void RTDEF(CUFLaunchClusterKernel)(const void *kernel, intptr_t clusterX,
|
||||
terminator.Crash("Too many invalid grid dimensions");
|
||||
}
|
||||
config.dynamicSmemBytes = smem;
|
||||
if (stream != kNoAsyncId) {
|
||||
config.stream = (cudaStream_t)stream;
|
||||
if (stream != nullptr) {
|
||||
config.stream = (cudaStream_t)(*stream);
|
||||
} else {
|
||||
config.stream = 0;
|
||||
}
|
||||
@@ -158,7 +158,7 @@ void RTDEF(CUFLaunchClusterKernel)(const void *kernel, intptr_t clusterX,
|
||||
|
||||
void RTDEF(CUFLaunchCooperativeKernel)(const void *kernel, intptr_t gridX,
|
||||
intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY,
|
||||
intptr_t blockZ, intptr_t stream, int32_t smem, void **params,
|
||||
intptr_t blockZ, int64_t *stream, int32_t smem, void **params,
|
||||
void **extra) {
|
||||
dim3 gridDim;
|
||||
gridDim.x = gridX;
|
||||
@@ -218,9 +218,8 @@ void RTDEF(CUFLaunchCooperativeKernel)(const void *kernel, intptr_t gridX,
|
||||
terminator.Crash("Too many invalid grid dimensions");
|
||||
}
|
||||
cudaStream_t defaultStream = 0;
|
||||
CUDA_REPORT_IF_ERROR(
|
||||
cudaLaunchCooperativeKernel(kernel, gridDim, blockDim, params, smem,
|
||||
stream != kNoAsyncId ? (cudaStream_t)stream : defaultStream));
|
||||
CUDA_REPORT_IF_ERROR(cudaLaunchCooperativeKernel(kernel, gridDim, blockDim,
|
||||
params, smem, stream != nullptr ? (cudaStream_t)*stream : defaultStream));
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
@@ -383,7 +383,7 @@ def cuf_StreamCastOp : cuf_Op<"stream_cast", [NoMemoryEffect]> {
|
||||
Later in the lowering this will become a no op.
|
||||
}];
|
||||
|
||||
let arguments = (ins fir_ReferenceType:$stream);
|
||||
let arguments = (ins AnyTypeOf<[fir_ReferenceType, LLVM_AnyPointer]>:$stream);
|
||||
|
||||
let results = (outs GPU_AsyncToken:$token);
|
||||
|
||||
|
||||
@@ -19,9 +19,9 @@ class LLVMTypeConverter;
|
||||
|
||||
namespace cuf {
|
||||
|
||||
void populateCUFGPUToLLVMConversionPatterns(
|
||||
const fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
|
||||
mlir::PatternBenefit benefit = 1);
|
||||
void populateCUFGPUToLLVMConversionPatterns(fir::LLVMTypeConverter &converter,
|
||||
mlir::RewritePatternSet &patterns,
|
||||
mlir::PatternBenefit benefit = 1);
|
||||
|
||||
} // namespace cuf
|
||||
|
||||
|
||||
@@ -21,17 +21,17 @@ extern "C" {
|
||||
|
||||
void RTDEF(CUFLaunchKernel)(const void *kernelName, intptr_t gridX,
|
||||
intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY,
|
||||
intptr_t blockZ, intptr_t stream, int32_t smem, void **params,
|
||||
intptr_t blockZ, int64_t *stream, int32_t smem, void **params,
|
||||
void **extra);
|
||||
|
||||
void RTDEF(CUFLaunchClusterKernel)(const void *kernelName, intptr_t clusterX,
|
||||
intptr_t clusterY, intptr_t clusterZ, intptr_t gridX, intptr_t gridY,
|
||||
intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ,
|
||||
intptr_t stream, int32_t smem, void **params, void **extra);
|
||||
int64_t *stream, int32_t smem, void **params, void **extra);
|
||||
|
||||
void RTDEF(CUFLaunchCooperativeKernel)(const void *kernelName, intptr_t gridX,
|
||||
intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY,
|
||||
intptr_t blockZ, intptr_t stream, int32_t smem, void **params,
|
||||
intptr_t blockZ, int64_t *stream, int32_t smem, void **params,
|
||||
void **extra);
|
||||
|
||||
} // extern "C"
|
||||
|
||||
@@ -147,9 +147,9 @@ template <typename OpTy>
|
||||
static llvm::LogicalResult checkStreamType(OpTy op) {
|
||||
if (!op.getStream())
|
||||
return mlir::success();
|
||||
auto refTy = mlir::dyn_cast<fir::ReferenceType>(op.getStream().getType());
|
||||
if (!refTy.getEleTy().isInteger(64))
|
||||
return op.emitOpError("stream is expected to be a i64 reference");
|
||||
if (auto refTy = mlir::dyn_cast<fir::ReferenceType>(op.getStream().getType()))
|
||||
if (!refTy.getEleTy().isInteger(64))
|
||||
return op.emitOpError("stream is expected to be an i64 reference");
|
||||
return mlir::success();
|
||||
}
|
||||
|
||||
|
||||
@@ -121,7 +121,7 @@ struct GPULaunchKernelConversion
|
||||
voidTy,
|
||||
{ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
|
||||
llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
|
||||
llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, i32Ty, ptrTy, ptrTy},
|
||||
llvmIntPtrType, llvmIntPtrType, ptrTy, i32Ty, ptrTy, ptrTy},
|
||||
/*isVarArg=*/false);
|
||||
auto cufLaunchClusterKernel = mlir::SymbolRefAttr::get(
|
||||
mod.getContext(), RTNAME_STRING(CUFLaunchClusterKernel));
|
||||
@@ -133,10 +133,15 @@ struct GPULaunchKernelConversion
|
||||
launchKernelFuncOp.setVisibility(
|
||||
mlir::SymbolTable::Visibility::Private);
|
||||
}
|
||||
mlir::Value stream = adaptor.getAsyncObject();
|
||||
if (!stream)
|
||||
stream = rewriter.create<mlir::LLVM::ConstantOp>(
|
||||
loc, llvmIntPtrType, rewriter.getIntegerAttr(llvmIntPtrType, -1));
|
||||
|
||||
mlir::Value stream = nullPtr;
|
||||
if (!adaptor.getAsyncDependencies().empty()) {
|
||||
if (adaptor.getAsyncDependencies().size() != 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Can only convert with exactly one stream dependency.");
|
||||
stream = adaptor.getAsyncDependencies().front();
|
||||
}
|
||||
|
||||
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
|
||||
op, funcTy, cufLaunchClusterKernel,
|
||||
mlir::ValueRange{kernelPtr, adaptor.getClusterSizeX(),
|
||||
@@ -157,8 +162,8 @@ struct GPULaunchKernelConversion
|
||||
auto funcTy = mlir::LLVM::LLVMFunctionType::get(
|
||||
voidTy,
|
||||
{ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
|
||||
llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
|
||||
i32Ty, ptrTy, ptrTy},
|
||||
llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, ptrTy, i32Ty, ptrTy,
|
||||
ptrTy},
|
||||
/*isVarArg=*/false);
|
||||
auto cufLaunchKernel =
|
||||
mlir::SymbolRefAttr::get(mod.getContext(), fctName);
|
||||
@@ -171,10 +176,13 @@ struct GPULaunchKernelConversion
|
||||
mlir::SymbolTable::Visibility::Private);
|
||||
}
|
||||
|
||||
mlir::Value stream = adaptor.getAsyncObject();
|
||||
if (!stream)
|
||||
stream = rewriter.create<mlir::LLVM::ConstantOp>(
|
||||
loc, llvmIntPtrType, rewriter.getIntegerAttr(llvmIntPtrType, -1));
|
||||
mlir::Value stream = nullPtr;
|
||||
if (!adaptor.getAsyncDependencies().empty()) {
|
||||
if (adaptor.getAsyncDependencies().size() != 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Can only convert with exactly one stream dependency.");
|
||||
stream = adaptor.getAsyncDependencies().front();
|
||||
}
|
||||
|
||||
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
|
||||
op, funcTy, cufLaunchKernel,
|
||||
@@ -251,6 +259,22 @@ struct CUFSharedMemoryOpConversion
|
||||
}
|
||||
};
|
||||
|
||||
struct CUFStreamCastConversion
|
||||
: public mlir::ConvertOpToLLVMPattern<cuf::StreamCastOp> {
|
||||
explicit CUFStreamCastConversion(const fir::LLVMTypeConverter &typeConverter,
|
||||
mlir::PatternBenefit benefit)
|
||||
: mlir::ConvertOpToLLVMPattern<cuf::StreamCastOp>(typeConverter,
|
||||
benefit) {}
|
||||
using OpAdaptor = typename cuf::StreamCastOp::Adaptor;
|
||||
|
||||
mlir::LogicalResult
|
||||
matchAndRewrite(cuf::StreamCastOp op, OpAdaptor adaptor,
|
||||
mlir::ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOp(op, adaptor.getStream());
|
||||
return mlir::success();
|
||||
}
|
||||
};
|
||||
|
||||
class CUFGPUToLLVMConversion
|
||||
: public fir::impl::CUFGPUToLLVMConversionBase<CUFGPUToLLVMConversion> {
|
||||
public:
|
||||
@@ -283,8 +307,11 @@ public:
|
||||
} // namespace
|
||||
|
||||
void cuf::populateCUFGPUToLLVMConversionPatterns(
|
||||
const fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
|
||||
fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
|
||||
mlir::PatternBenefit benefit) {
|
||||
patterns.add<CUFSharedMemoryOpConversion, GPULaunchKernelConversion>(
|
||||
converter, benefit);
|
||||
converter.addConversion([&converter](mlir::gpu::AsyncTokenType) -> Type {
|
||||
return mlir::LLVM::LLVMPointerType::get(&converter.getContext());
|
||||
});
|
||||
patterns.add<CUFSharedMemoryOpConversion, GPULaunchKernelConversion,
|
||||
CUFStreamCastConversion>(converter, benefit);
|
||||
}
|
||||
|
||||
@@ -113,7 +113,7 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<i1, dense<8> : ve
|
||||
// -----
|
||||
|
||||
module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (git@github.com:clementval/llvm-project.git 4116c1370ff76adf1e58eb3c39d0a14721794c70)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
|
||||
llvm.func @_FortranACUFLaunchClusterKernel(!llvm.ptr, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, i32, !llvm.ptr, !llvm.ptr) attributes {sym_visibility = "private"}
|
||||
llvm.func @_FortranACUFLaunchClusterKernel(!llvm.ptr, i64, i64, i64, i64, i64, i64, i64, i64, i64, !llvm.ptr, i32, !llvm.ptr, !llvm.ptr) attributes {sym_visibility = "private"}
|
||||
llvm.func @_QMmod1Psub1() attributes {cuf.cluster_dims = #cuf.cluster_dims<x = 2 : i64, y = 2 : i64, z = 1 : i64>} {
|
||||
llvm.return
|
||||
}
|
||||
@@ -166,3 +166,66 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<i1, dense<8> : ve
|
||||
|
||||
// CHECK-LABEL: llvm.func @_QMmod1Phost_sub()
|
||||
// CHECK: llvm.call @_FortranACUFLaunchCooperativeKernel
|
||||
|
||||
// -----
|
||||
|
||||
module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (git@github.com:clementval/llvm-project.git 4116c1370ff76adf1e58eb3c39d0a14721794c70)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
|
||||
llvm.func @_QMmod1Psub1() attributes {cuf.cluster_dims = #cuf.cluster_dims<x = 2 : i64, y = 2 : i64, z = 1 : i64>} {
|
||||
llvm.return
|
||||
}
|
||||
llvm.func @_QQmain() attributes {fir.bindc_name = "test"} {
|
||||
%0 = llvm.mlir.constant(1 : index) : i64
|
||||
%stream = llvm.alloca %0 x i64 : (i64) -> !llvm.ptr
|
||||
%1 = llvm.mlir.constant(2 : index) : i64
|
||||
%2 = llvm.mlir.constant(0 : i32) : i32
|
||||
%3 = llvm.mlir.constant(10 : index) : i64
|
||||
%token = cuf.stream_cast %stream : !llvm.ptr
|
||||
gpu.launch_func [%token] @cuda_device_mod::@_QMmod1Psub1 blocks in (%3, %3, %0) threads in (%3, %3, %0) : i64 dynamic_shared_memory_size %2
|
||||
llvm.return
|
||||
}
|
||||
gpu.binary @cuda_device_mod [#gpu.object<#nvvm.target, "">]
|
||||
}
|
||||
|
||||
// CHECK-LABEL: llvm.func @_QQmain()
|
||||
// CHECK: %[[STREAM:.*]] = llvm.alloca %{{.*}} x i64 : (i64) -> !llvm.ptr
|
||||
// CHECK: %[[KERNEL_PTR:.*]] = llvm.mlir.addressof @_QMmod1Psub1
|
||||
// CHECK: llvm.call @_FortranACUFLaunchKernel(%[[KERNEL_PTR]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %[[STREAM]], %{{.*}}, %{{.*}}, %{{.*}}) : (!llvm.ptr, i64, i64, i64, i64, i64, i64, !llvm.ptr, i32, !llvm.ptr, !llvm.ptr) -> ()
|
||||
|
||||
// -----
|
||||
|
||||
module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (git@github.com:clementval/llvm-project.git ddcfd4d2dc17bf66cee8c3ef6284118684a2b0e6)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
|
||||
llvm.func @_QMmod1Phost_sub() {
|
||||
%0 = llvm.mlir.constant(1 : i32) : i32
|
||||
%one = llvm.mlir.constant(1 : i64) : i64
|
||||
%1 = llvm.alloca %0 x !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)> {alignment = 8 : i64} : (i32) -> !llvm.ptr
|
||||
%stream = llvm.alloca %one x i64 : (i64) -> !llvm.ptr
|
||||
%2 = llvm.mlir.constant(40 : i64) : i64
|
||||
%3 = llvm.mlir.constant(16 : i32) : i32
|
||||
%4 = llvm.mlir.constant(25 : i32) : i32
|
||||
%5 = llvm.mlir.constant(21 : i32) : i32
|
||||
%6 = llvm.mlir.constant(17 : i32) : i32
|
||||
%7 = llvm.mlir.constant(1 : index) : i64
|
||||
%8 = llvm.mlir.constant(27 : i32) : i32
|
||||
%9 = llvm.mlir.constant(6 : i32) : i32
|
||||
%10 = llvm.mlir.constant(1 : i32) : i32
|
||||
%11 = llvm.mlir.constant(0 : i32) : i32
|
||||
%12 = llvm.mlir.constant(10 : index) : i64
|
||||
%13 = llvm.mlir.addressof @_QQclX91d13f6e74caa2f03965d7a7c6a8fdd5 : !llvm.ptr
|
||||
%14 = llvm.call @_FortranACUFMemAlloc(%2, %11, %13, %6) : (i64, i32, !llvm.ptr, i32) -> !llvm.ptr
|
||||
%token = cuf.stream_cast %stream : !llvm.ptr
|
||||
gpu.launch_func [%token] @cuda_device_mod::@_QMmod1Psub1 blocks in (%7, %7, %7) threads in (%12, %7, %7) : i64 dynamic_shared_memory_size %11 args(%14 : !llvm.ptr) {cuf.proc_attr = #cuf.cuda_proc<grid_global>}
|
||||
llvm.return
|
||||
}
|
||||
llvm.func @_QMmod1Psub1(!llvm.ptr) -> ()
|
||||
llvm.mlir.global linkonce constant @_QQclX91d13f6e74caa2f03965d7a7c6a8fdd5() {addr_space = 0 : i32} : !llvm.array<2 x i8> {
|
||||
%0 = llvm.mlir.constant("a\00") : !llvm.array<2 x i8>
|
||||
llvm.return %0 : !llvm.array<2 x i8>
|
||||
}
|
||||
llvm.func @_FortranACUFMemAlloc(i64, i32, !llvm.ptr, i32) -> !llvm.ptr attributes {fir.runtime, sym_visibility = "private"}
|
||||
llvm.func @_FortranACUFMemFree(!llvm.ptr, i32, !llvm.ptr, i32) -> !llvm.struct<()> attributes {fir.runtime, sym_visibility = "private"}
|
||||
gpu.binary @cuda_device_mod [#gpu.object<#nvvm.target, "">]
|
||||
}
|
||||
|
||||
// CHECK-LABEL: llvm.func @_QMmod1Phost_sub()
|
||||
// CHECK: %[[STREAM:.*]] = llvm.alloca %{{.*}} x i64 : (i64) -> !llvm.ptr
|
||||
// CHECK: llvm.call @_FortranACUFLaunchCooperativeKernel(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %[[STREAM]], %{{.*}}, %{{.*}}, %{{.*}}) : (!llvm.ptr, i64, i64, i64, i64, i64, i64, !llvm.ptr, i32, !llvm.ptr, !llvm.ptr) -> ()
|
||||
|
||||
@@ -154,5 +154,5 @@ module attributes {gpu.container_module, dlti.dl_spec = #dlti.dl_spec<#dlti.dl_e
|
||||
// CHECK-LABEL: func.func @_QQmain()
|
||||
// CHECK: %[[STREAM:.*]] = fir.alloca i64 {bindc_name = "stream", uniq_name = "_QMtest_callFhostEstream"}
|
||||
// CHECK: %[[DECL_STREAM:.*]]:2 = hlfir.declare %[[STREAM]] {uniq_name = "_QMtest_callFhostEstream"} : (!fir.ref<i64>) -> (!fir.ref<i64>, !fir.ref<i64>)
|
||||
// CHECK: %[[TOKEN:.*]] = cuf.stream_cast %[[DECL_STREAM]]#0 : <i64>
|
||||
// CHECK: %[[TOKEN:.*]] = cuf.stream_cast %[[DECL_STREAM]]#0 : !fir.ref<i64>
|
||||
// CHECK: gpu.launch_func [%[[TOKEN]]] @cuda_device_mod::@_QMdevptrPtest
|
||||
|
||||
@@ -17,5 +17,5 @@ module attributes {gpu.container_module} {
|
||||
|
||||
// CHECK-LABEL: func.func @_QMmod1Phost_sub()
|
||||
// CHECK: %[[STREAM:.*]] = fir.alloca i64
|
||||
// CHECK: %[[TOKEN:.*]] = cuf.stream_cast %[[STREAM]] : <i64>
|
||||
// CHECK: %[[TOKEN:.*]] = cuf.stream_cast %[[STREAM]] : !fir.ref<i64>
|
||||
// CHECK: gpu.launch_func [%[[TOKEN]]] @cuda_device_mod::@_QMmod1Psub1
|
||||
|
||||
Reference in New Issue
Block a user