Only the main Presburger library under the Presburger directory has been switched to use arbitrary precision. Users have been changed to just cast returned values back to int64_t or to use newly added convenience functions that perform the same cast internally.
The performance impact of this has been tested by checking test runtimes after copy-pasting 100 copies of each function. Affine/simplify-structures.mlir goes from 0.76s to 0.80s after this patch. Its performance sees no regression compared to its original performance at commit 18a06d4f3a before a series of patches that I landed to offset the performance overhead of switching to arbitrary precision.
Affine/canonicalize.mlir and SCF/canonicalize.mlir show no noticable difference, staying at 2.02s and about 2.35s respectively.
Also, for Affine and SCF tests as a whole (no copy-pasting), the runtime remains about 0.09s on average before and after.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D129510
This patch refactors MAF to be defined over the universe in a given space
instead of being defined over a restricted domain.
The reasoning for this refactor is to store division representation for local
variables explicitly for the function outputs. This change is required for
unionLexMax/Min to support local variables which will be upstreamed after this
patch. Another reason for this refactor is to have a flattened form of
AffineMap as MultiAffineFunction.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D131864
This patch replaces mlir::lcm with std::lcm, a C++17 feature.
Note that all the arguments to mlir::lcm are of int64_t with no
implicit type conversion as they are passed to mlir::lcm, which I've
verified by modifying mlir::lcm as:
template <typename TA, typename TB>
inline int64_t lcm(TA a, TB b) {
static_assert(std::is_same_v<TA, int64_t>);
static_assert(std::is_same_v<TB, int64_t>);
:
Currently, in the Presburger library, we use the words "variables" and
"identifiers" interchangeably. This patch changes this to only use "variables" to
refer to the variables of PresburgerSpace.
The reasoning behind this change is that the current usage of the word "identifier"
is misleading. variables do not "identify" anything. The information attached to them is the
actual "identifier" for the variable. The word "identifier", will later be used
to refer to the information attached to each variable in space.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D128585
When constraints in the two operands make each other redundant, prefer constraints of the second because this affects the number of sets in the output at each level; reducing these can help prevent exponential blowup.
This is accomplished by adding extra overloads to Simplex::detectRedundant that only scan a subrange of the constraints for redundancy.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D127237
This fillRow(..., 0) is redundant because when the size of the tableau is
consistent, the resize always creates a new row, which is zero-initialized.
Also added asserts throughout to ensure the dimensions of the tableau remain
consistent.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D126709
Previously this checked if the entire symbolic numerator was divisible by the
denominator, which is never the case when this function is called. Fixed this to
check only the non-const coefficients in the numerator, which was what was
intended and documented.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D123592
When the sample value is zero, everything is the same except that failure to
pivot does not imply emptiness. So, leave it to the user to mark as empty if
necessary, if they know the sample value is strictly negative. This is needed
for an upcoming symbolic lexmin heuristic.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D123604
Normalize some of the division and inequality expressions used,
which can improve performance. Also deduplicate some of the
normalization functionality throughout the Presburger library.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D123314
Add support for computing the symbolic integer lexmin of a polyhedron.
This finds, for every assignment to the symbols, the lexicographically
minimum value attained by the dimensions. For example, the symbolic lexmin
of the set
`(x, y)[a, b, c] : (a <= x, b <= x, x <= c)`
can be written as
```
x = a if b <= a, a <= c
x = b if a < b, b <= c
```
This also finds the set of assignments to the symbols that make the lexmin unbounded.
This was previously landed in da92f92621 and
reverted in b238c252e8 due to a build failure
in the code. Re-landing now with a fixed build.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122985
Add support for computing the symbolic integer lexmin of a polyhedron.
This finds, for every assignment to the symbols, the lexicographically
minimum value attained by the dimensions. For example, the symbolic lexmin
of the set
`(x, y)[a, b, c] : (a <= x, b <= x, x <= c)`
can be written as
```
x = a if b <= a, a <= c
x = b if a < b, b <= c
```
This also finds the set of assignments to the symbols that make the lexmin unbounded.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122985
Add integer-exact checks for inequalities being separate and redundant in LexSimplex.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122921
LexSimplex cannot be made to support symbols for symbolic lexmin; this requires
a second class. In preparation for upstreaming support for symbolic lexmin,
keep the part of LexSimplex that are specific to non-symbolic lexmin in LexSimplex
and move the parts that are required to a common class LexSimplexBase for both to
inherit from.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122828
This reverts commit 5630143af3. The
implementation in this commit was incorrect. Also, handling this representation
of equalities in the upcoming support for symbolic lexicographic minimization
makes that patch much more complex. It will be easier to review that without
this representaiton and then reintroduce the fixed column representation
later, hence the revert rather than a bug fix.
In LexSimplex, instead of adding equalities as a pair of inequalities,
add them as a single row, move them into the basis, and keep them there.
There will always be a valid basis involving all non-redundant equalities. Such
equalities will then be ignored in some other operations, such as when looking
for pivot columns. This speeds them up a little bit.
More importantly, this is an important precursor patch to adding support for
symbolic integer lexmin, as this heuristic can sometimes make a big difference there.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122165
This simplifies many places where we just want to do something in a "transient context"
and return some value.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122172
This is a convenience function for adding new divisions to the Simplex given the numerator and denominator.
This will be needed for symbolic integer lexmin support.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122159
Previously, an UndoLogEntry was added by addRow but not by addZeroRow. So
calling directly into addZeroRow, as LexSimplex::addCut does, was not an
undoable operation. In the current usage of addCut this could never
lead to an incorrect result, and addZeroRow is protected, so it is not
currently possible to add a regression test for this. This bug needs to be
fixed for the symbolic integer lexmin algorithm.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D122162
This patch moves all functionality from IntegerPolyhedron to IntegerRelation.
IntegerPolyhedron is now implemented as a relation with no domain. All existing
functionality is extended to work on relations.
This patch does not affect external users like FlatAffineConstraints as they
can still continue to use IntegerPolyhedron abstraction.
This patch is part of a series of patches to support relations in Presburger
library.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D120652
This patch moves the Presburger library to a new `presburger` namespace.
This allows to shorten some names, helps to avoid polluting the mlir namespace,
and also provides some structure.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D120505
This patch adds typing of inequalities to the simplex. This is a cental part of the coalesce algorithm and will be heavily used in later coalesce patches. Currently, only the three most basic types are supported with more to be introduced when they are needed.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D119925
This allows to differentiate between the cases where the optimum does not
exist due to being unbounded and due to the polytope being empty.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D120127
This patch introduces a class LexSimplex that can currently be used to find the
lexicographically minimal rational point in an IntegerPolyhedron. This is a
series of patches leading to computing the lexicographically minimal integer
lattice point as well parametric lexicographic minimization.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D117437
Initialize some variables to zero to avoid a warning about them possibly being
used uninitialized. In actuality, they will never be used before initialization.
This patch replaces usage of FlatAffineConstraints in Simplex with
IntegerPolyhedron. This removes dependency of Simplex on FlatAffineConstraints
and puts it on IntegerPolyhedron, which is part of Presburger library.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D116287
This is a purely mechanical patch moving some functionality out from the
`Simplex` class out into a `SimplexBase` class. This pavees the way for
a future patch adding support for lexicographic optimization with a class
`LexSimplex`, which will inherit from `SimplexBase`. Inheriting directly
from `Simplex` would bring many additional functions that would not work in
`LexSimplex` because it operates slighty differently from `Simplex`. So We
split out only the basic functionality it needs to inherit into `SimplexBase`.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D115831
Previously, the LogicalResult return value of restoreRow was being ignored in
places where it was expected to always be success. Instead, check the result
and go to an `llvm_unreachable` if it turns out to be failure.