A transformation tiling a reduction dimension of a Linalg op needs a
tile size for said dimension. When an insufficient number of dimensions
was provided, it would segfault due to out-of-bounds access to a vector.
Also fix incorrect error reporting in the structured transform op
exercising this functionality.
Reviewed By: springerm, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D141046
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
In the process, numerous insertion point issues were found and fixed.
RAII on insertion points is now used more dilligently.
Differential Revision: https://reviews.llvm.org/D139714
This adds a tile_size parameter, when it is used the tiles are
cyclically distributed onto the threads of the scf.foreach_thread op.
Differential Revision: https://reviews.llvm.org/D139474
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This fixes the case where scf::LoopNest::loops is empty.
Change LoopVector and ValueVector to SmallVector.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136926
This adds a transformation to tile reduction operations to partial
reduction using scf.foreachthread. This uses
PartialReductionOpInterface to create a merge operation of the partial
tiles.
Differential Revision: https://reviews.llvm.org/D137912
`scf.foreach_thread` defines mapping its loops to processors via an integer array, see an example below. A lowering can use this mapping. However, expressing mapping as an integer array is very confusing, especially when there are multiple levels of parallelism. In addition, the op does not verify the integer array. This change introduces device mapping attribute to make mapping descriptive and verifiable. Then it makes GPU transform dialect use it.
```
scf.foreach_thread (%i, %j) in (%c1, %c2) {
scf.foreach_thread (%i2, %j2) in (%c1, %c2)
{...} { thread_dim_mapping = [0, 1]}
} { thread_dim_mapping = [0, 1]}
```
It first introduces a `DeviceMappingInterface` which is an attribute interface. `scf.foreach_thread` defines its mapping via this interface. A lowering must define its attributes and implement this interface as well. This way gives us a clear validation.
The change also introduces two new attributes (`#gpu.thread<x/y/z>` and `#gpu.block<x,y,z>` ). After this change, the above code prints as below, as seen here, this way clarifies the loop mappings. The change also implements consuming of these two new attribute by the transform dialect. Transform dialect binds the outermost loops to the thread blocks and innermost loops to threads.
```
scf.foreach_thread (%i, %j) in (%c1, %c2) {
scf.foreach_thread (%i2, %j2) in (%c1, %c2)
{...} { thread_dim_mapping = [#gpu.thread<x>, #gpu.thread<y>]}
} { thread_dim_mapping = [#gpu.block<x>, #gpu.block<y>]}
```
Reviewed By: ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D137413
[RFC: EnumAttr for iterator types in Linalg](https://discourse.llvm.org/t/rfc-enumattr-for-iterator-types-in-linalg/64535)
This affect touches and probably breaks most of the code that creates `linalg.generic`. A fix would be to replace calls to `getParallelIteratorTypeName/getReductionIteratorTypeName` with `mlir::utils::IteratorType::parallel/reduction` and types from `StringRef` to `mlir::utils::IteratorType`.
Due to limitations of tablegen, shared C++ definition of IteratorType enum lives in StructuredOpsUtils.td, but each dialect should have it's own EnumAttr wrapper. To avoid conflict, all enums in a dialect are put into a separate file with a separate tablegen rule.
Test dialect td files are refactored a bit.
Printed format of `linalg.generic` temporarily remains unchanged to avoid breaking code and tests in the same change.
Differential Revision: https://reviews.llvm.org/D137658
`getDestinationOperands` was almost a duplicate of `DestinationStyleOpInterface::getOutputOperands`. Now that the interface has been moved to mlir/Interfaces, it is no longer needed.
Differential Revision: https://reviews.llvm.org/D136240
Context: https://discourse.llvm.org/t/psa-retire-linalg-filter-based-patterns/63785
Uses of `LinalgTilingPattern::returningMatchAndRewrite` are replaced by a top-level `tileWithLinalgTilingOptions` function that is marked obsolete and serves
as a temporary means to transition away from `LinalgTilingOptions`-based tiling.
LinalgTilingOptions supports too many options that have been orthogonalized with the use of the transform dialect.
Additionally, the revision introduces a `transform.structured.tile_to_scf_for` structured transform operation that is needed to properly tile `tensor.pad`
via the TilingInterface. Uses of `transform.structured.tile` will be deprecated and replaced by this new op.
This will achieve the deprecation of `linalg::tileLinalgOp`.
Context: https://discourse.llvm.org/t/psa-retire-tileandfuselinalgops-method/63850
In the process of transitioning, tests that were performing tile and distribute on tensors are retired: transformations should be orthogonalized better in the future.
In particular, tiling to specific loop types and tileAndDistribute behavior are not available via the transform ops.
The behavior is still available as part of the `tileWithLinalgTilingOptions` method to allow downstream clients to transition without breakages but is meant to be retired soon.
As more tests are ported to the transform dialect, it became necessary to introduce a test-transform-dialect-erase-schedule-pass to discard the transform specification
once applied so that e2e lowering and execution is possible.
Lastly, a number of redundant tests that were testing composition of patterns are retired as they are available with a better mechanism via the transform dialect.
Differential Revision: https://reviews.llvm.org/D135573
tensor.empty/linalg.init_tensor produces an uninititalized tensor that can be used as a destination operand for destination-style ops (ops that implement `DestinationStyleOpInterface`).
This change makes it possible to implement `TilingInterface` for non-destination-style ops without depending on the Linalg dialect.
RFC: https://discourse.llvm.org/t/rfc-add-tensor-from-shape-operation/65101
Differential Revision: https://reviews.llvm.org/D135129
The tiling interface generates the order of parallel_insert_slice incorrectly when there are multiple destionation operands. This revision fixes that and adds a test for it. It depends on D132937
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D133204
This revision relaxes constraint of tiling when there are multiple destination operands. It also adds a test.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D132937
This change refines the semantics of scf.foreach_thread. Tensors that are inserted into in the terminator must now be passed to the region explicitly via `shared_outs`. Inside of the body of the op, those tensors are then accessed via block arguments.
The body of a scf.foreach_thread is now treated as a repetitive region. I.e., op dominance can no longer be used in conflict detection when using a value that is defined outside of the body. Such uses may now be considered as conflicts (if there is at least one read and one write in the body), effectively privatizing the tensor. Shared outputs are not privatized when they are used via their corresponding block arguments.
As part of this change, it was also necessary to update the "tiling to scf.foreach_thread", such that the generated tensor.extract_slice ops use the scf.foreach_thread's block arguments. This is implemented by cloning the TilingInterface op inside the scf.foreach_thread, rewriting all of its outputs with block arguments and then calling the tiling implementation. Afterwards, the cloned op is deleted again.
Differential Revision: https://reviews.llvm.org/D133114
`getTiledImplementation`/`generateResultTileValue` only computes the tiled operation, but does not insert the result into any tensor.
Differential Revision: https://reviews.llvm.org/D133015
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The tiling interface implementation was making assumption on the code
generated by makeTiledShape which were wrong. The ExtractSliceOp create
may be combined with other ExtractSliceOp. To solve that we compute
directly the offset using the new utilities.
Differential Revision: https://reviews.llvm.org/D132182
This patch cleans up the way `LinalgLoopDistributionOptions` are meant
to be used. The option just contains a call back that takes the list
of loop ranges that represent the loops that are to be distributed.
These loops are the outer parallel loops of the tiled operation which
have non-zero tile sizes specified. The call back returns for each of
the loops,
- The procId to use,
- The number of processors,
- The distribution method to use for that loop.
Reviewed By: antiagainst, hanchung
Differential Revision: https://reviews.llvm.org/D131232
A group of functions in the Affine dialect provides a mechanism for
buliding folded-by-construction operations. These functions used to
accept a `RewriterBase` reference because they may need to erase the
operations that were folded and notify the rewriter when called from
rewrite patterns. Adopt a different approach: postpone the builder
notification of the op creation until we are certain that the op will
not be folded away. This removes the need to notify the rewriter about
op deletion following op construction in case of successful folding, and
removes a bunch of one-off `IRRewriter` instances in transform code that
may mess up insertion points.
Reviewed By: springerm, mravishankar
Differential Revision: https://reviews.llvm.org/D130616
Combine the recently added utilities for folded-by-construction affine
operations with the attribute-based Range to enable more folding. This
decreases the amount of emitted code but has little effect on test
precisely because the tests are not checking for the spurious constants.
The difference in the shape of affine maps comes from the internals of
affine folding.
Depends on D129633
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D130167
While most of methods in ViewLikeInterface accept an `OpFoldResult` for
the offset/size/stride that may be static, represented as `Attribute`,
or dynamic, represented as `Value`, the `Range` abstraction only
accepted `Values`. This can often lead to known-constant
offset/size/strides being materialized into constant operations and
hinder further constant propagation without explicitly running the
constant folding pass. This often leads to a more complicated than
necessary addressing code being emitted. Switch `Range` to use
`OpFoldResult`. Code that uses `Range` currently keeps materializing the
constants to minimize the effect of this change on the IR. Further
commits will make use of this.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D129633
This change modifies `structured.tile_to_foreach_thread_op` so that
it accepts either `tile_sizes` or `num_threads` parameters. If
`tile_sizes` are specified, then the number of threads required is
derived the tile sizes rather than the other way around. In both cases,
more aggressive folding of loop parameters is enabled during the
transformation, allowing for the potential elimination of `affine.min`
and `affine.max` operations in the static shape case when calculating
the final adjusted tile size.
Differential Revision: https://reviews.llvm.org/D130139
This revision adds a new transformation to tile a TilingInterface `op` to a tiled `scf.foreach_thread`, applying
tiling by `num_threads`.
If non-empty, the `threadDimMapping` is added as an attribute to the resulting `scf.foreach_thread`.
0-tile sizes (i.e. tile by the full size of the data) are used to encode
that a dimension is not tiled.
Differential Revision: https://reviews.llvm.org/D129577
The existing implementation of the TilingInterface for Linalg ops was not
modifying the `linalg.index` ops contained within other Linalg ops (they need
to be summed up with the values of respective tile loop induction variables),
which led to the interface-based tiling being incorrect for any Linalg op with
index semantics.
In the process, fix the function performing the index offsetting to use the
pattern rewriter API instead of RAUW as it is being called from patterns and
may mess up the internal state of the rewriter. Also rename the function to
clearly catch all uses.
Depends On D129365
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D129366
Introduce a structured transform op that emits IR computing the multi-tile
sizes with requested parameters (target size and divisor) for the given
structured op. The sizes may fold to arithmetic constant operations when the
shape is constant. These operations may then be used to call the existing
tiling transformation with a single non-zero dynamic size (i.e. perform
strip-mining) for each of the dimensions separately, thus achieving multi-size
tiling with optional loop interchange. A separate test exercises the entire
script.
Depends On D129217
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129287
Introduce a new transformation on structured ops that splits the iteration
space into two parts along the specified dimension. The index at which the
splitting happens may be static or dynamic. This transformation can be seen as
a rudimentary form of index-set splitting that only supports the splitting
along hyperplanes parallel to the iteration space hyperplanes, and is therefore
decomposable into per-dimension application.
It is a key low-level transformation that enables independent scheduling for
different parts of the iteration space of the same op, which hasn't been
possible previously. It may be used to implement, e.g., multi-sized tiling. In
future, peeling can be implemented as a combination of split-off amount
computation and splitting.
The transformation is conceptually close to tiling in its separation of the
iteration and data spaces, but cannot be currently implemented on top of
TilingInterface as the latter does not properly support `linalg.index`
offsetting.
Note that the transformation intentionally bypasses folding of
`tensor.extract_slice` operations when creating them as this folding was found
to prevent repeated splitting of the same operation because due to internal
assumptions about extract/insert_slice combination in dialect utilities.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129090
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
This patch adds support for tiling operations that implement the
TilingInterface.
- It separates the loop constructs that are used to iterate over tile
from the implementation of the tiling itself. For example, the use
of destructive updates is more related to use of scf.for for
iterating over tiles that are tensors.
- To test the transformation, TilingInterface is implemented for
LinalgOps. The separation of the looping constructs used from the
implementation of tile code generation greatly simplifies the
latter.
- The implementation of TilingInterface for LinalgOp is kept as an
external model for now till this approach can be fully flushed out
to replace the existing tiling + fusion approaches in Linalg.
Differential Revision: https://reviews.llvm.org/D127133
Bubble up extract_slice above Linalg operation.
A sequence of operations
%0 = linalg.<op> ... arg0, arg1, ...
%1 = tensor.extract_slice %0 ...
can be replaced with
%0 = tensor.extract_slice %arg0
%1 = tensor.extract_slice %arg1
%2 = linalg.<op> ... %0, %1, ...
This results in the reduce computation of the linalg operation.
The implementation uses the tiling utility functions. One difference
from the tiling process is that we don't need to insert the checking
code for the out-of-bound accesses. The use of the slice itself
represents that the code writer is sure about the boundary condition.
To avoid adding the boundary condtion check code, `omitPartialTileCheck`
is introduced for the tiling utility functions.
Differential Revision: https://reviews.llvm.org/D122437
This patch removes an old recursive implementation to lower vector.transpose to extract/insert operations
and replaces it with a iterative approach that leverages newer linearization/delinearization utilities.
The patch should be NFC except by the order in which the extract/insert ops are generated.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D121321