For cases where we can automatically construct the Attribute allow for more
user-friendly input. This is consistent with C++ builder generation as well
choice of which single builder to generate here (most
specialized/user-friendly).
Registration of attribute builders from more pythonic input is all Python side.
The downside is that
* extra checking to see if user provided a custom builder in op builders,
* the ODS attribute name is load bearing
upside is that
* easily change these/register dialect specific ones in downstream projects,
* adding support/changing to different convenience builders are all along with
the rest of the convenience functions in Python (and no additional changes
to tablegen file or recompilation needed);
Allow for both building with Attributes as well as raw inputs. This change
should therefore be backwards compatible as well as allow for avoiding
recreating Attribute where already available.
Differential Revision: https://reviews.llvm.org/D139568
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
This adds a simple PyOpOperand based on MlirOpOperand, which can has
properties for the owner op and operation number.
This also adds a PyOpOperandIterator that defines methods for __iter__
and __next__ so PyOpOperands can be iterated over using the the
MlirOpOperand C API.
Finally, a uses psuedo-container is added to PyValue so the uses can
generically be iterated.
Depends on D139596
Reviewed By: stellaraccident, jdd
Differential Revision: https://reviews.llvm.org/D139597
This allows us to hash Blocks and use them in sets or parts of larger
hashable objects. The implementation is the same as other core IR
constructs: the C API object's pointer is hashed.
Differential Revision: https://reviews.llvm.org/D139599
This adds a `PassManager.add` method which adds pipeline elements to the
pass manager. This allows for progressively building up a pipeline from
python without string manipulation.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D137344
This adds an extra argument for specifying the pass manager's anchor op,
with a default of `any`. Previously the anchor was always defaulted to
`builtin.module`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136406
The pipeline string must now include the pass manager's anchor op. This
makes the parse API properly roundtrip the printed form of a pass
manager.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136405
Currently any errors during pipeline parsing are reported to stderr.
This adds a new pipeline parsing function to the C api that reports
errors through a callback, and updates the python bindings to use it.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136402
Previously a pipeline nested on `anchor-op` would print as just
`'pipeline'`, now it will print as `'anchor-op(pipeline)'`. This ensures
the text form includes all information needed to reconstruct the pass
manager.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D134622
This diff causes the `tblgen`-erated print() function to skip printing a
`DefaultValuedAttr` attribute when the value is equal to the default.
This feature will reduce the amount of custom printing code that needs to be
written by users a relatively common scenario. As a motivating example, for the
fastmath flags in the LLVMIR dialect, we would prefer to print this:
```
%0 = llvm.fadd %arg0, %arg1 : f32
```
instead of this:
```
%0 = llvm.fadd %arg0, %arg1 {fastmathFlags = #llvm.fastmath<none>} : f32
```
This diff makes the handling of print functionality for default-valued attributes
standard.
This is an updated version of https://reviews.llvm.org/D135398, without the per-attribute bit to control printing.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D135993
Add a new OperationType handle type to the Transform dialect. This
transform type is parameterized by the name of the payload operation it
can point to. It is intended as a constraint on transformations that are
only applicable to a specific kind of payload operations. If a
transformation is applicable to a small set of operation classes, it can
be wrapped into a transform op by using a disjunctive constraint, such
as `Type<Or<[Transform_ConcreteOperation<"foo">.predicate,
Transform_ConcreteOperation<"bar">.predicate]>>` for its operand without
modifying this type. Broader sets of accepted operations should be
modeled as specific types.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D135586
Use the recently introduced TransformTypeInterface instead of hardcoding
the PDLOperationType. This will allow the operations to use more
specific transform types to express pre/post-conditions in the future.
It requires the syntax and Python op construction API to be updated.
Dialect extensions will be switched separately.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D135584
This is a followup to D135004, to correct one of the tests that didn't get caught by the buildbot.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D135336
This extension to the sparse tensor type system in MLIR
opens up a whole new set of sparse storage schemes, such as
block sparse storage (e.g. BCSR) and ELL (aka jagged diagonals).
This revision merely introduces the type extension and
initial documentation. The actual interpretation of the type
(reading in tensors, lowering to code, etc.) will follow.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D135206
tensor.empty/linalg.init_tensor produces an uninititalized tensor that can be used as a destination operand for destination-style ops (ops that implement `DestinationStyleOpInterface`).
This change makes it possible to implement `TilingInterface` for non-destination-style ops without depending on the Linalg dialect.
RFC: https://discourse.llvm.org/t/rfc-add-tensor-from-shape-operation/65101
Differential Revision: https://reviews.llvm.org/D135129
This adds a `write_bytecode` method to the Operation class.
The method takes a file handle and writes the binary blob to it.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D133210
Introduce a new attribute to represent the strided memref layout. Strided
layouts are omnipresent in code generation flows and are the only kind of
layouts produced and supported by a half of operation in the memref dialect
(view-related, shape-related). However, they are internally represented as
affine maps that require a somewhat fragile extraction of the strides from the
linear form that also comes with an overhead. Furthermore, textual
representation of strided layouts as affine maps is difficult to read: compare
`affine_map<(d0, d1, d2)[s0, s1] -> (d0*32 + d1*s0 + s1 + d2)>` with
`strides: [32, ?, 1], offset: ?`. While a rudimentary support for parsing a
syntactically sugared version of the strided layout has existed in the codebase
for a long time, it does not go as far as this commit to make the strided
layout a first-class attribute in the IR.
This introduces the attribute and updates the tests that using the pre-existing
sugared form to use the new attribute instead. Most memref created
programmatically, e.g., in passes, still use the affine form with further
extraction of strides and will be updated separately.
Update and clean-up the memref type documentation that has gotten stale and has
been referring to the details of affine map composition that are long gone.
See https://discourse.llvm.org/t/rfc-materialize-strided-memref-layout-as-an-attribute/64211.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D132864
A number of mlir tests `FAIL` on Solaris/sparcv9 with `Target has no JIT
support`. This patch fixes that by mimicing `clang/test/lit.cfg.py` which
implements a `host-supports-jit` keyword for this. The gtest-based unit
tests don't support `REQUIRES:`, so lack of support needs to be hardcoded
there.
Tested on `amd64-pc-solaris2.11` (`check-mlir` results unchanged) and
`sparcv9-sun-solaris2.11` (only one unrelated failure left).
Differential Revision: https://reviews.llvm.org/D131151
This reland includes changes to the Python bindings.
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131801
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D131803
Introduce two different failure propagation mode in the Transform
dialect's Sequence operation. These modes specify whether silenceable
errors produced by nested ops are immediately propagated, thus stopping
the sequence, or suppressed. The latter is useful in end-to-end
transform application scenarios where the user cannot correct the
transformation, but it is robust enough to silenceable failures. It
can be combined with the "alternatives" operation. There is
intentionally no default value to avoid favoring one mode over the
other.
Downstreams can update their tests using:
S='s/sequence \(%.*\) {/sequence \1 failures(propagate) {/'
T='s/sequence {/sequence failures(propagate) {/'
git grep -l transform.sequence | xargs sed -i -e "$S"
git grep -l transform.sequence | xargs sed -i -e "$T"
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D131774
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131738
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D131702
Previously, calling `Value.owner()` would C++ assert in debug builds if
`Value` was a block argument. Additionally, the behavior was just wrong
in release builds. This patch adds support for BlockArg Values.
This attribute is technical debt from the early stages of MLIR, before
ElementsAttr was an interface and when it was more difficult for
dialects to define their own types of attributes. At present it isn't
used at all in tree (aside from being convenient for eliding other
ElementsAttr), and has had little to no evolution in the past three years.
Differential Revision: https://reviews.llvm.org/D129917
e179532284 removed the Type field from attributes and
arith::ConstantOp argument is now a TypedAttrInterface which isn't
supported by the python generator.
This patch temporarily restore the functionality for arith.constant but
won't generalize: we need to work on the generator instead.
Differential Revision: https://reviews.llvm.org/D130878
Previously the elements of the notes tuple would be invalid objects when
accessed from a diagnostic handler, resulting in a segfault when used.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D129943
The type extraction helper function for block argument and op result
list objects was ignoring the slice entirely. So was the slice addition.
Both are caused by a misleading naming convention to implement slices
via CRTP. Make the convention more explicit and hide the helper
functions so users have harder time calling them directly.
Closes#56540.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D130271
Since the very first commits, the Python and C MLIR APIs have had mis-placed registration/load functionality for dialects, extensions, etc. This was done pragmatically in order to get bootstrapped and then just grew in. Downstreams largely bypass and do their own thing by providing various APIs to register things they need. Meanwhile, the C++ APIs have stabilized around this and it would make sense to follow suit.
The thing we have observed in canonical usage by downstreams is that each downstream tends to have native entry points that configure its installation to its preferences with one-stop APIs. This patch leans in to this approach with `RegisterEverything.h` and `mlir._mlir_libs._mlirRegisterEverything` being the one-stop entry points for the "upstream packages". The `_mlir_libs.__init__.py` now allows customization of the environment and Context by adding "initialization modules" to the `_mlir_libs` package. If present, `_mlirRegisterEverything` is treated as such a module. Others can be added by downstreams by adding a `_site_initialize_{i}.py` module, where '{i}' is a number starting with zero. The number will be incremented and corresponding module loaded until one is not found. Initialization modules can:
* Perform load time customization to the global environment (i.e. registering passes, hooks, etc).
* Define a `register_dialects(registry: DialectRegistry)` function that can extend the `DialectRegistry` that will be used to bootstrap the `Context`.
* Define a `context_init_hook(context: Context)` function that will be added to a list of callbacks which will be invoked after dialect registration during `Context` initialization.
Note that the `MLIRPythonExtension.RegisterEverything` is not included by default when building a downstream (its corresponding behavior was prior). For downstreams which need the default MLIR initialization to take place, they must add this back in to their Python CMake build just like they add their own components (i.e. to `add_mlir_python_common_capi_library` and `add_mlir_python_modules`). It is perfectly valid to not do this, in which case, only the things explicitly depended on and initialized by downstreams will be built/packaged. If the downstream has not been set up for this, it is recommended to simply add this back for the time being and pay the build time/package size cost.
CMake changes:
* `MLIRCAPIRegistration` -> `MLIRCAPIRegisterEverything` (renamed to signify what it does and force an evaluation: a number of places were incidentally linking this very expensive target)
* `MLIRPythonSoure.Passes` removed (without replacement: just drop)
* `MLIRPythonExtension.AllPassesRegistration` removed (without replacement: just drop)
* `MLIRPythonExtension.Conversions` removed (without replacement: just drop)
* `MLIRPythonExtension.Transforms` removed (without replacement: just drop)
Header changes:
* `mlir-c/Registration.h` is deleted. Dialect registration functionality is now in `IR.h`. Registration of upstream features are in `mlir-c/RegisterEverything.h`. When updating MLIR and a couple of downstreams, I found that proper usage was commingled so required making a choice vs just blind S&R.
Python APIs removed:
* mlir.transforms and mlir.conversions (previously only had an __init__.py which indirectly triggered `mlirRegisterTransformsPasses()` and `mlirRegisterConversionPasses()` respectively). Downstream impact: Remove these imports if present (they now happen as part of default initialization).
* mlir._mlir_libs._all_passes_registration, mlir._mlir_libs._mlirTransforms, mlir._mlir_libs._mlirConversions. Downstream impact: None expected (these were internally used).
C-APIs changed:
* mlirRegisterAllDialects(MlirContext) now takes an MlirDialectRegistry instead. It also used to trigger loading of all dialects, which was already marked with a TODO to remove -- it no longer does, and for direct use, dialects must be explicitly loaded. Downstream impact: Direct C-API users must ensure that needed dialects are loaded or call `mlirContextLoadAllAvailableDialects(MlirContext)` to emulate the prior behavior. Also see the `ir.c` test case (e.g. ` mlirContextGetOrLoadDialect(ctx, mlirStringRefCreateFromCString("func"));`).
* mlirDialectHandle* APIs were moved from Registration.h (which now is restricted to just global/upstream registration) to IR.h, arguably where it should have been. Downstream impact: include correct header (likely already doing so).
C-APIs added:
* mlirContextLoadAllAvailableDialects(MlirContext): Corresponds to C++ API with the same purpose.
Python APIs added:
* mlir.ir.DialectRegistry: Mapping for an MlirDialectRegistry.
* mlir.ir.Context.append_dialect_registry(MlirDialectRegistry)
* mlir.ir.Context.load_all_available_dialects()
* mlir._mlir_libs._mlirAllRegistration: New native extension that exposes a `register_dialects(MlirDialectRegistry)` entry point and performs all upstream pass/conversion/transforms registration on init. In this first step, we eagerly load this as part of the __init__.py and use it to monkey patch the Context to emulate prior behavior.
* Type caster and capsule support for MlirDialectRegistry
This should make it possible to build downstream Python dialects that only depend on a subset of MLIR. See: https://github.com/llvm/llvm-project/issues/56037
Here is an example PR, minimally adapting IREE to these changes: https://github.com/iree-org/iree/pull/9638/files In this situation, IREE is opting to not link everything, since it is already configuring the Context to its liking. For projects that would just like to not think about it and pull in everything, add `MLIRPythonExtension.RegisterEverything` to the list of Python sources getting built, and the old behavior will continue.
Reviewed By: mehdi_amini, ftynse
Differential Revision: https://reviews.llvm.org/D128593
Introduce a structured transform op that emits IR computing the multi-tile
sizes with requested parameters (target size and divisor) for the given
structured op. The sizes may fold to arithmetic constant operations when the
shape is constant. These operations may then be used to call the existing
tiling transformation with a single non-zero dynamic size (i.e. perform
strip-mining) for each of the dimensions separately, thus achieving multi-size
tiling with optional loop interchange. A separate test exercises the entire
script.
Depends On D129217
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129287
Extend the definition of the Tile structured transform op to enable it
accepting handles to operations that produce tile sizes at runtime. This is
useful by itself and prepares for more advanced tiling strategies. Note that
the changes are relevant only to the transform dialect, the tiling
transformation itself already supports dynamic sizes.
Depends On D129216
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129217
This handle manipulation operation allows one to define a new handle that is
associated with a the same payload IR operations N times, where N can be driven
by the size of payload IR operation list associated with another handle. This
can be seen as a sort of broadcast that can be used to ensure the lists
associated with two handles have equal numbers of payload IR ops as expected by
many pairwise transform operations.
Introduce an additional "expensive" check that guards against consuming a
handle that is assocaited with the same payload IR operation more than once as
this is likely to lead to double-free or other undesired effects.
Depends On D129110
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129216
This Transform dialect op allows one to merge the lists of Payload IR
operations pointed to by several handles into a single list associated with one
handle. This is an important Transform dialect usability improvement for cases
where transformations may temporarily diverge for different groups of Payload
IR ops before converging back to the same script. Without this op, several
copies of the trailing transformations would have to be present in the
transformation script.
Depends On D129090
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129110
Introduce a new transformation on structured ops that splits the iteration
space into two parts along the specified dimension. The index at which the
splitting happens may be static or dynamic. This transformation can be seen as
a rudimentary form of index-set splitting that only supports the splitting
along hyperplanes parallel to the iteration space hyperplanes, and is therefore
decomposable into per-dimension application.
It is a key low-level transformation that enables independent scheduling for
different parts of the iteration space of the same op, which hasn't been
possible previously. It may be used to implement, e.g., multi-sized tiling. In
future, peeling can be implemented as a combination of split-off amount
computation and splitting.
The transformation is conceptually close to tiling in its separation of the
iteration and data spaces, but cannot be currently implemented on top of
TilingInterface as the latter does not properly support `linalg.index`
offsetting.
Note that the transformation intentionally bypasses folding of
`tensor.extract_slice` operations when creating them as this folding was found
to prevent repeated splitting of the same operation because due to internal
assumptions about extract/insert_slice combination in dialect utilities.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129090