This commit refactors the syntax of "ugly" attribute/type formats to not use
strings for wrapping. This means that moving forward attirbutes and type formats
will always need to be in some recognizable form, i.e. if they use incompatible
characters they will need to manually wrap those in a string, the framework will
no longer do it automatically.
This has the benefit of greatly simplifying how parsing attributes/types work, given
that we currently rely on some extremely complicated nested parser logic which is
quite problematic for a myriad of reasons; unecessary complexity(we create a nested
source manager/lexer/etc.), diagnostic locations can be off/wrong given string escaping,
etc.
Differential Revision: https://reviews.llvm.org/D118505
The useLocalScope printing flag has been passed around between pybind methods, but doesn't actually enable the corresponding printing flag.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D127907
Introduce transform ops for "for" loops, in particular for peeling, software
pipelining and unrolling, along with a couple of "IR navigation" ops. These ops
are intended to be generalized to different kinds of loops when possible and
therefore use the "loop" prefix. They currently live in the SCF dialect as
there is no clear place to put transform ops that may span across several
dialects, this decision is postponed until the ops actually need to handle
non-SCF loops.
Additionally refactor some common utilities for transform ops into trait or
interface methods, and change the loop pipelining to be a returning pattern.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D127300
Implement the C-API and Python bindings for the builtin opaque type, which was previously missing.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D127303
Similar to complex128/complex64, float16 has no direct support
in the ctypes implementation. This fixes the issue by using a
custom F16 type to change the view in and out of MLIR code
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D126928
These ops complement the tiling/padding transformations by transforming
higher-level named structured operations such as depthwise convolutions into
lower-level and/or generic equivalents that are better handled by some
downstream transformations.
Differential Revision: https://reviews.llvm.org/D126698
There is no direct ctypes for MLIR's complex (and thus np.complex128
and np.complex64) yet, causing the mlir python binding methods for
memrefs to crash. This revision fixes this by passing complex arrays
as tuples of floats, correcting at the boundaries for the proper view.
NOTE: some of these changes (4 -> 2) were forced by the new "linting"
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D126422
Python bindings for extensions of the Transform dialect are defined in separate
Python source files that can be imported on-demand, i.e., that are not imported
with the "main" transform dialect. This requires a minor addition to the
ODS-based bindings generator. This approach is consistent with the current
model for downstream projects that are expected to bundle MLIR Python bindings:
such projects can include their custom extensions into the bundle similarly to
how they include their dialects.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D126208
The tests actually require the target triple to match the host, rather than just having the host in the list of available targets. This change removes `llvm_has_native_target` and instead uses the `native` feature from the lit configuration.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D126011
This diff modifies `mlir-tblgen` to generate Python Operation class `__init__()`
functions that use Python keyword-only arguments.
Previously, all `__init__()` function arguments were positional. Python code to
create MLIR Operations was required to provide values for ALL builder arguments,
including optional arguments (attributes and operands). Callers that did not
provide, for example, an optional attribute would be forced to provide `None`
as an argument for EACH optional attribute. Proposed changes in this diff use
`tblgen` record information (as provided by ODS) to generate keyword arguments
for:
- optional operands
- optional attributes (which includes unit attributes)
- default-valued attributes
These `__init__()` function keyword arguments have default `None` values (i.e.
the argument form is `optionalAttr=None`), allowing callers to create Operations
more easily.
Note that since optional arguments become keyword-only arguments (since they are
placed after the bare `*` argument), this diff will require ALL optional
operands and attributes to be provided using explicit keyword syntax. This may,
in the short term, break any out-of-tree Python code that provided values via
positional arguments. However, in the long term, it seems that requiring
keywords for optional arguments will be more robust to operation changes that
add arguments.
Tests were modified to reflect the updated Operation builder calling convention.
This diff partially addresses the requests made in the github issue below.
https://github.com/llvm/llvm-project/issues/54932
Reviewed By: stellaraccident, mikeurbach
Differential Revision: https://reviews.llvm.org/D124717
The current behaviour of `useDefaultTypePrinterParser` and `useDefaultAttributePrinterParser` is that they are set by default, but the dialect generator only generates the declarations for the parsing and printing hooks if it sees dialect types and attributes. Same goes for the definitions generated by the AttrOrTypeDef generator.
This can lead to confusing and undesirable behaviour if the dialect generator doesn't see the definitions of the attributes and types, for example, if they are sensibly separated into different files: `Dialect.td`, `Ops.td`, `Attributes.td`, and `Types.td`.
Now, these bits are unset by default. Setting them will always result in the dialect generator emitting the declarations for the parsing hooks. And if the AttrOrTypeDef generator sees it set, it will generate the default implementations.
Reviewed By: rriddle, stellaraccident
Differential Revision: https://reviews.llvm.org/D125809
There are a couple of issues with the python bindings on Windows:
- `create_symlink` requires special permissions on Windows - using `copy_if_different` instead allows the build to complete and then be usable
- the path to the `python_executable` is likely to contain spaces if python is installed in Program Files. llvm's python substitution adds extra quotes in order to account for this case, but mlir's own python substitution does not
- the location of the shared libraries is different on windows
- if the type is not specified for numpy arrays, they appear to be treated as strings
I've implemented the smallest possible changes for each of these in the patch, but I would actually prefer a slightly more comprehensive fix for the python_executable and the shared libraries.
For the python substitution, I think it makes sense to leverage the existing %python instead of adding %PYTHON and instead add a new variable for the case when preloading is needed. This would also make it clearer which tests are which and should be skipped on platforms where the preloading won't work.
For the shared libraries, I think it would make sense to pass the correct path and extension (possibly even the names) to the python script since these are known by lit and don't have to be hardcoded in the test at all.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D125122
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.
Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`
Differential Revision: https://reviews.llvm.org/D124146
The names of the functions that are supposed to be exported do not match the implementations. This is due in part to cac7aabbd8.
This change makes the implementations and declarations match and adds a couple missing declarations.
The new names follow the pattern of the existing `verify` functions where the prefix is maintained as `_mlir_ciface_` but the suffix follows the new naming convention.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D124891
pdl.attribute currently has a syntax ambiguity that leads to the incorrect parsing
of pdl.attribute operations with locations that don't also have a constant value. For example:
```
pdl.attribute loc("foo")
```
The above IR is treated as being a pdl.attribute with a constant value containing the location,
`loc("foo")`, which is incorrect. This commit changes the syntax to use `= <constant-value>` to
clearly distinguish when the constant value is present, as opposed to just trying to parse an attribute.
Differential Revision: https://reviews.llvm.org/D124582
Introduce a method on PyMlirContext (and plumb it through to Python) to
invalidate all of the operations in the live operations map and clear
it. Since Python has no notion of private data, an end-developer could
reach into some 3rd party API which uses the MLIR Python API (that is
behaving correctly with regard to holding references) and grab a
reference to an MLIR Python Operation, preventing it from being
deconstructed out of the live operations map. This allows the API
developer to clear the map when it calls C++ code which could delete
operations, protecting itself from its users.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123895
Adds `mlirBlockDetach` to the CAPI to remove a block from its parent
region. Use it in the Python bindings to implement
`Block.append_to(region)`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123165
This support has never really worked well, and is incredibly clunky to
use (it effectively creates two argument APIs), and clunky to generate (it isn't
clear how we should actually expose this from PDL frontends). Treating these
as just attribute arguments is much much cleaner in every aspect of the stack.
If we need to optimize lots of constant parameters, it would be better to
investigate internal representation optimizations (e.g. batch attribute creation),
that do not affect the user (we want a clean external API).
Differential Revision: https://reviews.llvm.org/D121569
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
OpBase.td has formed into a huge monolith of all ODS constructs. This
commits starts to rectify that by splitting out some constructs to their
own .td files.
Differential Revision: https://reviews.llvm.org/D118636
The revision removes the linalg.fill operation and renames the OpDSL generated linalg.fill_tensor operation to replace it. After the change, all named structured operations are defined via OpDSL and there are no handwritten operations left.
A side-effect of the change is that the pretty printed form changes from:
```
%1 = linalg.fill(%cst, %0) : f32, tensor<?x?xf32> -> tensor<?x?xf32>
```
changes to
```
%1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?x?xf32>) -> tensor<?x?xf32>
```
Additionally, the builder signature now takes input and output value ranges as it is the case for all other OpDSL operations:
```
rewriter.create<linalg::FillOp>(loc, val, output)
```
changes to
```
rewriter.create<linalg::FillOp>(loc, ValueRange{val}, ValueRange{output})
```
All other changes remain minimal. In particular, the canonicalization patterns are the same and the `value()`, `output()`, and `result()` methods are now implemented by the FillOpInterface.
Depends On D120726
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120728
Current generated Python binding for the SCF dialect does not allow
users to call IfOp to create if-else branches on their own.
This PR sets up the default binding generation for scf.if operation
to address this problem.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D121076
Add operations abs, ceil, floor, and neg to the C++ API and Python API.
Add test cases.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D121339
Allow pointwise operations to take rank zero input tensors similarly to scalar inputs. Use an empty indexing map to broadcast rank zero tensors to the iteration domain of the operation.
Depends On D120734
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120807
Simplify tests that use `linalg.fill_rng_2d` to focus on testing the `const` and `index` functions. Additionally, cleanup emit_misc.py to use simpler test functions and fix an error message in config.py.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120734
Extend OpDSL with a `defines` method that can set the `hasCanonicalizer` flag for an OpDSL operation. If the flag is set via `defines(Canonicalizer)` the operation needs to implement the `getCanonicalizationPatterns` method. The revision specifies the flag for linalg.fill_tensor and adds an empty `FillTensorOp::getCanonicalizationPatterns` implementation.
This revision is a preparation step to replace linalg.fill by its OpDSL counterpart linalg.fill_tensor. The two are only functionally equivalent if both specify the same canonicalization patterns. The revision is thus a prerequisite for the linalg.fill replacement.
Depends On D120725
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120726
The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
The revision renames the following OpDSL functions:
```
TypeFn.cast -> TypeFn.cast_signed
BinaryFn.min -> BinaryFn.min_signed
BinaryFn.max -> BinaryFn.max_signed
```
The corresponding enum values on the C++ side are renamed accordingly:
```
#linalg.type_fn<cast> -> #linalg.type_fn<cast_signed>
#linalg.binary_fn<min> -> #linalg.binary_fn<min_signed>
#linalg.binary_fn<max> -> #linalg.binary_fn<max_signed>
```
Depends On D120110
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120562
The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured operation configurable. For example, a pooling operation may take an aggregation function attribute that specifies if the op shall implement a min or a max pooling. The goal of this revision is to define less and more flexible operations.
We may thus for example define an element wise op:
```
linalg.elem(lhs, rhs, outs=[out], op=BinaryFn.mul)
```
If the op argument is not set the default operation is used.
Depends On D120109
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D120110
Split arithmetic function into unary and binary functions. The revision prepares the introduction of unary and binary function attributes that work similar to type function attributes.
Depends On D120108
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120109
Prepare the OpDSL function handling to introduce more function classes. A follow up commit will split ArithFn into UnaryFn and BinaryFn. This revision prepares the split by adding a function kind enum to handle different function types using a single class on the various levels of the stack (for example, there is now one TensorFn and one ScalarFn).
Depends On D119718
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120108
Previously, OpDSL operation used hardcoded type conversion operations (cast or cast_unsigned). Supporting signed and unsigned casts thus meant implementing two different operations. Type function attributes allow us to define a single operation that has a cast type function attribute which at operation instantiation time may be set to cast or cast_unsigned. We may for example, defina a matmul operation with a cast argument:
```
@linalg_structured_op
def matmul(A=TensorDef(T1, S.M, S.K), B=TensorDef(T2, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True),
cast=TypeFnAttrDef(default=TypeFn.cast)):
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```
When instantiating the operation the attribute may be set to the desired cast function:
```
linalg.matmul(lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned)
```
The revsion introduces a enum in the Linalg dialect that maps one-by-one to the type functions defined by OpDSL.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D119718
Previously only accessing values for `index` and signless int types
would work; signed and unsigned ints would hit an assert in
`IntegerAttr::getInt`. This exposes `IntegerAttr::get{S,U}Int` to the C
API and calls the appropriate function from the python bindings.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120194
* While annoying, this is the only way to get C++ exception handling out of the happy path for normal iteration.
* Implements sq_length and sq_item for the sequence protocol (used for iteration, including list() construction).
* Implements mp_subscript for general use (i.e. foo[1] and foo[1:1]).
* For constructing a `list(op.results)`, this reduces the time from ~4-5us to ~1.5us on my machine (give or take measurement overhead) and eliminates C++ exceptions, which is a worthy goal in itself.
* Compared to a baseline of similar construction of a three-integer list, which takes 450ns (might just be measuring function call overhead).
* See issue discussed on the pybind side: https://github.com/pybind/pybind11/issues/2842
Differential Revision: https://reviews.llvm.org/D119691
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```
```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.
Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.
Depends On D119125
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D119126
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.
Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.
Reviewed By: nicolasvasilache, stellaraccident
Differential Revision: https://reviews.llvm.org/D119003
When attempting to cast a pybind11 handle to an MLIR C API object through
capsules, the binding code would attempt to directly access the "_CAPIPtr"
attribute on the object, leading to a rather obscure AttributeError when the
attribute was missing, e.g., on non-MLIR types. Check for its presence and
throw a TypeError instead.
Depends On D117646
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D117658
- Remove the `{Op,Attr,Type}Trait` TableGen classes and replace with `Trait`
- Rename `OpTraitList` to `TraitList` and use it in a few places
The bulk of this change is a mechanical s/OpTrait/Trait/ throughout the codebase.
Reviewed By: rriddle, jpienaar, herhut
Differential Revision: https://reviews.llvm.org/D118543