The mix-in of the `MultiTileSizesOp` set the default value of its
`divisor` argument. This repeats information from the tablegen
defintion, is not necessary (since the generic code deals with `None`
and default values), and has the risk of running out of sync without
people noticing. This patch removes the setting of the value and forward
`None` to the generic constructor instead.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D159416
This patch simplifies and improves the mix-in of the `TileOp`. In
particular:
* Accept all types of sizes (static, dynamic, scalable) in a single
argument `sizes`.
* Use the existing convenience function to dispatch different types of
sizes instead of repeating the implementation in the mix-in.
* Pass on `None` values as is of optional arguments to the init function
of the super class.
* Reformat with default indentation width (4 spaces vs 2 spaces).
* Add a a test for providing scalable sizes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D159417
That commit changed the mix-ins for the Python bindings of the PadOp
including some tests, but did not change the corresponding `CHECK`
statements. This patch does that.
The mix-in did not allow to *not* set many of the arguments, even though
they represent optional attributes. Instead, it set default values,
which have different semantics in some cases. In other cases, setting
the default values is already done by the C++ layer, in which case they
are currently redundant and may be wrong in some potential future change
in the TD or C++ files. With this patch, `None` is preserved until the
generated binding, which handles them as desired.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158844
This reverts a feature introduced in commit
2a5d497494. The goal of that commit was to
allow `StringAttr`s to by used transparently wherever Python `str`s are
expected. But, as the tests in https://reviews.llvm.org/D159182 reveal,
pybind11 doesn't do this conversion based on `__str__` automatically,
unlike for the other types introduced in the commit above. At the same
time, changing `__str__` breaks the symmetry with other attributes of
`print(attr)` printing the assembly of the attribute, so the change
probably has more disadvantages than advantages.
Reviewed By: springerm, rkayaith
Differential Revision: https://reviews.llvm.org/D159255
The printing of `StringAttr` was changed in
https://reviews.llvm.org/D158974, such that some test cases relying on
that output had to be changed as well.
Extends the existing mix-in for VectorizeOp with support for the missing unit attributes.
Also fixes the unintuitive implementation where
`structured.VectorizeOp(target=target, vectorize_padding=False)` still resulted in the creation of the UnitAttr `vectorize_padding`.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D158726
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.
There are a few parts to this:
1. CMake: a small addition to `declare_mlir_dialect_python_bindings` and `declare_mlir_dialect_extension_python_bindings` to generate the enum, a boolean arg `GEN_ENUM_BINDINGS` to make it opt-in (even though it works for basically all of the dialects), and an optional `GEN_ENUM_BINDINGS_TD_FILE` for handling corner cases.
2. EnumPythonBindingGen.cpp: there are two weedy aspects here that took investigation:
1. If an enum attribute is not a `Dialect/EnumAttr` then the `EnumAttrInfo` record is canonical, as far as both the cases of the enum **and the `AttrDefName`**. On the otherhand, if an enum is a `Dialect/EnumAttr` then the `EnumAttr` record has the correct `AttrDefName` ("load bearing", i.e., populates `ods.ir.AttributeBuilder('<NAME>')`) but its `enum` field contains the cases, which is an instance of `EnumAttrInfo`. The solution is to generate an one enum class for both `Dialect/EnumAttr` and "independent" `EnumAttrInfo` but to make that class interopable with two builder registrations that both do the right thing (see next sub-bullet).
2. Because we don't have a good connection to cpp `EnumAttr`, i.e., only the `enum class` getters are exposed (like `DimensionAttr::get(Dimension value)`), we have to resort to parsing e.g., `Attribute.parse(f'#gpu<dim {x}>')`. This means that the set of supported `assemblyFormat`s (for the enum) is fixed at compile of MLIR (currently 2, the only 2 I saw). There might be some things that could be done here but they would require quite a bit more C API work to support generically (e.g., casting ints to enum cases and binding all the getters or going generically through the `symbolize*` methods, like `symbolizeDimension(uint32_t)` or `symbolizeDimension(StringRef)`).
A few small changes:
1. In addition, since this patch registers default builders for attributes where people might've had their own builders already written, I added a `replace` param to `AttributeBuilder.insert` (`False` by default).
2. `makePythonEnumCaseName` can't handle all the different ways in which people write their enum cases, e.g., `llvm.CConv.Intel_OCL_BI`, which gets turned into `INTEL_O_C_L_B_I` (because `llvm::convertToSnakeFromCamelCase` doesn't look for runs of caps). So I dropped it. On the otherhand regularization does need to done because some enums have `None` as a case (and others might have other python keywords).
3. I turned on `llvm` dialect generation here in order to test `nvvm.WGMMAScaleIn`, which is an enum with [[ d7e26b5620/mlir/include/mlir/IR/EnumAttr.td (L22-L25) | no explicit discriminator ]] for the `neg` case.
Note, dialects that didn't get a `GEN_ENUM_BINDINGS` don't have any enums to generate.
Let me know if I should add more tests (the three trivial ones I added exercise both the supported `assemblyFormat`s and `replace=True`).
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D157934
In particular:
* Fix and extend the support for constructing possibly nested ArrayAttrs
from lists of Python ints. This can probably be generalized further
and used in many more places.
* Add arguments for `pad_to_multiple_of` and `copy_back_op`.
* Format with black and reorder (keyword-only) arguments to match
tablegen and (`*_gen.py`) order.
* Extend tests for new features.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157789
The tests of the mix-in classes of the Python bindings currently passed
even if the ops constructed by the mix-ins under test failed to verify.
This is because the assembled IR is still printed in generic form even
if it does not verify, and the `CHECK` statements are formulated in such
a lenient way that they also match that generic form. This patch adds
explicit verification to the decorator that is used for all test
functions.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157790
Reland of the original patch after updating the Python binding tests,
a few CUDA/GPU MLIR tests, and ensuring the assembly format is
round-trippable.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print punctuation <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This renaming started with the native ODS support for properties, this is completing it.
A mass automated textual rename seems safe for most codebases.
Drop also the ods prefix to keep the accessors the same as they were before
this change:
properties.odsOperandSegmentSizes
reverts back to:
properties.operandSegementSizes
The ODS prefix was creating divergence between all the places and make it harder to
be consistent.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D157173
Reland of the original patch after updating the Python binding tests and
a few CUDA/GPU MLIR tests.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This patch adds a mix-in class for the only transform op of the tensor
dialect that can benefit from one: the MakeLoopIndependentOp. It adds an
overload that makes providing the return type optional.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156918
This patch uses the new enum binding generation to add the enums of the
dialect to the Python bindings and uses them in the mix-in class where
it was still missing (namely, the `LayoutMapOption` for the
`function_boundary_type_conversion` of the `OneShotBufferizeOp`.
The patch also piggy-backs a few smaller clean-ups:
* Order the keyword-only arguments alphabetically.
* Add the keyword-only arguments to an overload where they were left out
by accident.
* Change some of the attribute values used in the tests to non-default
values such that they show up in the output IR and check for that
output.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156664
Create a mix-in class with an overloaded constructor that makes the
return type optional.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156561
Provide Python bindings for transform ops defined in the vector dialect.
All of these ops are sufficiently simple that no mixins are necessary
for them to be nicely usable.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D156554
Add the Python mix-in for MapNestedForallToThreads. Fix typing
annotations in MapForallToBlocks and drop the attribute wrapping
rendered unnecessary by attribute builders.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D156528
This patch adds mix-in classes for the Python bindings of
`EmptyTensorToAllocTensorOp` and `OneShotBufferizeOp`. For both classes,
the mix-in add overloads to the `__init__` functions that allow to
construct them without providing the return type, which is defaulted to
the only allowed type and `AnyOpType`, respectively.
Note that the mix-in do not expose the
`function_boundary_type_conversion` attribute. The attribute has a
custom type from the bufferization dialect that is currently not exposed
in the Python bindings. Handling of that attribute can be added easily
to the mix-in class when the need arises.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D155799
The operand_segment_sizes and result_segment_sizes Attributes are now inlined
in the operation as native propertie. We continue to support building an
Attribute on the fly for `getAttr("operand_segment_sizes")` and setting the
property from an attribute with `setAttr("operand_segment_sizes", attr)`.
A new bytecode version is introduced to support backward compatibility and
backdeployments.
Differential Revision: https://reviews.llvm.org/D155919
The operand_segment_sizes and result_segment_sizes Attributes are now inlined
in the operation as native propertie. We continue to support building an
Attribute on the fly for `getAttr("operand_segment_sizes")` and setting the
property from an attribute with `setAttr("operand_segment_sizes", attr)`.
A new bytecode version is introduced to support backward compatibility and
backdeployments.
Differential Revision: https://reviews.llvm.org/D155919
Allow the `names` argument in `MatchOp.match_op_names` to be of type
`str` in addition to `Sequence[str]`. In this case, the argument is
treated as a list with one name, i.e., it is possible to write
`MatchOp.match_op_names(..., "test.dummy")` instead of
`MatchOp.match_op_names(..., ["test.dummy"])`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155807
This patch adds a mixin for ApplyPatternsOp to _transform_ops_ext.py
with syntactic sugar for construction such ops. Curiously, the op did
not have any constructors yet, probably because its tablegen definition
said to skip the default builders. The new constructor is thus quite
straightforward. The commit also adds a refined `region` property which
returns the first block of the single region.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155435
This patch adds a mix-in class for MapForallToBlocks with overloaded
constructors. This makes it optional to provide the return type of the
op, which is defaulte to `AnyOpType`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155717
The class did not have any mix-in until now. The new mix-in has two
overloads for the constructor of the class: one with all arguments and
one without the result types, which are defaulted to `AnyOpType`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155695
This patch adds a mixin for TileToForallOp to
_structured_transform_ops_ext.py with syntactic sugar for construction
such ops. First, the types of the results are made optional and filled
with common default values if omitted. Second, for num_threads and
tile_sizes, the three possible forms (static, dynamic, or packed), can
now all be given through the same respective argument, which gets
dispatched to the correct form-specific argument automatically.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D155090
The extension class to MatchOp has a class method called match_op_names.
The previous version of that function did not allow to specify the
result type. This, however, may be useful/necessary if the op consuming
the resulting handle requires a particular type (such as the
bufferization.EmptyTensorToAllocTensorOp). This patch adds an overload
to match_op_names that allows to specify the result type.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155567
* Rename op to `transform.get_parent_op`
* Match parents by "is isolated from above" and/or op name, or just the direct parent.
* Deduplication of result payload ops is optional.
Differential Revision: https://reviews.llvm.org/D154071
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D151505
Right now `inferTypeOpInterface.inferReturnTypes` fails because there's a cast in there to `py::sequence` which throws a `TypeError` when it tries to cast the `None`s. Note `None`s are inserted into `operands` for omitted operands passed to the generated builder:
```
operands.append(_get_op_result_or_value(start) if start is not None else None)
operands.append(_get_op_result_or_value(stop) if stop is not None else None)
operands.append(_get_op_result_or_value(step) if step is not None else None)
```
Note also that skipping appending to the list operands doesn't work either because [[ 27c37327da/mlir/lib/Bindings/Python/IRCore.cpp (L1585) | build generic ]] checks against the number of operand segments expected.
Currently the only way around is to handroll through `ir.Operation.create`.
Reviewed By: rkayaith
Differential Revision: https://reviews.llvm.org/D151409
depends on D150839
This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:
```
c0 = arith.ConstantOp(f32, 0.0)
# CHECK: F32Type(f32)
print(repr(c0.result.type))
unranked_tensor_type = UnrankedTensorType.get(f32)
unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result
# CHECK: UnrankedTensorType
print(type(unranked_tensor.type).__name__)
# CHECK: UnrankedTensorType(tensor<*xf32>)
print(repr(unranked_tensor.type))
```
This functionality immediately extends to typed attributes (i.e., `attr.type`).
The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D150927
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
The initial bring-up of the Transform dialect relied on PDL to provide
the default handle type (`!pdl.operation`) and the matching capability.
Both are now provided natively by the Transform dialect removing the
reason to have a hard dependency on the PDL dialect and its interpreter.
Move PDL-related transform operations into a separate extension.
This requires us to introduce a dialect state extension mechanism into
the Transform dialect so it no longer needs to know about PDL constraint
functions that may be injected by extensions similarly to operations and
types. This mechanism will be reused to connect pattern application
drivers and the Transform dialect.
This completes the restructuring of the Transform dialect to remove
overrilance on PDL.
Note to downstreams: flow that are using `!pdl.operation` with Transform
dialect operations will now require `transform::PDLExtension` to be
applied to the transform dialect in order to provide the transform
handle type interface for `!pdl.operation`.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D151104
This diff adds python bindings for `MlirTypeID`. It paves the way for returning accurately typed `Type`s from python APIs (see D150927) and then further along building type "conscious" `Value` APIs (see D150413).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D150839
Add more attribute builders, such as "F32Attr", "F64Attr" and "F64ArrayAttr", which are useful to create operations by python bindings. For example, tosa.clamp in _tosa_ops_gen.py need 'F32Attr'.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D150757