This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.
PiperOrigin-RevId: 262680287
This CL introduces a simple loop utility function which rewrites the bounds and step of a loop so as to become mappable on a regular grid of processors whose identifiers are given by SSA values.
A corresponding unit test is added.
For example, using CUDA terminology, and assuming a 2-d grid with processorIds = [blockIdx.x, threadIdx.x] and numProcessors = [gridDim.x, blockDim.x], the loop:
```
loop.for %i = %lb to %ub step %step {
...
}
```
is rewritten into a version resembling the following pseudo-IR:
```
loop.for %i = %lb + threadIdx.x + blockIdx.x * blockDim.x to %ub
step %gridDim.x * blockDim.x {
...
}
```
PiperOrigin-RevId: 258945942