definition below all of the header #include lines, Polly edition.
If you want to know more details about this, you can see the recent
commits to Debug.h in LLVM. This is just the Polly segment of a cleanup
I'm doing globally for this macro.
llvm-svn: 206852
Commit r206510 falsely advertised to fix the load cases, even though it only
fixed the store case. This commit adds the same fix for the load case including
the missing test coverage.
llvm-svn: 206577
Even tough we may want to generate a vector load, the address from which to load
still is a scalar. Make sure even if previous address computations may have been
vectorized, that the addresses are also available as scalars.
This fixes http://llvm.org/PR19469
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 206510
For complex examples it may happen that we do not compute dependences. In this
case we do not want to crash, but just not detect parallel loops.
llvm-svn: 204470
This patch enables vectorization of loops containing backward array
traversal (array stride is -1).
Contributed-by: Chris Jenneisch <chrisj@codeaurora.org>
llvm-svn: 204257
For now we only mark innermost loops for the loop vectorizer. We could later
also mark not-innermost loops to enable the introduction of openmp parallelism.
llvm-svn: 202854
PollyIRBuilder is currently just a typedef to IRBuilder<>. Consequently, this
change should not affect behavior. In subsequent patches we will extend its
functionality to emit loop.parallel metadata.
llvm-svn: 202853
The module LLVMPolly.so links to that. There is really no reason to build a
large number of mini-libraries here, especially as we do have dependences
between the libraries that are not properly handled and that make linking fail
on darwin.
Submitted-by: David Fang <fang@csl.cornell.edu>
llvm-svn: 202743
clang-formats behaviour has changed for a couple of C++11 formattings. We adapt
Polly to ensure our formatting checks are clean again.
llvm-svn: 202650
Sven suggested to use this simpler code generation strategy as the convex_hull
computation is apparently rather inefficient. We do not have a test case that
shows a difference, but, in case we find a test case where this makes a
difference, we can reconsider our decission.
llvm-svn: 201997
We now skip the debug intrinsics which is a lot better than crashing due to
uncopied metadata references. We should step by step investigate which debug
intrinsics we can copy without trouble.
We still keep the debug location metadata.
llvm-svn: 201860
This includes the following very useful isl commit:
commit d962967ab42323ea5ca0398956fbff6a98c782fa
Author: Sven Verdoolaege <skimo@kotnet.org>
Date: Wed Dec 18 12:05:32 2013 +0100
allow the user to impose a bound on the number of low-level operations
This should allow the user to deterministically limit the effort spent on a
computation.
llvm-svn: 200155
This removes the last isl_int dependency in the default build. There are
still some in OpenScop and Scoplib. For those isl-0.12.2 still needs to be used.
llvm-svn: 199585
For for-nodes that are translated to a set of vector lanes, we already know the
overall number of iterations. Calculating the upper bound is consequently not
necessary. This change removes the code for upper bound calculation, which was
probably copy/pasted from the code generation for the normal for-loop.
This issue was found by Sylvestre's scan-build server.
llvm-svn: 193925
When constructing a scop sometimes the exact representation of a statement or
condition would be very complex, but there is a common case which is a lot
simpler, but which is only valid under certain assumptions. The assumed context
records the assumptions taken during the construction of this scop and that need
to be code generated as a run-time test.
At the moment, we do not yet model any assumptions, but only added the
AssumedContext as well as the isl-ast generation support. As a next step,
this needs to be hooked up with the isl code generation.
if (1) /* run-time condition */
{ /* optimized code */ }
else
{ /* original code */ }
llvm-svn: 193652
We now use __isl_take to annotate the uses of the isl_set where we got the
memory management wrong.
Thanks to Rafael! His pipefail work hardened our test environment and exposed
this bug nicely.
llvm-svn: 187338
Split the old getNewValue into two parts:
1. The function "lookupAvailableValue" that return the new version of
the instruction which is already available.
2. The function calls "lookupAvailableValue", and tries to generate
the new version if it is not available yet.
llvm-svn: 187114
Orignally, we first test if a ValueMap contains a Value, and than use the
index operator to get the corresponding new value. This requires the ValueMap
to lookup the key (i.e. the old value) twice.
Now, we directly use the "lookup" function provided by DenseMap to implement
the same functionality.
llvm-svn: 185260
1. Do not allow creating new memory access record in the InstructionToAccess map
on the fly in function getAccessFor.
2. Do not allow user to modify the memory accesses returned by getAccessFor
during the code generation process.
llvm-svn: 185253
isl recently introduced isl_val as an abstract interface to represent arbitrary
precision numbers. This interface superseeds the old isl_int interface. In
contrast to the old interface which implemented arbitrary precision arithmetic
using macros that forward to the gmp library, the new library hides the math
library implementation in isl. This allows us to switch the math library used by
isl without affecting users such as Polly.
llvm-svn: 184529
In GDB when "step" through generateScalarLoad and "finish" the call, the
returned value is non NULL, however when printing the value contained in
BBMap[Load] after this stmt:
BBMap[Load] = generateScalarLoad(...);
the value in BBMap[Load] is NULL, and the BBMap.count(Load) is 1.
The only intuitive idea that I have to explain this behavior is that we are
playing with the undefined behavior of eval order of the params for the function
standing for "BBMap[Load] = generateScalarLoad()". "BBMap[Load] = " may be
executed before generateScalarLoad is called.
Here are some other possible explanations from Will Dietz <w@wdtz.org>:
The error is likely due to BBMap[Load] being evaluated first (creating
a {Load -> uninitialized } entry in the DenseMap), then
generateScalarLoad eventually accesses the same element and finds it
to be NULL (DenseMap[Old]).. Offhand I'm not sure if this is
guaranteed to be NULL or if it's uninitialized and happens to be NULL.
The same issue can also go wrong in an even worse way: the second
DenseMap access can trigger a rehash and *invalidate* the an earlier
evaluated expression (for example LHS of the assignment), leading to a
crash when performing the assignment store.
llvm-svn: 182655
When the Polly code generation was written we did not correctly update the
LoopInfo data, but still claimed that the loop information is correct. This
does not only lead to missed optimizations, but it can also cause
miscompilations in case passes such as LoopSimplify are run after Polly.
Reported-by: Sergei Larin <slarin@codeaurora.org>
llvm-svn: 181987
BeforeBB
|
v
GuardBB
/ \
__ PreHeaderBB \
/ \ / |
latch HeaderBB |
\ / \ /
< \ /
\ /
ExitBB
This does not only remove the need for an explicit loop rotate pass, but it also
gives us the possibility to skip the construction of the guard condition in case
the loop is known to be executed at least once. We do not yet exploit this, but
by implementing this analysis in the isl code generator we should be able to
remove more guards than the generic loop rotate pass can. Another point is that
loop rotation can introduce additional PHI nodes, which may hide that a loop can
be executed in parallel. This change avoids this complication and will make it
easier to move the openmp code generation into a separate pass.
llvm-svn: 181986