Reland #118503. Added a fix for builds with `-DBUILD_SHARED_LIBS=ON`
(see last commit). Otherwise the changes are identical.
---
### New API
Previous discussions at the LLVM/Offload meeting have brought up the
need for a new API for exposing the functionality of the plugins. This
change introduces a very small subset of a new API, which is primarily
for testing the offload tooling and demonstrating how a new API can fit
into the existing code base without being too disruptive. Exact designs
for these entry points and future additions can be worked out over time.
The new API does however introduce the bare minimum functionality to
implement device discovery for Unified Runtime and SYCL. This means that
the `urinfo` and `sycl-ls` tools can be used on top of Offload. A
(rough) implementation of a Unified Runtime adapter (aka plugin) for
Offload is available
[here](https://github.com/callumfare/unified-runtime/tree/offload_adapter).
Our intention is to maintain this and use it to implement and test
Offload API changes with SYCL.
### Demoing the new API
```sh
# From the runtime build directory
$ ninja LibomptUnitTests
$ OFFLOAD_TRACE=1 ./offload/unittests/OffloadAPI/offload.unittests
```
### Open questions and future work
* Only some of the available device info is exposed, and not all the
possible device queries needed for SYCL are implemented by the plugins.
A sensible next step would be to refactor and extend the existing device
info queries in the plugins. The existing info queries are all strings,
but the new API introduces the ability to return any arbitrary type.
* It may be sensible at some point for the plugins to implement the new
API directly, and the higher level code on top of it could be made
generic, but this is more of a long-term possibility.
A fair number of fixes to get standalone builds of offload working —
mostly copying missing bits from openmp. It's almost ready — I still
need to figure out why some of the tsts aren't linking to the right
libraries.
This is another attempt to reland the changes from #108413
The previous two attempts introduced regressions and were reverted. This
PR has been more thoroughly tested with various configurations so
shouldn't cause any problems this time. If anyone is aware of any likely
remaining problems then please let me know.
The changes are identical other than the fixes contained in the last 5
commits.
---
### New API
Previous discussions at the LLVM/Offload meeting have brought up the
need for a new API for exposing the functionality of the plugins. This
change introduces a very small subset of a new API, which is primarily
for testing the offload tooling and demonstrating how a new API can fit
into the existing code base without being too disruptive. Exact designs
for these entry points and future additions can be worked out over time.
The new API does however introduce the bare minimum functionality to
implement device discovery for Unified Runtime and SYCL. This means that
the `urinfo` and `sycl-ls` tools can be used on top of Offload. A
(rough) implementation of a Unified Runtime adapter (aka plugin) for
Offload is available
[here](https://github.com/callumfare/unified-runtime/tree/offload_adapter).
Our intention is to maintain this and use it to implement and test
Offload API changes with SYCL.
### Demoing the new API
```sh
# From the runtime build directory
$ ninja LibomptUnitTests
$ OFFLOAD_TRACE=1 ./offload/unittests/OffloadAPI/offload.unittests
```
### Open questions and future work
* Only some of the available device info is exposed, and not all the
possible device queries needed for SYCL are implemented by the plugins.
A sensible next step would be to refactor and extend the existing device
info queries in the plugins. The existing info queries are all strings,
but the new API introduces the ability to return any arbitrary type.
* It may be sensible at some point for the plugins to implement the new
API directly, and the higher level code on top of it could be made
generic, but this is more of a long-term possibility.
Summary:
This patch adds an RPC interface that lives directly in the OpenMP
device runtime. This allows OpenMP to implement custom opcodes.
Currently this is only providing the host call interface, which is the
raw version of reverse offloading. Previously this lived in `libc/` as
an extension which is not the correct place.
The interface here uses a weak symbol for the RPC client by the same
name that the `libc` interface uses. This means that it will defer to
the libc one if both are present so we don't need to set up multiple
instances.
The presense of this symbol is what controls whether or not we set up
the RPC server. Because this is an external symbol it normally won't be
optimized out, so there's a special pass in OpenMPOpt that deletes this
symbol if it is unused during linking. That means at `O0` the RPC server
will always be present now, but will be removed trivially if it's not
used at O1 and higher.
Relands #117704, which relanded changes from #108413 - this was reverted
due to build issues. The new offload library did not build with
`LIBOMPTARGET_OMPT_SUPPORT` enabled, which was not picked up by
pre-merge testing.
The last commit contains the fix; everything else is otherwise identical
to the approved PR.
___
### New API
Previous discussions at the LLVM/Offload meeting have brought up the
need for a new API for exposing the functionality of the plugins. This
change introduces a very small subset of a new API, which is primarily
for testing the offload tooling and demonstrating how a new API can fit
into the existing code base without being too disruptive. Exact designs
for these entry points and future additions can be worked out over time.
The new API does however introduce the bare minimum functionality to
implement device discovery for Unified Runtime and SYCL. This means that
the `urinfo` and `sycl-ls` tools can be used on top of Offload. A
(rough) implementation of a Unified Runtime adapter (aka plugin) for
Offload is available
[here](https://github.com/callumfare/unified-runtime/tree/offload_adapter).
Our intention is to maintain this and use it to implement and test
Offload API changes with SYCL.
### Demoing the new API
```sh
# From the runtime build directory
$ ninja LibomptUnitTests
$ OFFLOAD_TRACE=1 ./offload/unittests/OffloadAPI/offload.unittests
```
### Open questions and future work
* Only some of the available device info is exposed, and not all the
possible device queries needed for SYCL are implemented by the plugins.
A sensible next step would be to refactor and extend the existing device
info queries in the plugins. The existing info queries are all strings,
but the new API introduces the ability to return any arbitrary type.
* It may be sensible at some point for the plugins to implement the new
API directly, and the higher level code on top of it could be made
generic, but this is more of a long-term possibility.
Summary:
We should now use the official™ way to include the files from
`libc/shared`. This required some code to make sure that it's not
included twice if multiple people use it as well as a sanity check on
the directory.
Summary:
We can simply include this header from the shared directory now and do
not need to have this level of indirection. Simply stash it with the
other libc opcode handlers.
If we were able to move the printf handlers to the shared directory then
this could just be a header as well, which would HEAVILY simplify the
mess associated with building the RPC server first in the projects
build, then copying it to the runtimes build.
Summary:
We currently have an unnecessary level of indirection when initializing
the RPC client. This is a holdover from when the RPC client was not
trivially copyable and simply makes it more complicated. Here we use the
`asm` syntax to give the C++ variable a valid name so that we can just
copy to it directly.
Another advantage to this, is that if users want to piggy-back on the
same RPC interface they need only declare theirs as extern with the same
symbol name, or make it weak to optionally use it if LIBC isn't
avaialb.e
Relands changes from #108413 - this was reverted due to build issues.
The problem was just that the `offload-tblgen` tool was behind recent
changes to tablegen that ensure `const` records. This has been fixed and
the PR is otherwise identical.
___
### New API
Previous discussions at the LLVM/Offload meeting have brought up the
need for a new API for exposing the functionality of the plugins. This
change introduces a very small subset of a new API, which is primarily
for testing the offload tooling and demonstrating how a new API can fit
into the existing code base without being too disruptive. Exact designs
for these entry points and future additions can be worked out over time.
The new API does however introduce the bare minimum functionality to
implement device discovery for Unified Runtime and SYCL. This means that
the `urinfo` and `sycl-ls` tools can be used on top of Offload. A
(rough) implementation of a Unified Runtime adapter (aka plugin) for
Offload is available
[here](https://github.com/callumfare/unified-runtime/tree/offload_adapter).
Our intention is to maintain this and use it to implement and test
Offload API changes with SYCL.
### Demoing the new API
```sh
# From the runtime build directory
$ ninja LibomptUnitTests
$ OFFLOAD_TRACE=1 ./offload/unittests/OffloadAPI/offload.unittests
```
### Open questions and future work
* Only some of the available device info is exposed, and not all the
possible device queries needed for SYCL are implemented by the plugins.
A sensible next step would be to refactor and extend the existing device
info queries in the plugins. The existing info queries are all strings,
but the new API introduces the ability to return any arbitrary type.
* It may be sensible at some point for the plugins to implement the new
API directly, and the higher level code on top of it could be made
generic, but this is more of a long-term possibility.
Introduce `offload-tblgen` and an initial implementation of a subset of
the new API. The tablegen files are intended to be the single source of
truth for the new API, with the header files, documentation, and others
bits of source all automatically generated.
**TODO** (based on review feedback so far):
- [x] Check in the generated headers
- [x] Add an `offload-generate` target to trigger the generation rather
than building them every time
- [x] Decide how error handling should work
- [x] Finish up new error handling implementation
- [x] Decide naming convention
- [x] Add testing for the new API
- [x] Add tablegen specific testing
- [x] clang-tidy and use llvm:: types when possible
- [x] Add optional code location arguments
- [x] Avoid multiple returns from one function
### offload-tblgen
See the included
[README](d80db06491/offload/new-api/API/README.md)
for more information on how the API definition and generation works. I'm
happy to answer any questions about it and plan to walk through it in a
future LLVM Offload call.
It should be noted that struct definitions have not been fully
implemented/tested as they aren't used by the initial API definitions,
but finishing that off in the future shouldn't be too much work.
The tablegen tooling has been designed to be easily extended with new
backends, using the classes in `RecordTypes.hpp` to abstract over the
tablegen records.
### New API
Previous discussions at the LLVM/Offload meeting have brought up the
need for a new API for exposing the functionality of the plugins. This
change introduces a very small subset of a new API, which is primarily
for testing the offload tooling and demonstrating how a new API can fit
into the existing code base without being too disruptive. Exact designs
for these entry points and future additions can be worked out over time.
The new API does however introduce the bare minimum functionality to
implement device discovery for Unified Runtime and SYCL. This means that
the `urinfo` and `sycl-ls` tools can be used on top of Offload. A
(rough) implementation of a Unified Runtime adapter (aka plugin) for
Offload is available
[here](https://github.com/callumfare/unified-runtime/tree/offload_adapter).
Our intention is to maintain this and use it to implement and test
Offload API changes with SYCL.
### Demoing the new API
```sh
$ git clone -b offload_adapter https://github.com/callumfare/unified-runtime.git
$ cd unified-runtime
$ mkdir build
$ cd build
$ cmake .. -GNinja -DUR_BUILD_ADAPTER_OFFLOAD=ON \
-DUR_OFFLOAD_INSTALL_DIR=<offload build dir containing liboffload_new.so> \
-DUR_OFFLOAD_INCLUDE_DIR=<offload build dir containing 'offload' headers directory>
$ ninja urinfo
export LD_LIBRARY_PATH=<offload build dir containing offload plugin libraries>
$ UR_ADAPTERS_FORCE_LOAD=$PWD/lib/libur_adapter_offload.so ./bin/urinfo
[cuda:gpu][cuda:0] CUDA, NVIDIA GeForce GT 1030 [12030]
# Demo with tracing
$ OFFLOAD_TRACE=1 UR_ADAPTERS_FORCE_LOAD=$PWD/lib/libur_adapter_offload.so ./bin/urinfo
---> offloadPlatformGet(.NumEntries = 0, .phPlatforms = {}, .pNumPlatforms = 0x7ffd05e4d6e0 (2))-> OFFLOAD_RESULT_SUCCESS
---> offloadPlatformGet(.NumEntries = 2, .phPlatforms = {0x564bf4040220, 0x564bf4040240}, .pNumPlatforms = nullptr)-> OFFLOAD_RESULT_SUCCESS
...
```
### Open questions and future work
* The new API is implemented in a separate library
(`liboffload_new.so`). It could just as easily be part of the existing
`libomptarget` library - I have no strong feelings on which is better.
* Only some of the available device info is exposed, and not all the
possible device queries needed for SYCL are implemented by the plugins.
A sensible next step would be to refactor and extend the existing device
info queries in the plugins. The existing info queries are all strings,
but the new API introduces the ability to return any arbitrary type.
* It may be sensible at some point for the plugins to implement the new
API directly, and the higher level code on top of it could be made
generic, but this is more of a long-term possibility.
Summary:
This patch removes much of the `llvmlibc_rpc_server` interface. This
pretty much deletes all of this code and just replaces it with including
`rpc.h` directly. We still maintain the file to let `libc` handle the
opcodes, since those depend on the `printf` impelmentation.
This will need to be cleaned up more, but I don't want to put too much
into a single patch.
Summary:
These functions were deprecated in ROCR 1.3 which was released quite
some time ago. The main functionality that was lost was modifying and
inspecting the code object indepedently of the executable, however we do
all of that custom through our ELF API. This should be within the
versions of other functions we use.
Following discussions in #110443, and the following earlier discussions
in https://lists.llvm.org/pipermail/llvm-dev/2017-October/117907.html,
https://reviews.llvm.org/D38482, https://reviews.llvm.org/D38489, this
PR attempts to overhaul the `TargetMachine` and `LLVMTargetMachine`
interface classes. More specifically:
1. Makes `TargetMachine` the only class implemented under
`TargetMachine.h` in the `Target` library.
2. `TargetMachine` contains target-specific interface functions that
relate to IR/CodeGen/MC constructs, whereas before (at least on paper)
it was supposed to have only IR/MC constructs. Any Target that doesn't
want to use the independent code generator simply does not implement
them, and returns either `false` or `nullptr`.
3. Renames `LLVMTargetMachine` to `CodeGenCommonTMImpl`. This renaming
aims to make the purpose of `LLVMTargetMachine` clearer. Its interface
was moved under the CodeGen library, to further emphasis its usage in
Targets that use CodeGen directly.
4. Makes `TargetMachine` the only interface used across LLVM and its
projects. With these changes, `CodeGenCommonTMImpl` is simply a set of
shared function implementations of `TargetMachine`, and CodeGen users
don't need to static cast to `LLVMTargetMachine` every time they need a
CodeGen-specific feature of the `TargetMachine`.
5. More importantly, does not change any requirements regarding library
linking.
cc @arsenm @aeubanks
This adds support for the riscv64 architecture to the offload host
plugin. The check to define FFI_DEFAULT_ABI is intentionally not guarded
by __riscv_xlen as the value is the same for riscv32 and riscv64
(support for OpenMP on riscv32 is still under review).
Summary:
We have the ability to schedule callbacks after certain events complete.
Currently we can register an arbitrary callback in CUDA, but can't in
AMDGPU. I am planning on using this support to move the RPC handling to
a separate thread, then using these callbacks to suspend / resume it
when no kernels are running. This is a preliminary patch to keep this
noise out of that one.
We had three `utils::` namespaces, all with different "meaning" (host,
device, hsa_utils). We should, when we can, keep "include/Shared"
accessible from host and device, thus RefCountTy has been moved to a
separate header. `hsa_utils` was introduced to make `utils::` less
overloaded. And common functionality was de-duplicated, e.g.,
`utils::advance` and `utils::advanceVoidPtr` -> `utils:advancePtr`. Type
punning now checks for the size of the result to make sure it matches
the source type.
No functional change was intended.
It appears that the RUNTIMES build prefers the x86-64-unknown-linux-gnu
triple notation for the host. This fixes runtime / test breakages when
compiler-rt is used as the CLANG_DEFAULT_RTLIB.
This pull request is a revised version of #76587. This pull request
fixes some build issues that were present in the previous version of
this change.
> This pull request is the first part of an ongoing effort to extends
PGO instrumentation to GPU device code. This PR makes the following
changes:
>
> - Adds blank registration functions to device RTL
> - Gives PGO globals protected visibility when targeting a supported
GPU
> - Handles any addrspace casts for PGO calls
> - Implements PGO global extraction in GPU plugins (currently only
dumps info)
>
> These changes can be tested by supplying `-fprofile-instrument=clang`
while targeting a GPU.
Since we can already track allocations, we can diagnose memory faults to
some degree. If the fault happens in a prior allocation (use after free)
or "close but outside" one, we can provide that information to the user.
Note that the fault address might be page aligned, and not all accesses
trigger a fault, especially for allocations that are backed by a
MemoryManager. Still, if people disable the MemoryManager or the
allocation is big enough, we can sometimes provide valueable feedback.
This patch moves utilities from
`offload/plugins-nextgen/amdgpu/utils/UtilitiesRTL.h` to
`llvm/Frontend/Offloading/Utility.h` to be reused by
other projects.
Concretely the following changes were made:
- Rename `KernelMetaDataTy` to `AMDGPUKernelMetaData`.
- Remove unused fields `KernelObject`, `KernelSegmentSize`,
`ExplicitArgumentCount` and `ImplicitArgumentCount` from
`AMDGPUKernelMetaData`.
- Return the produced error if `ELFObj.sections()` failed instead of
using `cantFail`.
- Added `AGPRCount` field to `AMDGPUKernelMetaData`.
- Added a default invalid value to all the fields in
`AMDGPUKernelMetaData`.
Error: CommandLine Error: Option 'attributor-manifest-internal'
registered more than once
During the standalone debug build of offload the above error is seen at
app runtime when using a prebuilt llvm with LLVM_LINK_LLVM_DYLIB=ON.
This is caused by linking both libLLVM.so and various archives that are
found via llvm_map_components_to_libnames for jit support.
Through the new `-foffload-via-llvm` flag, CUDA kernels can now be
lowered to the LLVM/Offload API. On the Clang side, this is simply done
by using the OpenMP offload toolchain and emitting calls to `llvm*`
functions to orchestrate the kernel launch rather than `cuda*`
functions. These `llvm*` functions are implemented on top of the
existing LLVM/Offload API.
As we are about to redefine the Offload API, this wil help us in the
design process as a second offload language.
We do not support any CUDA APIs yet, however, we could:
https://www.osti.gov/servlets/purl/1892137
For proper host execution we need to resurrect/rebase
https://tianshilei.me/wp-content/uploads/2021/12/llpp-2021.pdf
(which was designed for debugging).
```
❯❯❯ cat test.cu
extern "C" {
void *llvm_omp_target_alloc_shared(size_t Size, int DeviceNum);
void llvm_omp_target_free_shared(void *DevicePtr, int DeviceNum);
}
__global__ void square(int *A) { *A = 42; }
int main(int argc, char **argv) {
int DevNo = 0;
int *Ptr = reinterpret_cast<int *>(llvm_omp_target_alloc_shared(4, DevNo));
*Ptr = 7;
printf("Ptr %p, *Ptr %i\n", Ptr, *Ptr);
square<<<1, 1>>>(Ptr);
printf("Ptr %p, *Ptr %i\n", Ptr, *Ptr);
llvm_omp_target_free_shared(Ptr, DevNo);
}
❯❯❯ clang++ test.cu -O3 -o test123 -foffload-via-llvm --offload-arch=native
❯❯❯ llvm-objdump --offloading test123
test123: file format elf64-x86-64
OFFLOADING IMAGE [0]:
kind elf
arch gfx90a
triple amdgcn-amd-amdhsa
producer openmp
❯❯❯ LIBOMPTARGET_INFO=16 ./test123
Ptr 0x155448ac8000, *Ptr 7
Ptr 0x155448ac8000, *Ptr 42
```
The kernel names for OpenMP are manually mangled and not ideal when we
report something to the user. We demangle them now, providing the
function and line number of the target region, together with the actual
kernel name.
Similar to (de)allocation traces, we can record kernel launch stack
traces and display them in case of an error. However, the AMD GPU plugin
signal handler, which is invoked on memroy faults, cannot pinpoint the
offending kernel. Insteade print `<NUM>`, set via
`OFFLOAD_TRACK_NUM_KERNEL_LAUNCH_TRACES=<NUM>`, many traces. The
recoding/record uses a ring buffer of fixed size (for now 8).
For `trap` errors, we print the actual kernel name, and trace if
recorded.
As a first step towards a GPU sanitizer we now can track allocations and
deallocations in order to report double frees, and other problems during
deallocation.
This pull request is the first part of an ongoing effort to extends PGO
instrumentation to GPU device code. This PR makes the following changes:
- Adds blank registration functions to device RTL
- Gives PGO globals protected visibility when targeting a supported GPU
- Handles any addrspace casts for PGO calls
- Implements PGO global extraction in GPU plugins (currently only dumps
info)
These changes can be tested by supplying `-fprofile-instrument=clang`
while targeting a GPU.
Summary:
The HSA headers existed previously in `include/hsa.h` and were moved to
`include/hsa/hsa.h` in a later ROCm version. The include headers here
were originally designed to favor a newer one. However, this
unintentionally prevented the dyanmic HSA's `hsa.h` from being used if
both were present. This patch changes the order so it will be found
first.
Related to https://github.com/llvm/llvm-project/pull/95484.
Sometimes it might be beneficial to spawn more thread blocks instead of
reusing existing for multiple loop iterations.
**Alternatives considered:**
Make `DefaultNumBlocks` settable via an environment variable.
---------
Co-authored-by: Joseph Huber <huberjn@outlook.com>
We already used a flat array of kernel launch parameters for the AMD GPU
launch but now we also use this scheme for the NVIDIA GPU launch. The
only remaining/required use of the indirection is the host plugin (due
ot ffi). This allows to us simplify the use for non-OpenMP kernel
launch.
COV3 is not supported anymore, thus we can just use ArgsSize we read
from the kernel to determine how many argument bytes we need and if
implicit kernel arguments are used.
Summary:
The old COV3 implementation of HSA used to omit the implicit arguments
from the kernel argument size. For COV4 and COV5 this is no longer the
case so we can simply use the size reported from the symbol information.
See
https://github.com/ROCm/ROCR-Runtime/issues/117#issuecomment-812758161
Summary:
Currently, we register images into a linear table according to the
logical OpenMP device identifier. We then initialize all of these images
as one block. This logic requires that images are compatible with *all*
devices instead of just the one that it can run on. This prevents us
from running on systems with heterogeneous devices (i.e. image 1 runs on
device 0 image 0 runs on device 1).
This patch reworks the logic by instead making the compatibility check a
per-device query. We then scan every device to see if it's compatible
and do it as they come.
Summary:
The logic since the next-gen plugins was added was that every single
agent would get access to a memory pool we allocated. This is necessary
for things like fine-grained memory and to faciliate d2d copied.
However, there are cases where an agent cannot legally access a memory
pool. We have a debug check for this, but it would always be triggered
in these situations because both uses of the function simply passed
every agent. This patch changes the behavior by only enabling memory
pool access for agents that can access the memory pool.
Summary:
Initializing the plugins requires initializing the runtime like CUDA or
HSA. This has a considerable overhead on most platforms, so we should
only actually initialize a plugin if it is needed by any image that is
loaded.
Summary:
Certain plugins can only be built on specific platforms. Previously this
didn't cause issues becaues each one was handled independently. However,
now that we link these all directly they need to be in a CMake list.
Furthermore we use this list to generate a config file. For this reason
these checks are moved to where we normalize the support.
Fixes: https://github.com/llvm/llvm-project/issues/93183
Summary:
We previously had multiple options for this, this patch replaces them
with `LIBOMPTARGET_DLOPEN_PLUGINS=` to be a list of plugins to
dynamically use. It defaults to everything right now. This ignores the
`host` plugin because the `libffi` dependency is going to be removed
soon hopefully in https://github.com/llvm/llvm-project/pull/91264.