The backend already does this via isNegatibleForFree(),
but we may want to alter the fneg IR canonicalizations
that currently exist, so we need to try harder to fold
fneg in IR to avoid regressions.
llvm-svn: 367194
Summary:
In D62801, new function attribute `willreturn` was introduced. In short, a function with `willreturn` is guaranteed to come back to the call site(more precise definition is in LangRef).
In this patch, willreturn is annotated for LLVM intrinsics.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: jvesely, nhaehnle, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64904
llvm-svn: 367184
The test case from:
https://bugs.llvm.org/show_bug.cgi?id=42771
...shows a ~30x slowdown caused by the awkward loop iteration (rL207302) that is
seemingly done just to avoid invalidating the instruction iterator. We can instead
delay instruction deletion until we reach the end of the block (or we could delay
until we reach the end of all blocks).
There's a test diff here for a degenerate case with llvm.assume that is not
meaningful in itself, but serves to verify this change in logic.
This change probably doesn't result in much overall compile-time improvement
because we call '-instsimplify' as a standalone pass only once in the standard
-O2 opt pipeline currently.
Differential Revision: https://reviews.llvm.org/D65336
llvm-svn: 367173
unreachable loop.
updatePredecessorProfileMetadata in jumpthreading tries to find the
first dominating predecessor block for a PHI value by searching upwards
the predecessor block chain.
But jumpthreading may see some temporary IR state which contains
unreachable bb not being cleaned up. If an unreachable loop happens to
be on the predecessor block chain, keeping chasing the predecessor
block will run into an infinite loop.
The patch fixes it.
Differential Revision: https://reviews.llvm.org/D65310
llvm-svn: 367154
(Y * (1.0 - Z)) + (X * Z) -->
Y - (Y * Z) + (X * Z) -->
Y + Z * (X - Y)
This is part of solving:
https://bugs.llvm.org/show_bug.cgi?id=42716
Factoring eliminates an instruction, so that should be a good canonicalization.
The potential conversion to FMA would be handled by the backend based on target
capabilities.
Differential Revision: https://reviews.llvm.org/D65305
llvm-svn: 367101
Currently there are a few pointer comparisons in ValueDFS_Compare, which
can cause non-deterministic ordering when materializing values. There
are 2 cases this patch fixes:
1. Order defs before uses used to compare pointers, which guarantees
defs before uses, but causes non-deterministic ordering between 2
uses or 2 defs, depending on the allocation order. By converting the
pointers to booleans, we can circumvent that problem.
2. comparePHIRelated was comparing the basic block pointers of edges,
which also results in a non-deterministic order and is also not
really meaningful for ordering. By ordering by their destination DFS
numbers we guarantee a deterministic order.
For the example below, we can end up with 2 different uselist orderings,
when running `opt -mem2reg -ipsccp` hundreds of times. Because the
non-determinism is caused by allocation ordering, we cannot reproduce it
with ipsccp alone.
declare i32 @hoge() local_unnamed_addr #0
define dso_local i32 @ham(i8* %arg, i8* %arg1) #0 {
bb:
%tmp = alloca i32
%tmp2 = alloca i32, align 4
br label %bb19
bb4: ; preds = %bb20
br label %bb6
bb6: ; preds = %bb4
%tmp7 = call i32 @hoge()
store i32 %tmp7, i32* %tmp
%tmp8 = load i32, i32* %tmp
%tmp9 = icmp eq i32 %tmp8, 912730082
%tmp10 = load i32, i32* %tmp
br i1 %tmp9, label %bb11, label %bb16
bb11: ; preds = %bb6
unreachable
bb13: ; preds = %bb20
br label %bb14
bb14: ; preds = %bb13
%tmp15 = load i32, i32* %tmp
br label %bb16
bb16: ; preds = %bb14, %bb6
%tmp17 = phi i32 [ %tmp10, %bb6 ], [ 0, %bb14 ]
br label %bb19
bb18: ; preds = %bb20
unreachable
bb19: ; preds = %bb16, %bb
br label %bb20
bb20: ; preds = %bb19
indirectbr i8* null, [label %bb4, label %bb13, label %bb18]
}
Reviewers: davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64866
llvm-svn: 367049
As discussed in https://bugs.llvm.org/show_bug.cgi?id=42673
there is a TTI hook hasDivRemOp() that matters here.
While -div-rem-pairs will decompose 'rem' if that hook returns false,
nothing does the opposite transform.
We can't to this in InstCombine, because it does not currently
access TTI, and i'm not sure we should change that.
We can't really do that in DAGCombine since it also currently does not
access TTI.
Therefore only DivRemPairs is left.
https://bugs.llvm.org/show_bug.cgi?id=42673
llvm-svn: 367046
We'd like to determine the idom of exit block after peeling one iteration.
Let Exit is exit block.
Let ExitingSet - is a set of predecessors of Exit block. They are exiting blocks.
Let Latch' and ExitingSet' are copies after a peeling.
We'd like to find an idom'(Exit) - idom of Exit after peeling.
It is an evident that idom'(Exit) will be the nearest common dominator of ExitingSet and ExitingSet'.
idom(Exit) is a nearest common dominator of ExitingSet.
idom(Exit)' is a nearest common dominator of ExitingSet'.
Taking into account that we have a single Latch, Latch' will dominate Header and idom(Exit).
So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
All these basic blocks are in the same loop, so what we find is
(nearest common dominator of idom(Exit) and Latch)'.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D65292
llvm-svn: 367044
Later code in TryToSimplifyUncondBranchFromEmptyBlock() assumes that
we have cleaned up unreachable blocks, but that was not happening
with this switch transform.
llvm-svn: 367037
This reverts commit bc4a63fd3c, this is a
speculative revert to fix a number of sanitizer bots (like
sanitizer-x86_64-linux-bootstrap-ubsan) that have started to see stage2
compiler crashes, presumably due to a miscompile.
llvm-svn: 367029
We do not need the SmallPtrSet to avoid adding duplicates to
OpsToRename, because we already keep a ValueInfo mapping. If we see an
op for the first time, Infos will be empty and we can also add it to
OpsToRename.
We process operands by visiting BBs depth-first and then iterate over
all instructions & users, so the order should be deterministic.
Therefore we can skip one round of sorting, which we purely needed for
guaranteeing a deterministic order when iterating over the SmallPtrSet.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64816
llvm-svn: 367028
trunc (load X) --> load (bitcast X to narrow type)
We have this transform in DAGCombiner::ReduceLoadWidth(), but the truncated
load pattern can interfere with other instcombine transforms, so I'd like to
allow the fold sooner.
Example:
https://bugs.llvm.org/show_bug.cgi?id=16739
...in that report, we have bitcasts bracketing these ops, so those could get
eliminated too.
We've generally ruled out widening of loads early in IR ( LoadCombine -
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105291.html ), but
that reasoning may not apply to narrowing if we can preserve information
such as the dereferenceable range.
Differential Revision: https://reviews.llvm.org/D64432
llvm-svn: 367011
We can treat icmp eq X, MIN_UINT as icmp ule X, MIN_UINT and allow
it to merge with icmp ugt X, C. Similar for the other constants.
We can do simliar for icmp ne X, (U)INT_MIN/MAX in foldAndOfICmps. And we already handled UINT_MIN there.
Fixes PR42691.
Differential Revision: https://reviews.llvm.org/D65017
llvm-svn: 366945
This is a follow up to D64971. While we need to insert the deref after
the offset, it needs to come before the remaining elements in the
original expression since the deref needs to happen before the LLVM
fragment if present.
Differential Revision: https://reviews.llvm.org/D65172
llvm-svn: 366865
The original code failed to account for the fact that one exit can have a pointer exit count without all of them having pointer exit counts. This could cause two separate bugs:
1) We might exit the loop early, and leave optimizations undone. This is what triggered the assertion failure in the reported test case.
2) We might optimize one exit, then exit without indicating a change. This could result in an analysis invalidaton bug if no other transform is done by the rest of indvars.
Note that the pointer exit counts are a really fragile concept. They show up only when we have a pointer IV w/o a datalayout to provide their size. It's really questionable to me whether the complexity implied is worth it.
llvm-svn: 366829
It would be already handled by the non-inverted case if we were hoisting
the `not` in InstCombine, but we don't (granted, we don't sink it
in this case either), so this is a separate case.
llvm-svn: 366801
This way it will be more obvious that the problem is both
in cost threshold and in hardcoded benefit check,
plus will show how the instsimplify cleans this all in the end.
llvm-svn: 366800
Summary:
Deduce dereferenceable attribute in Attributor.
These will be added in a later patch.
* dereferenceable(_or_null)_globally (D61652)
* Deduction based on load instruction (similar to D64258)
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64876
llvm-svn: 366788
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64162
llvm-svn: 366769
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366753
This comes up in JPEG decoding, see e.g.
Figure F.12 – Extending the sign bit of a decoded value in V
of ITU T.81 (JPEG specification).
llvm-svn: 366750
Even if we formed @llvm.umul.with.overflow, we are still stuck
with that guard against div-by-zero, which is no longer needed,
because we didn't flatten the CFG.
llvm-svn: 366749
While we can form the @llvm.mul.with.overflow easily,
we are still left with that check that was guarding against div-by-0.
And in the second case we won't even flatten the CFG.
llvm-svn: 366747
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366736
Porting function return value attribute noalias to attributor.
This will be followed with a patch for callsite and function argumets.
Reviewers: jdoerfert
Subscribers: lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D63067
llvm-svn: 366728
While debugging code that uses SafeStack, we've noticed that LLVM
produces an invalid DWARF. Concretely, in the following example:
int main(int argc, char* argv[]) {
std::string value = "";
printf("%s\n", value.c_str());
return 0;
}
DWARF would describe the value variable as being located at:
DW_OP_breg14 R14+0, DW_OP_deref, DW_OP_constu 0x20, DW_OP_minus
The assembly to get this variable is:
leaq -32(%r14), %rbx
The order of operations in the DWARF symbols is incorrect in this case.
Specifically, the deref is incorrect; this appears to be incorrectly
re-inserted in repalceOneDbgValueForAlloca.
With this change which inserts the deref after the offset instead of
before it, LLVM produces correct DWARF:
DW_OP_breg14 R14-32
Differential Revision: https://reviews.llvm.org/D64971
llvm-svn: 366726
The bytes inserted before an overaligned global need to be padded according
to the alignment set on the original global in order for the initializer
to meet the global's alignment requirements. The previous implementation
that padded to the pointer width happened to be correct for vtables on most
platforms but may do the wrong thing if the vtable has a larger alignment.
This issue is visible with a prototype implementation of HWASAN for globals,
which will overalign all globals including vtables to 16 bytes.
There is also no padding requirement for the bytes inserted after the global
because they are never read from nor are they significant for alignment
purposes, so stop inserting padding there.
Differential Revision: https://reviews.llvm.org/D65031
llvm-svn: 366725
We were previously ignoring alignment entirely when combining globals
together in this pass. There are two main things that we need to do here:
add additional padding before each global to meet the alignment requirements,
and set the combined global's alignment to the maximum of all of the original
globals' alignments.
Since we now need to calculate layout as we go anyway, use the calculated
layout to produce GlobalLayout instead of using StructLayout.
Differential Revision: https://reviews.llvm.org/D65033
llvm-svn: 366722
Current algorithm to update branch weights of latch block and its copies is
based on the assumption that number of peeling iterations is approximately equal
to trip count.
However it is not correct. According to profitability check in one case we can decide to peel
in case it helps to reduce the number of phi nodes. In this case the number of peeled iteration
can be less then estimated trip count.
This patch introduces another way to set the branch weights to peeled of branches.
Let F is a weight of the edge from latch to header.
Let E is a weight of the edge from latch to exit.
F/(F+E) is a probability to go to loop and E/(F+E) is a probability to go to exit.
Then, Estimated TripCount = F / E.
For I-th (counting from 0) peeled off iteration we set the the weights for
the peeled latch as (TC - I, 1). It gives us reasonable distribution,
The probability to go to exit 1/(TC-I) increases. At the same time
the estimated trip count of remaining loop reduces by I.
As a result after peeling off N iteration the weights will be
(F - N * E, E) and trip count of loop becomes
F / E - N or TC - N.
The idea is taken from the review of the patch D63918 proposed by Philip.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64235
llvm-svn: 366665
icmp ne %x, INT_MIN can be treated similarly to icmp sgt %x, INT_MIN.
icmp ne %x, INT_MAX can be treated similarly to icmp slt %x, INT_MAX.
icmp ne %x, UINT_MAX can be treated similarly to icmp ult %x, UINT_MAX.
We already treat icmp ne %x, 0 similarly to icmp ugt %x, 0
llvm-svn: 366662