Now that we can have a memref of index type, we no longer need to materialize shapes in i64 and then index_cast. Differential Revision: https://reviews.llvm.org/D84938
246 lines
8.6 KiB
C++
246 lines
8.6 KiB
C++
//===- ShapeToSCF.cpp - conversion from Shape to SCF dialect --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/ShapeToSCF/ShapeToSCF.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::shape;
|
|
using namespace mlir::scf;
|
|
|
|
namespace {
|
|
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
|
|
/// only defined on `tensor<?xindex>` operands. The test for equality first
|
|
/// compares their size and, if equal, checks every extent for equality.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
|
|
///
|
|
/// becomes
|
|
///
|
|
/// %c0 = constant 0 : index
|
|
/// %0 = dim %arg0, %c0 : tensor<?xindex>
|
|
/// %1 = dim %arg1, %c0 : tensor<?xindex>
|
|
/// %2 = cmpi "eq", %0, %1 : index
|
|
/// %result = scf.if %2 -> (i1) {
|
|
/// %c1 = constant 1 : index
|
|
/// %true = constant true
|
|
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
|
|
/// %5 = extract_element %arg0[%arg2] : tensor<?xindex>
|
|
/// %6 = extract_element %arg1[%arg2] : tensor<?xindex>
|
|
/// %7 = cmpi "eq", %5, %6 : index
|
|
/// %8 = and %arg3, %7 : i1
|
|
/// scf.yield %8 : i1
|
|
/// }
|
|
/// scf.yield %4 : i1
|
|
/// } else {
|
|
/// %false = constant false
|
|
/// scf.yield %false : i1
|
|
/// }
|
|
///
|
|
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
|
|
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
|
|
// on shapes.
|
|
if (op.lhs().getType().isa<ShapeType>() ||
|
|
op.rhs().getType().isa<ShapeType>()) {
|
|
return failure();
|
|
}
|
|
|
|
ShapeEqOp::Adaptor transformed(operands);
|
|
auto loc = op.getLoc();
|
|
Type indexTy = rewriter.getIndexType();
|
|
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
Value lhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.lhs(), zero);
|
|
Value rhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.rhs(), zero);
|
|
Value eqRank =
|
|
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, lhsRank, rhsRank);
|
|
Type i1Ty = rewriter.getI1Type();
|
|
rewriter.replaceOpWithNewOp<IfOp>(
|
|
op, i1Ty, eqRank,
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value one = b.create<ConstantIndexOp>(loc, 1);
|
|
Value init = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
|
|
auto loop = b.create<scf::ForOp>(
|
|
loc, zero, lhsRank, one, ValueRange{init},
|
|
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
|
|
Value conj = args[0];
|
|
Value lhsExtent =
|
|
b.create<ExtractElementOp>(loc, transformed.lhs(), iv);
|
|
Value rhsExtent =
|
|
b.create<ExtractElementOp>(loc, transformed.rhs(), iv);
|
|
Value eqExtent = b.create<CmpIOp>(loc, CmpIPredicate::eq,
|
|
lhsExtent, rhsExtent);
|
|
Value conjNext = b.create<AndOp>(loc, conj, eqExtent);
|
|
b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
|
|
});
|
|
b.create<scf::YieldOp>(loc, loop.getResults());
|
|
},
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value result = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
|
|
b.create<scf::YieldOp>(loc, result);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Converts `shape.reduce` to `scf.for`.
|
|
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// For now, this lowering is only defined on `tensor<?xindex>` operands.
|
|
if (op.shape().getType().isa<ShapeType>())
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
shape::ReduceOp::Adaptor transformed(operands);
|
|
|
|
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
Type indexTy = rewriter.getIndexType();
|
|
Value rank = rewriter.create<DimOp>(loc, indexTy, transformed.shape(), zero);
|
|
|
|
auto loop = rewriter.create<scf::ForOp>(
|
|
loc, zero, rank, one, op.initVals(),
|
|
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
|
|
Value extent = b.create<ExtractElementOp>(loc, transformed.shape(), iv);
|
|
|
|
SmallVector<Value, 2> mappedValues{iv, extent};
|
|
mappedValues.append(args.begin(), args.end());
|
|
|
|
BlockAndValueMapping mapping;
|
|
Block *reduceBody = op.getBody();
|
|
mapping.map(reduceBody->getArguments(), mappedValues);
|
|
for (auto &nested : reduceBody->without_terminator())
|
|
b.clone(nested, mapping);
|
|
|
|
SmallVector<Value, 2> mappedResults;
|
|
for (auto result : reduceBody->getTerminator()->getOperands())
|
|
mappedResults.push_back(mapping.lookup(result));
|
|
b.create<scf::YieldOp>(loc, mappedResults);
|
|
});
|
|
|
|
rewriter.replaceOp(op, loop.getResults());
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Converts `shape_of` to for loop for unranked tensors.
|
|
class ShapeOfOpConverter : public OpConversionPattern<ShapeOfOp> {
|
|
public:
|
|
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ShapeOfOpConverter::matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// For now, this lowering supports only error-free arguments.
|
|
if (op.getType().isa<ShapeType>())
|
|
return failure();
|
|
|
|
// For ranked tensors `shape_of` lowers to `std` and the pattern can be
|
|
// found in the corresponding pass.
|
|
ShapeOfOp::Adaptor transformed(operands);
|
|
Value arg = transformed.arg();
|
|
Type argTy = arg.getType();
|
|
if (argTy.isa<RankedTensorType>())
|
|
return failure();
|
|
|
|
// Allocate stack memory.
|
|
auto loc = op.getLoc();
|
|
Value rank = rewriter.create<mlir::RankOp>(loc, arg);
|
|
Type indexTy = rewriter.getIndexType();
|
|
Type memTy = MemRefType::get({ShapedType::kDynamicSize}, indexTy);
|
|
Value mem = rewriter.create<AllocaOp>(loc, memTy, ValueRange{rank});
|
|
|
|
// Copy shape extents to stack-allocated memory.
|
|
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
rewriter.create<scf::ForOp>(
|
|
loc, zero, rank, one, llvm::None,
|
|
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
|
|
Value dim = rewriter.create<DimOp>(loc, arg, iv);
|
|
rewriter.create<StoreOp>(loc, dim, mem, ValueRange{iv});
|
|
rewriter.create<scf::YieldOp>(loc);
|
|
});
|
|
|
|
// Load extents to tensor value.
|
|
rewriter.replaceOpWithNewOp<TensorLoadOp>(op.getOperation(), mem);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct ConvertShapeToSCFPass
|
|
: public ConvertShapeToSCFBase<ConvertShapeToSCFPass> {
|
|
void runOnFunction() override;
|
|
};
|
|
} // namespace
|
|
|
|
void ConvertShapeToSCFPass::runOnFunction() {
|
|
MLIRContext &ctx = getContext();
|
|
|
|
// Populate conversion patterns.
|
|
OwningRewritePatternList patterns;
|
|
populateShapeToSCFConversionPatterns(patterns, &ctx);
|
|
|
|
// Setup target legality.
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<SCFDialect, StandardOpsDialect>();
|
|
target.addLegalOp<ModuleOp, FuncOp>();
|
|
|
|
// Apply conversion.
|
|
if (failed(applyPartialConversion(getFunction(), target, patterns)))
|
|
signalPassFailure();
|
|
}
|
|
|
|
void mlir::populateShapeToSCFConversionPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
// clang-format off
|
|
patterns.insert<
|
|
ShapeEqOpConverter,
|
|
ReduceOpConverter,
|
|
ShapeOfOpConverter>(ctx);
|
|
// clang-format on
|
|
}
|
|
|
|
std::unique_ptr<FunctionPass> mlir::createConvertShapeToSCFPass() {
|
|
return std::make_unique<ConvertShapeToSCFPass>();
|
|
}
|