When a phi node references a variable defined in a basic block dominated by the the basic block containing the phi node, llvm-diff currently cannot determine whether the variable is equivalent, and thus treats the phi node as different and reports a difference. This leads to false positive differences as demonstrated by the loop.ll diff, for which llvm-diff reports a diff when comparing the file with itself. Fix that issue by adding the concept of *equivalence assumptions*. When encountering a pair of values which can neither be proven to be equivalent nor to be non-equivalent, instead optimistically assume equivalence, and store somewhere that the equivalence of the currently compared basic blocks depends on this assumption. Later, once all BBs have been processed, check all made assumptions and report blocks as different whose equivalence was depending on an incorrect assumption, or an assumption we could not prove to be correct. In order to preserve the original diff report order, also schedule diffs of blocks already known to be different using the same mechanism, so all block diffs are now generated at the very end of function diffing. In case an incorrect assumption was made, all further shown equivalences between old and new values implictly depend on the incorrect assumption. Some of these may in fact be not equivalent, but these are neither reverted nor reported, because they are considered indirect diffs caused by an earlier direct diff. See inline comments for an argument why we do not run into issues caused by circular proof dependencies. Differential Revision: https://reviews.llvm.org/D137318
1039 lines
35 KiB
C++
1039 lines
35 KiB
C++
//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This header defines the implementation of the LLVM difference
|
|
// engine, which structurally compares global values within a module.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DifferenceEngine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// A priority queue, implemented as a heap.
|
|
template <class T, class Sorter, unsigned InlineCapacity>
|
|
class PriorityQueue {
|
|
Sorter Precedes;
|
|
llvm::SmallVector<T, InlineCapacity> Storage;
|
|
|
|
public:
|
|
PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
|
|
|
|
/// Checks whether the heap is empty.
|
|
bool empty() const { return Storage.empty(); }
|
|
|
|
/// Insert a new value on the heap.
|
|
void insert(const T &V) {
|
|
unsigned Index = Storage.size();
|
|
Storage.push_back(V);
|
|
if (Index == 0) return;
|
|
|
|
T *data = Storage.data();
|
|
while (true) {
|
|
unsigned Target = (Index + 1) / 2 - 1;
|
|
if (!Precedes(data[Index], data[Target])) return;
|
|
std::swap(data[Index], data[Target]);
|
|
if (Target == 0) return;
|
|
Index = Target;
|
|
}
|
|
}
|
|
|
|
/// Remove the minimum value in the heap. Only valid on a non-empty heap.
|
|
T remove_min() {
|
|
assert(!empty());
|
|
T tmp = Storage[0];
|
|
|
|
unsigned NewSize = Storage.size() - 1;
|
|
if (NewSize) {
|
|
// Move the slot at the end to the beginning.
|
|
if (std::is_trivially_copyable<T>::value)
|
|
Storage[0] = Storage[NewSize];
|
|
else
|
|
std::swap(Storage[0], Storage[NewSize]);
|
|
|
|
// Bubble the root up as necessary.
|
|
unsigned Index = 0;
|
|
while (true) {
|
|
// With a 1-based index, the children would be Index*2 and Index*2+1.
|
|
unsigned R = (Index + 1) * 2;
|
|
unsigned L = R - 1;
|
|
|
|
// If R is out of bounds, we're done after this in any case.
|
|
if (R >= NewSize) {
|
|
// If L is also out of bounds, we're done immediately.
|
|
if (L >= NewSize) break;
|
|
|
|
// Otherwise, test whether we should swap L and Index.
|
|
if (Precedes(Storage[L], Storage[Index]))
|
|
std::swap(Storage[L], Storage[Index]);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, we need to compare with the smaller of L and R.
|
|
// Prefer R because it's closer to the end of the array.
|
|
unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
|
|
|
|
// If Index is >= the min of L and R, then heap ordering is restored.
|
|
if (!Precedes(Storage[IndexToTest], Storage[Index]))
|
|
break;
|
|
|
|
// Otherwise, keep bubbling up.
|
|
std::swap(Storage[IndexToTest], Storage[Index]);
|
|
Index = IndexToTest;
|
|
}
|
|
}
|
|
Storage.pop_back();
|
|
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
/// A function-scope difference engine.
|
|
class FunctionDifferenceEngine {
|
|
DifferenceEngine &Engine;
|
|
|
|
// Some initializers may reference the variable we're currently checking. This
|
|
// can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
|
|
// recursing.
|
|
const Value *SavedLHS;
|
|
const Value *SavedRHS;
|
|
|
|
// The current mapping from old local values to new local values.
|
|
DenseMap<const Value *, const Value *> Values;
|
|
|
|
// The current mapping from old blocks to new blocks.
|
|
DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
|
|
|
|
// The tentative mapping from old local values while comparing a pair of
|
|
// basic blocks. Once the pair has been processed, the tentative mapping is
|
|
// committed to the Values map.
|
|
DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
|
|
|
|
// Equivalence Assumptions
|
|
//
|
|
// For basic blocks in loops, some values in phi nodes may depend on
|
|
// values from not yet processed basic blocks in the loop. When encountering
|
|
// such values, we optimistically asssume their equivalence and store this
|
|
// assumption in a BlockDiffCandidate for the pair of compared BBs.
|
|
//
|
|
// Once we have diffed all BBs, for every BlockDiffCandidate, we check all
|
|
// stored assumptions using the Values map that stores proven equivalences
|
|
// between the old and new values, and report a diff if an assumption cannot
|
|
// be proven to be true.
|
|
//
|
|
// Note that after having made an assumption, all further determined
|
|
// equivalences implicitly depend on that assumption. These will not be
|
|
// reverted or reported if the assumption proves to be false, because these
|
|
// are considered indirect diffs caused by earlier direct diffs.
|
|
//
|
|
// We aim to avoid false negatives in llvm-diff, that is, ensure that
|
|
// whenever no diff is reported, the functions are indeed equal. If
|
|
// assumptions were made, this is not entirely clear, because in principle we
|
|
// could end up with a circular proof where the proof of equivalence of two
|
|
// nodes is depending on the assumption of their equivalence.
|
|
//
|
|
// To see that assumptions do not add false negatives, note that if we do not
|
|
// report a diff, this means that there is an equivalence mapping between old
|
|
// and new values that is consistent with all assumptions made. The circular
|
|
// dependency that exists on an IR value level does not exist at run time,
|
|
// because the values selected by the phi nodes must always already have been
|
|
// computed. Hence, we can prove equivalence of the old and new functions by
|
|
// considering step-wise parallel execution, and incrementally proving
|
|
// equivalence of every new computed value. Another way to think about it is
|
|
// to imagine cloning the loop BBs for every iteration, turning the loops
|
|
// into (possibly infinite) DAGs, and proving equivalence by induction on the
|
|
// iteration, using the computed value mapping.
|
|
|
|
// The class BlockDiffCandidate stores pairs which either have already been
|
|
// proven to differ, or pairs whose equivalence depends on assumptions to be
|
|
// verified later.
|
|
struct BlockDiffCandidate {
|
|
const BasicBlock *LBB;
|
|
const BasicBlock *RBB;
|
|
// Maps old values to assumed-to-be-equivalent new values
|
|
SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
|
|
// If set, we already know the blocks differ.
|
|
bool KnownToDiffer;
|
|
};
|
|
|
|
// List of block diff candidates in the order found by processing.
|
|
// We generate reports in this order.
|
|
// For every LBB, there may only be one corresponding RBB.
|
|
SmallVector<BlockDiffCandidate> BlockDiffCandidates;
|
|
// Maps LBB to the index of its BlockDiffCandidate, if existing.
|
|
DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
|
|
|
|
// Note: Every LBB must always be queried together with the same RBB.
|
|
// The returned reference is not permanently valid and should not be stored.
|
|
BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
|
|
const BasicBlock *RBB) {
|
|
auto It = BlockDiffCandidateIndices.find(LBB);
|
|
// Check if LBB already has a diff candidate
|
|
if (It == BlockDiffCandidateIndices.end()) {
|
|
// Add new one
|
|
BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
|
|
BlockDiffCandidates.push_back(
|
|
{LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
|
|
return BlockDiffCandidates.back();
|
|
}
|
|
// Use existing one
|
|
BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
|
|
assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
|
|
return Result;
|
|
}
|
|
|
|
// Optionally passed to equivalence checker functions, so these can add
|
|
// assumptions in BlockDiffCandidates. Its presence controls whether
|
|
// assumptions are generated.
|
|
struct AssumptionContext {
|
|
// The two basic blocks that need the two compared values to be equivalent.
|
|
const BasicBlock *LBB;
|
|
const BasicBlock *RBB;
|
|
};
|
|
|
|
unsigned getUnprocPredCount(const BasicBlock *Block) const {
|
|
unsigned Count = 0;
|
|
for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
|
|
++I)
|
|
if (!Blocks.count(*I)) Count++;
|
|
return Count;
|
|
}
|
|
|
|
typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
|
|
|
|
/// A type which sorts a priority queue by the number of unprocessed
|
|
/// predecessor blocks it has remaining.
|
|
///
|
|
/// This is actually really expensive to calculate.
|
|
struct QueueSorter {
|
|
const FunctionDifferenceEngine &fde;
|
|
explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
|
|
|
|
bool operator()(BlockPair &Old, BlockPair &New) {
|
|
return fde.getUnprocPredCount(Old.first)
|
|
< fde.getUnprocPredCount(New.first);
|
|
}
|
|
};
|
|
|
|
/// A queue of unified blocks to process.
|
|
PriorityQueue<BlockPair, QueueSorter, 20> Queue;
|
|
|
|
/// Try to unify the given two blocks. Enqueues them for processing
|
|
/// if they haven't already been processed.
|
|
///
|
|
/// Returns true if there was a problem unifying them.
|
|
bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
|
|
const BasicBlock *&Ref = Blocks[L];
|
|
|
|
if (Ref) {
|
|
if (Ref == R) return false;
|
|
|
|
Engine.logf("successor %l cannot be equivalent to %r; "
|
|
"it's already equivalent to %r")
|
|
<< L << R << Ref;
|
|
return true;
|
|
}
|
|
|
|
Ref = R;
|
|
Queue.insert(BlockPair(L, R));
|
|
return false;
|
|
}
|
|
|
|
/// Unifies two instructions, given that they're known not to have
|
|
/// structural differences.
|
|
void unify(const Instruction *L, const Instruction *R) {
|
|
DifferenceEngine::Context C(Engine, L, R);
|
|
|
|
bool Result = diff(L, R, true, true, true);
|
|
assert(!Result && "structural differences second time around?");
|
|
(void) Result;
|
|
if (!L->use_empty())
|
|
Values[L] = R;
|
|
}
|
|
|
|
void processQueue() {
|
|
while (!Queue.empty()) {
|
|
BlockPair Pair = Queue.remove_min();
|
|
diff(Pair.first, Pair.second);
|
|
}
|
|
}
|
|
|
|
void checkAndReportDiffCandidates() {
|
|
for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
|
|
|
|
// Check assumptions
|
|
for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
|
|
auto It = Values.find(L);
|
|
if (It == Values.end() || It->second != R) {
|
|
BDC.KnownToDiffer = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Run block diff if the BBs differ
|
|
if (BDC.KnownToDiffer) {
|
|
DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
|
|
runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
|
|
}
|
|
}
|
|
}
|
|
|
|
void diff(const BasicBlock *L, const BasicBlock *R) {
|
|
DifferenceEngine::Context C(Engine, L, R);
|
|
|
|
BasicBlock::const_iterator LI = L->begin(), LE = L->end();
|
|
BasicBlock::const_iterator RI = R->begin();
|
|
|
|
do {
|
|
assert(LI != LE && RI != R->end());
|
|
const Instruction *LeftI = &*LI, *RightI = &*RI;
|
|
|
|
// If the instructions differ, start the more sophisticated diff
|
|
// algorithm at the start of the block.
|
|
if (diff(LeftI, RightI, false, false, true)) {
|
|
TentativeValues.clear();
|
|
// Register (L, R) as diffing pair. Note that we could directly emit a
|
|
// block diff here, but this way we ensure all diffs are emitted in one
|
|
// consistent order, independent of whether the diffs were detected
|
|
// immediately or via invalid assumptions.
|
|
getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, tentatively unify them.
|
|
if (!LeftI->use_empty())
|
|
TentativeValues.insert(std::make_pair(LeftI, RightI));
|
|
|
|
++LI;
|
|
++RI;
|
|
} while (LI != LE); // This is sufficient: we can't get equality of
|
|
// terminators if there are residual instructions.
|
|
|
|
// Unify everything in the block, non-tentatively this time.
|
|
TentativeValues.clear();
|
|
for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
|
|
unify(&*LI, &*RI);
|
|
}
|
|
|
|
bool matchForBlockDiff(const Instruction *L, const Instruction *R);
|
|
void runBlockDiff(BasicBlock::const_iterator LI,
|
|
BasicBlock::const_iterator RI);
|
|
|
|
bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
|
|
// FIXME: call attributes
|
|
AssumptionContext AC = {L.getParent(), R.getParent()};
|
|
if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
|
|
&AC)) {
|
|
if (Complain) Engine.log("called functions differ");
|
|
return true;
|
|
}
|
|
if (L.arg_size() != R.arg_size()) {
|
|
if (Complain) Engine.log("argument counts differ");
|
|
return true;
|
|
}
|
|
for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
|
|
if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
|
|
if (Complain)
|
|
Engine.logf("arguments %l and %r differ")
|
|
<< L.getArgOperand(I) << R.getArgOperand(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If AllowAssumptions is enabled, whenever we encounter a pair of values
|
|
// that we cannot prove to be equivalent, we assume equivalence and store that
|
|
// assumption to be checked later in BlockDiffCandidates.
|
|
bool diff(const Instruction *L, const Instruction *R, bool Complain,
|
|
bool TryUnify, bool AllowAssumptions) {
|
|
// FIXME: metadata (if Complain is set)
|
|
AssumptionContext ACValue = {L->getParent(), R->getParent()};
|
|
// nullptr AssumptionContext disables assumption generation.
|
|
const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
|
|
|
|
// Different opcodes always imply different operations.
|
|
if (L->getOpcode() != R->getOpcode()) {
|
|
if (Complain) Engine.log("different instruction types");
|
|
return true;
|
|
}
|
|
|
|
if (isa<CmpInst>(L)) {
|
|
if (cast<CmpInst>(L)->getPredicate()
|
|
!= cast<CmpInst>(R)->getPredicate()) {
|
|
if (Complain) Engine.log("different predicates");
|
|
return true;
|
|
}
|
|
} else if (isa<CallInst>(L)) {
|
|
return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
|
|
} else if (isa<PHINode>(L)) {
|
|
const PHINode &LI = cast<PHINode>(*L);
|
|
const PHINode &RI = cast<PHINode>(*R);
|
|
|
|
// This is really weird; type uniquing is broken?
|
|
if (LI.getType() != RI.getType()) {
|
|
if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
|
|
if (Complain) Engine.log("different phi types");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
|
|
if (Complain)
|
|
Engine.log("PHI node # of incoming values differ");
|
|
return true;
|
|
}
|
|
|
|
for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
|
|
if (TryUnify)
|
|
tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
|
|
|
|
if (!equivalentAsOperands(LI.getIncomingValue(I),
|
|
RI.getIncomingValue(I), AC)) {
|
|
if (Complain)
|
|
Engine.log("PHI node incoming values differ");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
// Terminators.
|
|
} else if (isa<InvokeInst>(L)) {
|
|
const InvokeInst &LI = cast<InvokeInst>(*L);
|
|
const InvokeInst &RI = cast<InvokeInst>(*R);
|
|
if (diffCallSites(LI, RI, Complain))
|
|
return true;
|
|
|
|
if (TryUnify) {
|
|
tryUnify(LI.getNormalDest(), RI.getNormalDest());
|
|
tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
|
|
}
|
|
return false;
|
|
|
|
} else if (isa<CallBrInst>(L)) {
|
|
const CallBrInst &LI = cast<CallBrInst>(*L);
|
|
const CallBrInst &RI = cast<CallBrInst>(*R);
|
|
if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
|
|
if (Complain)
|
|
Engine.log("callbr # of indirect destinations differ");
|
|
return true;
|
|
}
|
|
|
|
// Perform the "try unify" step so that we can equate the indirect
|
|
// destinations before checking the call site.
|
|
for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
|
|
tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
|
|
|
|
if (diffCallSites(LI, RI, Complain))
|
|
return true;
|
|
|
|
if (TryUnify)
|
|
tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
|
|
return false;
|
|
|
|
} else if (isa<BranchInst>(L)) {
|
|
const BranchInst *LI = cast<BranchInst>(L);
|
|
const BranchInst *RI = cast<BranchInst>(R);
|
|
if (LI->isConditional() != RI->isConditional()) {
|
|
if (Complain) Engine.log("branch conditionality differs");
|
|
return true;
|
|
}
|
|
|
|
if (LI->isConditional()) {
|
|
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
|
|
if (Complain) Engine.log("branch conditions differ");
|
|
return true;
|
|
}
|
|
if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
|
|
}
|
|
if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
|
|
return false;
|
|
|
|
} else if (isa<IndirectBrInst>(L)) {
|
|
const IndirectBrInst *LI = cast<IndirectBrInst>(L);
|
|
const IndirectBrInst *RI = cast<IndirectBrInst>(R);
|
|
if (LI->getNumDestinations() != RI->getNumDestinations()) {
|
|
if (Complain) Engine.log("indirectbr # of destinations differ");
|
|
return true;
|
|
}
|
|
|
|
if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
|
|
if (Complain) Engine.log("indirectbr addresses differ");
|
|
return true;
|
|
}
|
|
|
|
if (TryUnify) {
|
|
for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
|
|
tryUnify(LI->getDestination(i), RI->getDestination(i));
|
|
}
|
|
}
|
|
return false;
|
|
|
|
} else if (isa<SwitchInst>(L)) {
|
|
const SwitchInst *LI = cast<SwitchInst>(L);
|
|
const SwitchInst *RI = cast<SwitchInst>(R);
|
|
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
|
|
if (Complain) Engine.log("switch conditions differ");
|
|
return true;
|
|
}
|
|
if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
|
|
|
|
bool Difference = false;
|
|
|
|
DenseMap<const ConstantInt *, const BasicBlock *> LCases;
|
|
for (auto Case : LI->cases())
|
|
LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
|
|
|
|
for (auto Case : RI->cases()) {
|
|
const ConstantInt *CaseValue = Case.getCaseValue();
|
|
const BasicBlock *LCase = LCases[CaseValue];
|
|
if (LCase) {
|
|
if (TryUnify)
|
|
tryUnify(LCase, Case.getCaseSuccessor());
|
|
LCases.erase(CaseValue);
|
|
} else if (Complain || !Difference) {
|
|
if (Complain)
|
|
Engine.logf("right switch has extra case %r") << CaseValue;
|
|
Difference = true;
|
|
}
|
|
}
|
|
if (!Difference)
|
|
for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
|
|
I = LCases.begin(),
|
|
E = LCases.end();
|
|
I != E; ++I) {
|
|
if (Complain)
|
|
Engine.logf("left switch has extra case %l") << I->first;
|
|
Difference = true;
|
|
}
|
|
return Difference;
|
|
} else if (isa<UnreachableInst>(L)) {
|
|
return false;
|
|
}
|
|
|
|
if (L->getNumOperands() != R->getNumOperands()) {
|
|
if (Complain) Engine.log("instructions have different operand counts");
|
|
return true;
|
|
}
|
|
|
|
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
|
|
Value *LO = L->getOperand(I), *RO = R->getOperand(I);
|
|
if (!equivalentAsOperands(LO, RO, AC)) {
|
|
if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
bool equivalentAsOperands(const Constant *L, const Constant *R,
|
|
const AssumptionContext *AC) {
|
|
// Use equality as a preliminary filter.
|
|
if (L == R)
|
|
return true;
|
|
|
|
if (L->getValueID() != R->getValueID())
|
|
return false;
|
|
|
|
// Ask the engine about global values.
|
|
if (isa<GlobalValue>(L))
|
|
return Engine.equivalentAsOperands(cast<GlobalValue>(L),
|
|
cast<GlobalValue>(R));
|
|
|
|
// Compare constant expressions structurally.
|
|
if (isa<ConstantExpr>(L))
|
|
return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
|
|
AC);
|
|
|
|
// Constants of the "same type" don't always actually have the same
|
|
// type; I don't know why. Just white-list them.
|
|
if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
|
|
return true;
|
|
|
|
// Block addresses only match if we've already encountered the
|
|
// block. FIXME: tentative matches?
|
|
if (isa<BlockAddress>(L))
|
|
return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
|
|
== cast<BlockAddress>(R)->getBasicBlock();
|
|
|
|
// If L and R are ConstantVectors, compare each element
|
|
if (isa<ConstantVector>(L)) {
|
|
const ConstantVector *CVL = cast<ConstantVector>(L);
|
|
const ConstantVector *CVR = cast<ConstantVector>(R);
|
|
if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
|
|
return false;
|
|
for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
|
|
if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If L and R are ConstantArrays, compare the element count and types.
|
|
if (isa<ConstantArray>(L)) {
|
|
const ConstantArray *CAL = cast<ConstantArray>(L);
|
|
const ConstantArray *CAR = cast<ConstantArray>(R);
|
|
// Sometimes a type may be equivalent, but not uniquified---e.g. it may
|
|
// contain a GEP instruction. Do a deeper comparison of the types.
|
|
if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
|
|
return false;
|
|
|
|
for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
|
|
if (!equivalentAsOperands(CAL->getAggregateElement(I),
|
|
CAR->getAggregateElement(I), AC))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If L and R are ConstantStructs, compare each field and type.
|
|
if (isa<ConstantStruct>(L)) {
|
|
const ConstantStruct *CSL = cast<ConstantStruct>(L);
|
|
const ConstantStruct *CSR = cast<ConstantStruct>(R);
|
|
|
|
const StructType *LTy = cast<StructType>(CSL->getType());
|
|
const StructType *RTy = cast<StructType>(CSR->getType());
|
|
|
|
// The StructTypes should have the same attributes. Don't use
|
|
// isLayoutIdentical(), because that just checks the element pointers,
|
|
// which may not work here.
|
|
if (LTy->getNumElements() != RTy->getNumElements() ||
|
|
LTy->isPacked() != RTy->isPacked())
|
|
return false;
|
|
|
|
for (unsigned I = 0; I < LTy->getNumElements(); I++) {
|
|
const Value *LAgg = CSL->getAggregateElement(I);
|
|
const Value *RAgg = CSR->getAggregateElement(I);
|
|
|
|
if (LAgg == SavedLHS || RAgg == SavedRHS) {
|
|
if (LAgg != SavedLHS || RAgg != SavedRHS)
|
|
// If the left and right operands aren't both re-analyzing the
|
|
// variable, then the initialiers don't match, so report "false".
|
|
// Otherwise, we skip these operands..
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!equivalentAsOperands(LAgg, RAgg, AC)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
|
|
const AssumptionContext *AC) {
|
|
if (L == R)
|
|
return true;
|
|
|
|
if (L->getOpcode() != R->getOpcode())
|
|
return false;
|
|
|
|
switch (L->getOpcode()) {
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
if (L->getPredicate() != R->getPredicate())
|
|
return false;
|
|
break;
|
|
|
|
case Instruction::GetElementPtr:
|
|
// FIXME: inbounds?
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (L->getNumOperands() != R->getNumOperands())
|
|
return false;
|
|
|
|
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
|
|
const auto *LOp = L->getOperand(I);
|
|
const auto *ROp = R->getOperand(I);
|
|
|
|
if (LOp == SavedLHS || ROp == SavedRHS) {
|
|
if (LOp != SavedLHS || ROp != SavedRHS)
|
|
// If the left and right operands aren't both re-analyzing the
|
|
// variable, then the initialiers don't match, so report "false".
|
|
// Otherwise, we skip these operands..
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!equivalentAsOperands(LOp, ROp, AC))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// There are cases where we cannot determine whether two values are
|
|
// equivalent, because it depends on not yet processed basic blocks -- see the
|
|
// documentation on assumptions.
|
|
//
|
|
// AC is the context in which we are currently performing a diff.
|
|
// When we encounter a pair of values for which we can neither prove
|
|
// equivalence nor the opposite, we do the following:
|
|
// * If AC is nullptr, we treat the pair as non-equivalent.
|
|
// * If AC is set, we add an assumption for the basic blocks given by AC,
|
|
// and treat the pair as equivalent. The assumption is checked later.
|
|
bool equivalentAsOperands(const Value *L, const Value *R,
|
|
const AssumptionContext *AC) {
|
|
// Fall out if the values have different kind.
|
|
// This possibly shouldn't take priority over oracles.
|
|
if (L->getValueID() != R->getValueID())
|
|
return false;
|
|
|
|
// Value subtypes: Argument, Constant, Instruction, BasicBlock,
|
|
// InlineAsm, MDNode, MDString, PseudoSourceValue
|
|
|
|
if (isa<Constant>(L))
|
|
return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
|
|
|
|
if (isa<Instruction>(L)) {
|
|
auto It = Values.find(L);
|
|
if (It != Values.end())
|
|
return It->second == R;
|
|
|
|
if (TentativeValues.count(std::make_pair(L, R)))
|
|
return true;
|
|
|
|
// L and R might be equivalent, this could depend on not yet processed
|
|
// basic blocks, so we cannot decide here.
|
|
if (AC) {
|
|
// Add an assumption, unless there is a conflict with an existing one
|
|
BlockDiffCandidate &BDC =
|
|
getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
|
|
auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
|
|
if (!InsertionResult.second && InsertionResult.first->second != R) {
|
|
// We already have a conflicting equivalence assumption for L, so at
|
|
// least one must be wrong, and we know that there is a diff.
|
|
BDC.KnownToDiffer = true;
|
|
BDC.EquivalenceAssumptions.clear();
|
|
return false;
|
|
}
|
|
// Optimistically assume equivalence, and check later once all BBs
|
|
// have been processed.
|
|
return true;
|
|
}
|
|
|
|
// Assumptions disabled, so pessimistically assume non-equivalence.
|
|
return false;
|
|
}
|
|
|
|
if (isa<Argument>(L))
|
|
return Values[L] == R;
|
|
|
|
if (isa<BasicBlock>(L))
|
|
return Blocks[cast<BasicBlock>(L)] != R;
|
|
|
|
// Pretend everything else is identical.
|
|
return true;
|
|
}
|
|
|
|
// Avoid a gcc warning about accessing 'this' in an initializer.
|
|
FunctionDifferenceEngine *this_() { return this; }
|
|
|
|
public:
|
|
FunctionDifferenceEngine(DifferenceEngine &Engine,
|
|
const Value *SavedLHS = nullptr,
|
|
const Value *SavedRHS = nullptr)
|
|
: Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
|
|
Queue(QueueSorter(*this_())) {}
|
|
|
|
void diff(const Function *L, const Function *R) {
|
|
assert(Values.empty() && "Multiple diffs per engine are not supported!");
|
|
|
|
if (L->arg_size() != R->arg_size())
|
|
Engine.log("different argument counts");
|
|
|
|
// Map the arguments.
|
|
for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
|
|
RI = R->arg_begin(), RE = R->arg_end();
|
|
LI != LE && RI != RE; ++LI, ++RI)
|
|
Values[&*LI] = &*RI;
|
|
|
|
tryUnify(&*L->begin(), &*R->begin());
|
|
processQueue();
|
|
checkAndReportDiffCandidates();
|
|
}
|
|
};
|
|
|
|
struct DiffEntry {
|
|
DiffEntry() : Cost(0) {}
|
|
|
|
unsigned Cost;
|
|
llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
|
|
};
|
|
|
|
bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
|
|
const Instruction *R) {
|
|
return !diff(L, R, false, false, false);
|
|
}
|
|
|
|
void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
|
|
BasicBlock::const_iterator RStart) {
|
|
BasicBlock::const_iterator LE = LStart->getParent()->end();
|
|
BasicBlock::const_iterator RE = RStart->getParent()->end();
|
|
|
|
unsigned NL = std::distance(LStart, LE);
|
|
|
|
SmallVector<DiffEntry, 20> Paths1(NL+1);
|
|
SmallVector<DiffEntry, 20> Paths2(NL+1);
|
|
|
|
DiffEntry *Cur = Paths1.data();
|
|
DiffEntry *Next = Paths2.data();
|
|
|
|
const unsigned LeftCost = 2;
|
|
const unsigned RightCost = 2;
|
|
const unsigned MatchCost = 0;
|
|
|
|
assert(TentativeValues.empty());
|
|
|
|
// Initialize the first column.
|
|
for (unsigned I = 0; I != NL+1; ++I) {
|
|
Cur[I].Cost = I * LeftCost;
|
|
for (unsigned J = 0; J != I; ++J)
|
|
Cur[I].Path.push_back(DC_left);
|
|
}
|
|
|
|
for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
|
|
// Initialize the first row.
|
|
Next[0] = Cur[0];
|
|
Next[0].Cost += RightCost;
|
|
Next[0].Path.push_back(DC_right);
|
|
|
|
unsigned Index = 1;
|
|
for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
|
|
if (matchForBlockDiff(&*LI, &*RI)) {
|
|
Next[Index] = Cur[Index-1];
|
|
Next[Index].Cost += MatchCost;
|
|
Next[Index].Path.push_back(DC_match);
|
|
TentativeValues.insert(std::make_pair(&*LI, &*RI));
|
|
} else if (Next[Index-1].Cost <= Cur[Index].Cost) {
|
|
Next[Index] = Next[Index-1];
|
|
Next[Index].Cost += LeftCost;
|
|
Next[Index].Path.push_back(DC_left);
|
|
} else {
|
|
Next[Index] = Cur[Index];
|
|
Next[Index].Cost += RightCost;
|
|
Next[Index].Path.push_back(DC_right);
|
|
}
|
|
}
|
|
|
|
std::swap(Cur, Next);
|
|
}
|
|
|
|
// We don't need the tentative values anymore; everything from here
|
|
// on out should be non-tentative.
|
|
TentativeValues.clear();
|
|
|
|
SmallVectorImpl<char> &Path = Cur[NL].Path;
|
|
BasicBlock::const_iterator LI = LStart, RI = RStart;
|
|
|
|
DiffLogBuilder Diff(Engine.getConsumer());
|
|
|
|
// Drop trailing matches.
|
|
while (Path.size() && Path.back() == DC_match)
|
|
Path.pop_back();
|
|
|
|
// Skip leading matches.
|
|
SmallVectorImpl<char>::iterator
|
|
PI = Path.begin(), PE = Path.end();
|
|
while (PI != PE && *PI == DC_match) {
|
|
unify(&*LI, &*RI);
|
|
++PI;
|
|
++LI;
|
|
++RI;
|
|
}
|
|
|
|
for (; PI != PE; ++PI) {
|
|
switch (static_cast<DiffChange>(*PI)) {
|
|
case DC_match:
|
|
assert(LI != LE && RI != RE);
|
|
{
|
|
const Instruction *L = &*LI, *R = &*RI;
|
|
unify(L, R);
|
|
Diff.addMatch(L, R);
|
|
}
|
|
++LI; ++RI;
|
|
break;
|
|
|
|
case DC_left:
|
|
assert(LI != LE);
|
|
Diff.addLeft(&*LI);
|
|
++LI;
|
|
break;
|
|
|
|
case DC_right:
|
|
assert(RI != RE);
|
|
Diff.addRight(&*RI);
|
|
++RI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finishing unifying and complaining about the tails of the block,
|
|
// which should be matches all the way through.
|
|
while (LI != LE) {
|
|
assert(RI != RE);
|
|
unify(&*LI, &*RI);
|
|
++LI;
|
|
++RI;
|
|
}
|
|
|
|
// If the terminators have different kinds, but one is an invoke and the
|
|
// other is an unconditional branch immediately following a call, unify
|
|
// the results and the destinations.
|
|
const Instruction *LTerm = LStart->getParent()->getTerminator();
|
|
const Instruction *RTerm = RStart->getParent()->getTerminator();
|
|
if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
|
|
if (cast<BranchInst>(LTerm)->isConditional()) return;
|
|
BasicBlock::const_iterator I = LTerm->getIterator();
|
|
if (I == LStart->getParent()->begin()) return;
|
|
--I;
|
|
if (!isa<CallInst>(*I)) return;
|
|
const CallInst *LCall = cast<CallInst>(&*I);
|
|
const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
|
|
if (!equivalentAsOperands(LCall->getCalledOperand(),
|
|
RInvoke->getCalledOperand(), nullptr))
|
|
return;
|
|
if (!LCall->use_empty())
|
|
Values[LCall] = RInvoke;
|
|
tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
|
|
} else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
|
|
if (cast<BranchInst>(RTerm)->isConditional()) return;
|
|
BasicBlock::const_iterator I = RTerm->getIterator();
|
|
if (I == RStart->getParent()->begin()) return;
|
|
--I;
|
|
if (!isa<CallInst>(*I)) return;
|
|
const CallInst *RCall = cast<CallInst>(I);
|
|
const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
|
|
if (!equivalentAsOperands(LInvoke->getCalledOperand(),
|
|
RCall->getCalledOperand(), nullptr))
|
|
return;
|
|
if (!LInvoke->use_empty())
|
|
Values[LInvoke] = RCall;
|
|
tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
void DifferenceEngine::Oracle::anchor() { }
|
|
|
|
void DifferenceEngine::diff(const Function *L, const Function *R) {
|
|
Context C(*this, L, R);
|
|
|
|
// FIXME: types
|
|
// FIXME: attributes and CC
|
|
// FIXME: parameter attributes
|
|
|
|
// If both are declarations, we're done.
|
|
if (L->empty() && R->empty())
|
|
return;
|
|
else if (L->empty())
|
|
log("left function is declaration, right function is definition");
|
|
else if (R->empty())
|
|
log("right function is declaration, left function is definition");
|
|
else
|
|
FunctionDifferenceEngine(*this).diff(L, R);
|
|
}
|
|
|
|
void DifferenceEngine::diff(const Module *L, const Module *R) {
|
|
StringSet<> LNames;
|
|
SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
|
|
|
|
unsigned LeftAnonCount = 0;
|
|
unsigned RightAnonCount = 0;
|
|
|
|
for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
|
|
const Function *LFn = &*I;
|
|
StringRef Name = LFn->getName();
|
|
if (Name.empty()) {
|
|
++LeftAnonCount;
|
|
continue;
|
|
}
|
|
|
|
LNames.insert(Name);
|
|
|
|
if (Function *RFn = R->getFunction(LFn->getName()))
|
|
Queue.push_back(std::make_pair(LFn, RFn));
|
|
else
|
|
logf("function %l exists only in left module") << LFn;
|
|
}
|
|
|
|
for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
|
|
const Function *RFn = &*I;
|
|
StringRef Name = RFn->getName();
|
|
if (Name.empty()) {
|
|
++RightAnonCount;
|
|
continue;
|
|
}
|
|
|
|
if (!LNames.count(Name))
|
|
logf("function %r exists only in right module") << RFn;
|
|
}
|
|
|
|
if (LeftAnonCount != 0 || RightAnonCount != 0) {
|
|
SmallString<32> Tmp;
|
|
logf(("not comparing " + Twine(LeftAnonCount) +
|
|
" anonymous functions in the left module and " +
|
|
Twine(RightAnonCount) + " in the right module")
|
|
.toStringRef(Tmp));
|
|
}
|
|
|
|
for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
|
|
I = Queue.begin(),
|
|
E = Queue.end();
|
|
I != E; ++I)
|
|
diff(I->first, I->second);
|
|
}
|
|
|
|
bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
|
|
const GlobalValue *R) {
|
|
if (globalValueOracle) return (*globalValueOracle)(L, R);
|
|
|
|
if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
|
|
const GlobalVariable *GVL = cast<GlobalVariable>(L);
|
|
const GlobalVariable *GVR = cast<GlobalVariable>(R);
|
|
if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
|
|
GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
|
|
return FunctionDifferenceEngine(*this, GVL, GVR)
|
|
.equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
|
|
nullptr);
|
|
}
|
|
|
|
return L->getName() == R->getName();
|
|
}
|