Files
clang-p2996/mlir/lib/Analysis/Presburger/Matrix.cpp
Groverkss b696e25a7a [MLIR][Presburger] Add hermite normal form computation to Matrix
This patch adds hermite normal form computation to Matrix. Part of this algorithm
lived in LinearTransform, being used for compuing column echelon form. This
patch moves the implementation to Matrix::hermiteNormalForm and generalises it
to compute the hermite normal form.

Reviewed By: arjunp

Differential Revision: https://reviews.llvm.org/D133510
2022-09-14 16:39:05 +01:00

376 lines
13 KiB
C++

//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace presburger;
Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
unsigned reservedColumns)
: nRows(rows), nColumns(columns),
nReservedColumns(std::max(nColumns, reservedColumns)),
data(nRows * nReservedColumns) {
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}
Matrix Matrix::identity(unsigned dimension) {
Matrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
unsigned Matrix::getNumReservedRows() const {
return data.capacity() / nReservedColumns;
}
void Matrix::reserveRows(unsigned rows) {
data.reserve(rows * nReservedColumns);
}
unsigned Matrix::appendExtraRow() {
resizeVertically(nRows + 1);
return nRows - 1;
}
unsigned Matrix::appendExtraRow(ArrayRef<MPInt> elems) {
assert(elems.size() == nColumns && "elems must match row length!");
unsigned row = appendExtraRow();
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = elems[col];
return row;
}
void Matrix::resizeHorizontally(unsigned newNColumns) {
if (newNColumns < nColumns)
removeColumns(newNColumns, nColumns - newNColumns);
if (newNColumns > nColumns)
insertColumns(nColumns, newNColumns - nColumns);
}
void Matrix::resize(unsigned newNRows, unsigned newNColumns) {
resizeHorizontally(newNColumns);
resizeVertically(newNRows);
}
void Matrix::resizeVertically(unsigned newNRows) {
nRows = newNRows;
data.resize(nRows * nReservedColumns);
}
void Matrix::swapRows(unsigned row, unsigned otherRow) {
assert((row < getNumRows() && otherRow < getNumRows()) &&
"Given row out of bounds");
if (row == otherRow)
return;
for (unsigned col = 0; col < nColumns; col++)
std::swap(at(row, col), at(otherRow, col));
}
void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
"Given column out of bounds");
if (column == otherColumn)
return;
for (unsigned row = 0; row < nRows; row++)
std::swap(at(row, column), at(row, otherColumn));
}
MutableArrayRef<MPInt> Matrix::getRow(unsigned row) {
return {&data[row * nReservedColumns], nColumns};
}
ArrayRef<MPInt> Matrix::getRow(unsigned row) const {
return {&data[row * nReservedColumns], nColumns};
}
void Matrix::setRow(unsigned row, ArrayRef<MPInt> elems) {
assert(elems.size() == getNumColumns() &&
"elems size must match row length!");
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
at(row, i) = elems[i];
}
void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); }
void Matrix::insertColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nColumns);
unsigned oldNReservedColumns = nReservedColumns;
if (nColumns + count > nReservedColumns) {
nReservedColumns = llvm::NextPowerOf2(nColumns + count);
data.resize(nRows * nReservedColumns);
}
nColumns += count;
for (int ri = nRows - 1; ri >= 0; --ri) {
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
unsigned r = ri;
unsigned c = ci;
MPInt &dest = data[r * nReservedColumns + c];
if (c >= nColumns) { // NOLINT
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
// complains about this branch being the same as the c >= pos one.
//
// TODO: this case can be skipped if the number of reserved columns
// didn't change.
dest = 0;
} else if (c >= pos + count) {
// Shift the data occuring after the inserted columns.
dest = data[r * oldNReservedColumns + c - count];
} else if (c >= pos) {
// The inserted columns are also zero-initialized.
dest = 0;
} else {
// The columns before the inserted columns stay at the same (row, col)
// but this corresponds to a different location in the linearized array
// if the number of reserved columns changed.
if (nReservedColumns == oldNReservedColumns)
break;
dest = data[r * oldNReservedColumns + c];
}
}
}
}
void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); }
void Matrix::removeColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 < nColumns);
for (unsigned r = 0; r < nRows; ++r) {
for (unsigned c = pos; c < nColumns - count; ++c)
at(r, c) = at(r, c + count);
for (unsigned c = nColumns - count; c < nColumns; ++c)
at(r, c) = 0;
}
nColumns -= count;
}
void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); }
void Matrix::insertRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nRows);
resizeVertically(nRows + count);
for (int r = nRows - 1; r >= int(pos + count); --r)
copyRow(r - count, r);
for (int r = pos + count - 1; r >= int(pos); --r)
for (unsigned c = 0; c < nColumns; ++c)
at(r, c) = 0;
}
void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); }
void Matrix::removeRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 <= nRows);
for (unsigned r = pos; r + count < nRows; ++r)
copyRow(r + count, r);
resizeVertically(nRows - count);
}
void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) {
if (sourceRow == targetRow)
return;
for (unsigned c = 0; c < nColumns; ++c)
at(targetRow, c) = at(sourceRow, c);
}
void Matrix::fillRow(unsigned row, const MPInt &value) {
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = value;
}
void Matrix::addToRow(unsigned sourceRow, unsigned targetRow,
const MPInt &scale) {
addToRow(targetRow, getRow(sourceRow), scale);
}
void Matrix::addToRow(unsigned row, ArrayRef<MPInt> rowVec,
const MPInt &scale) {
if (scale == 0)
return;
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) += scale * rowVec[col];
}
void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn,
const MPInt &scale) {
if (scale == 0)
return;
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, targetColumn) += scale * at(row, sourceColumn);
}
void Matrix::negateColumn(unsigned column) {
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, column) = -at(row, column);
}
void Matrix::negateRow(unsigned row) {
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
at(row, column) = -at(row, column);
}
MPInt Matrix::normalizeRow(unsigned row, unsigned cols) {
return normalizeRange(getRow(row).slice(0, cols));
}
MPInt Matrix::normalizeRow(unsigned row) {
return normalizeRow(row, getNumColumns());
}
SmallVector<MPInt, 8> Matrix::preMultiplyWithRow(ArrayRef<MPInt> rowVec) const {
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
SmallVector<MPInt, 8> result(getNumColumns(), MPInt(0));
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
result[col] += rowVec[i] * at(i, col);
return result;
}
SmallVector<MPInt, 8>
Matrix::postMultiplyWithColumn(ArrayRef<MPInt> colVec) const {
assert(getNumColumns() == colVec.size() &&
"Invalid column vector dimension!");
SmallVector<MPInt, 8> result(getNumRows(), MPInt(0));
for (unsigned row = 0, e = getNumRows(); row < e; row++)
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
result[row] += at(row, i) * colVec[i];
return result;
}
/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
unsigned targetCol, Matrix &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert(m(row, sourceCol) > 0 && "Source must be positive!");
MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
m.addToColumn(sourceCol, targetCol, ratio);
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}
std::pair<Matrix, Matrix> Matrix::computeHermiteNormalForm() const {
// We start with u as an identity matrix and perform operations on h until h
// is in hermite normal form. We apply the same sequence of operations on u to
// obtain a transform that takes h to hermite normal form.
Matrix h = *this;
Matrix u = Matrix::identity(h.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < h.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (h(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == h.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
h.swapColumns(nonZeroCol, echelonCol);
u.swapColumns(nonZeroCol, echelonCol);
}
// Make h(row, echelonCol) non-negative.
if (h(row, echelonCol) < 0) {
h.negateColumn(echelonCol);
u.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
// We make h(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (h(row, i) < 0) {
h.negateColumn(i);
u.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set h(row, targetCol) %= h(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// h(row, targetCol) -= quotient * h(row, sourceCol),
// where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
// which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
modEntryColumnOperation(h, row, sourceCol, targetCol, u);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (h(row, echelonCol) == 0) {
h.swapColumns(i, echelonCol);
u.swapColumns(i, echelonCol);
}
}
// Make all entries before echelonCol non-negative and strictly smaller
// than the pivot entry.
for (unsigned i = 0; i < echelonCol; ++i)
modEntryColumnOperation(h, row, echelonCol, i, u);
++echelonCol;
}
return {h, u};
}
void Matrix::print(raw_ostream &os) const {
for (unsigned row = 0; row < nRows; ++row) {
for (unsigned column = 0; column < nColumns; ++column)
os << at(row, column) << ' ';
os << '\n';
}
}
void Matrix::dump() const { print(llvm::errs()); }
bool Matrix::hasConsistentState() const {
if (data.size() != nRows * nReservedColumns)
return false;
if (nColumns > nReservedColumns)
return false;
for (unsigned r = 0; r < nRows; ++r)
for (unsigned c = nColumns; c < nReservedColumns; ++c)
if (data[r * nReservedColumns + c] != 0)
return false;
return true;
}