This new option is set to `false` by default. It should be set only in Canonicalizer tests to detect faulty canonicalization patterns. I.e., patterns that prevent the canonicalizer from converging. The canonicalizer should always convergence on such small unit tests that we have in `canonicalize.mlir`. Two faulty canonicalization patterns were detected and fixed with this change. Differential Revision: https://reviews.llvm.org/D140873
1438 lines
54 KiB
C++
1438 lines
54 KiB
C++
//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the GPU kernel-related dialect and its operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/FunctionImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Transforms/InliningUtils.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::gpu;
|
|
|
|
#include "mlir/Dialect/GPU/IR/GPUOpsDialect.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU Device Mapping Attributes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int64_t GPUBlockMappingAttr::getMappingId() const {
|
|
return static_cast<int64_t>(getBlock());
|
|
}
|
|
|
|
int64_t GPUThreadMappingAttr::getMappingId() const {
|
|
return static_cast<int64_t>(getThread());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MMAMatrixType
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
return Base::get(elementType.getContext(), shape, elementType, operand);
|
|
}
|
|
|
|
MMAMatrixType
|
|
MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
return Base::getChecked(emitError, elementType.getContext(), shape,
|
|
elementType, operand);
|
|
}
|
|
|
|
unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
|
|
|
|
ArrayRef<int64_t> MMAMatrixType::getShape() const {
|
|
return getImpl()->getShape();
|
|
}
|
|
|
|
Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
|
|
|
|
StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
|
|
|
|
bool MMAMatrixType::isValidElementType(Type elementType) {
|
|
return elementType.isF16() || elementType.isF32();
|
|
}
|
|
|
|
LogicalResult
|
|
MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
StringRef operand) {
|
|
if (!operand.equals("AOp") && !operand.equals("BOp") &&
|
|
!operand.equals("COp"))
|
|
return emitError() << "operand expected to be one of AOp, BOp or COp";
|
|
|
|
if (shape.size() != 2)
|
|
return emitError() << "MMAMatrixType must have exactly two dimensions";
|
|
|
|
if (!MMAMatrixType::isValidElementType(elementType))
|
|
return emitError() << "MMAMatrixType elements must be F16 or F32";
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GPU memory space identifiers.
|
|
enum GPUMemorySpace {
|
|
/// Generic memory space identifier.
|
|
kGenericMemorySpace = 0,
|
|
|
|
/// Global memory space identifier.
|
|
kGlobalMemorySpace = 1,
|
|
|
|
/// Shared memory space identifier.
|
|
kSharedMemorySpace = 3
|
|
};
|
|
|
|
bool GPUDialect::isKernel(Operation *op) {
|
|
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
|
|
return static_cast<bool>(isKernelAttr);
|
|
}
|
|
|
|
namespace {
|
|
/// This class defines the interface for handling inlining with gpu
|
|
/// operations.
|
|
struct GPUInlinerInterface : public DialectInlinerInterface {
|
|
using DialectInlinerInterface::DialectInlinerInterface;
|
|
|
|
/// All gpu dialect ops can be inlined.
|
|
bool isLegalToInline(Operation *, Region *, bool,
|
|
BlockAndValueMapping &) const final {
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void GPUDialect::initialize() {
|
|
addTypes<AsyncTokenType>();
|
|
addTypes<MMAMatrixType>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
|
|
>();
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
|
|
>();
|
|
addInterfaces<GPUInlinerInterface>();
|
|
}
|
|
|
|
Type GPUDialect::parseType(DialectAsmParser &parser) const {
|
|
// Parse the main keyword for the type.
|
|
StringRef keyword;
|
|
if (parser.parseKeyword(&keyword))
|
|
return Type();
|
|
MLIRContext *context = getContext();
|
|
|
|
// Handle 'async token' types.
|
|
if (keyword == "async.token")
|
|
return AsyncTokenType::get(context);
|
|
|
|
if (keyword == "mma_matrix") {
|
|
SMLoc beginLoc = parser.getNameLoc();
|
|
|
|
// Parse '<'.
|
|
if (parser.parseLess())
|
|
return nullptr;
|
|
|
|
// Parse the size and elementType.
|
|
SmallVector<int64_t> shape;
|
|
Type elementType;
|
|
if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
|
|
parser.parseType(elementType))
|
|
return nullptr;
|
|
|
|
// Parse ','
|
|
if (parser.parseComma())
|
|
return nullptr;
|
|
|
|
// Parse operand.
|
|
std::string operand;
|
|
if (failed(parser.parseOptionalString(&operand)))
|
|
return nullptr;
|
|
|
|
// Parse '>'.
|
|
if (parser.parseGreater())
|
|
return nullptr;
|
|
|
|
return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
|
|
parser.getEncodedSourceLoc(beginLoc)),
|
|
shape, elementType, operand);
|
|
}
|
|
|
|
parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
|
|
return Type();
|
|
}
|
|
|
|
void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
|
|
TypeSwitch<Type>(type)
|
|
.Case<AsyncTokenType>([&](Type) { os << "async.token"; })
|
|
.Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
|
|
os << "mma_matrix<";
|
|
auto shape = fragTy.getShape();
|
|
for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
|
|
os << *dim << 'x';
|
|
os << shape.back() << 'x' << fragTy.getElementType();
|
|
os << ", \"" << fragTy.getOperand() << "\"" << '>';
|
|
})
|
|
.Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
|
|
}
|
|
|
|
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
|
|
NamedAttribute attr) {
|
|
if (!attr.getValue().isa<UnitAttr>() ||
|
|
attr.getName() != getContainerModuleAttrName())
|
|
return success();
|
|
|
|
auto module = dyn_cast<ModuleOp>(op);
|
|
if (!module)
|
|
return op->emitError("expected '")
|
|
<< getContainerModuleAttrName() << "' attribute to be attached to '"
|
|
<< ModuleOp::getOperationName() << '\'';
|
|
|
|
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
|
|
// Ignore launches that are nested more or less deep than functions in the
|
|
// module we are currently checking.
|
|
if (!launchOp->getParentOp() ||
|
|
launchOp->getParentOp()->getParentOp() != module)
|
|
return success();
|
|
|
|
// Ignore launch ops with missing attributes here. The errors will be
|
|
// reported by the verifiers of those ops.
|
|
if (!launchOp->getAttrOfType<SymbolRefAttr>(
|
|
LaunchFuncOp::getKernelAttrName(launchOp->getName())))
|
|
return success();
|
|
|
|
// Check that `launch_func` refers to a well-formed GPU kernel module.
|
|
StringAttr kernelModuleName = launchOp.getKernelModuleName();
|
|
auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
|
|
if (!kernelModule)
|
|
return launchOp.emitOpError()
|
|
<< "kernel module '" << kernelModuleName.getValue()
|
|
<< "' is undefined";
|
|
|
|
// Check that `launch_func` refers to a well-formed kernel function.
|
|
Operation *kernelFunc = module.lookupSymbol(launchOp.getKernelAttr());
|
|
if (!kernelFunc)
|
|
return launchOp.emitOpError("kernel function '")
|
|
<< launchOp.getKernel() << "' is undefined";
|
|
auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc);
|
|
if (!kernelConvertedFunction) {
|
|
InFlightDiagnostic diag = launchOp.emitOpError()
|
|
<< "referenced kernel '" << launchOp.getKernel()
|
|
<< "' is not a function";
|
|
diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here";
|
|
return diag;
|
|
}
|
|
|
|
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
|
|
GPUDialect::getKernelFuncAttrName()))
|
|
return launchOp.emitOpError("kernel function is missing the '")
|
|
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
|
|
|
|
// TODO: If the kernel isn't a GPU function (which happens during separate
|
|
// compilation), do not check type correspondence as it would require the
|
|
// verifier to be aware of the type conversion.
|
|
auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc);
|
|
if (!kernelGPUFunction)
|
|
return success();
|
|
|
|
unsigned actualNumArguments = launchOp.getNumKernelOperands();
|
|
unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
|
|
if (expectedNumArguments != actualNumArguments)
|
|
return launchOp.emitOpError("got ")
|
|
<< actualNumArguments << " kernel operands but expected "
|
|
<< expectedNumArguments;
|
|
|
|
auto functionType = kernelGPUFunction.getFunctionType();
|
|
for (unsigned i = 0; i < expectedNumArguments; ++i) {
|
|
if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
|
|
return launchOp.emitOpError("type of function argument ")
|
|
<< i << " does not match";
|
|
}
|
|
}
|
|
|
|
return success();
|
|
});
|
|
|
|
return walkResult.wasInterrupted() ? failure() : success();
|
|
}
|
|
|
|
/// Parses an optional list of async operands with an optional leading keyword.
|
|
/// (`async`)? (`[` ssa-id-list `]`)?
|
|
///
|
|
/// This method is used by the tablegen assembly format for async ops as well.
|
|
static ParseResult parseAsyncDependencies(
|
|
OpAsmParser &parser, Type &asyncTokenType,
|
|
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) {
|
|
auto loc = parser.getCurrentLocation();
|
|
if (succeeded(parser.parseOptionalKeyword("async"))) {
|
|
if (parser.getNumResults() == 0)
|
|
return parser.emitError(loc, "needs to be named when marked 'async'");
|
|
asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
|
|
}
|
|
return parser.parseOperandList(asyncDependencies,
|
|
OpAsmParser::Delimiter::OptionalSquare);
|
|
}
|
|
|
|
/// Prints optional async dependencies with its leading keyword.
|
|
/// (`async`)? (`[` ssa-id-list `]`)?
|
|
// Used by the tablegen assembly format for several async ops.
|
|
static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
|
|
Type asyncTokenType,
|
|
OperandRange asyncDependencies) {
|
|
if (asyncTokenType)
|
|
printer << "async";
|
|
if (asyncDependencies.empty())
|
|
return;
|
|
if (asyncTokenType)
|
|
printer << ' ';
|
|
printer << '[';
|
|
llvm::interleaveComma(asyncDependencies, printer);
|
|
printer << ']';
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllReduceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool verifyReduceOpAndType(gpu::AllReduceOperation opName,
|
|
Type resType) {
|
|
return (opName != gpu::AllReduceOperation::AND &&
|
|
opName != gpu::AllReduceOperation::OR &&
|
|
opName != gpu::AllReduceOperation::XOR) ||
|
|
resType.isa<IntegerType>();
|
|
}
|
|
|
|
LogicalResult gpu::AllReduceOp::verifyRegions() {
|
|
if (getBody().empty() != getOp().has_value())
|
|
return emitError("expected either an op attribute or a non-empty body");
|
|
if (!getBody().empty()) {
|
|
if (getBody().getNumArguments() != 2)
|
|
return emitError("expected two region arguments");
|
|
for (auto argument : getBody().getArguments()) {
|
|
if (argument.getType() != getType())
|
|
return emitError("incorrect region argument type");
|
|
}
|
|
unsigned yieldCount = 0;
|
|
for (Block &block : getBody()) {
|
|
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
|
|
if (yield.getNumOperands() != 1)
|
|
return emitError("expected one gpu.yield operand");
|
|
if (yield.getOperand(0).getType() != getType())
|
|
return emitError("incorrect gpu.yield type");
|
|
++yieldCount;
|
|
}
|
|
}
|
|
if (yieldCount == 0)
|
|
return emitError("expected gpu.yield op in region");
|
|
} else {
|
|
gpu::AllReduceOperation opName = *getOp();
|
|
if (!verifyReduceOpAndType(opName, getType())) {
|
|
return emitError()
|
|
<< '`' << gpu::stringifyAllReduceOperation(opName)
|
|
<< "` accumulator is only compatible with Integer type";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// TODO: Support optional custom attributes (without dialect prefix).
|
|
static ParseResult parseAllReduceOperation(AsmParser &parser,
|
|
AllReduceOperationAttr &attr) {
|
|
StringRef enumStr;
|
|
if (!parser.parseOptionalKeyword(&enumStr)) {
|
|
std::optional<AllReduceOperation> op =
|
|
gpu::symbolizeAllReduceOperation(enumStr);
|
|
if (!op)
|
|
return parser.emitError(parser.getCurrentLocation(), "invalid op kind");
|
|
attr = AllReduceOperationAttr::get(parser.getContext(), *op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void printAllReduceOperation(AsmPrinter &printer, Operation *op,
|
|
AllReduceOperationAttr attr) {
|
|
if (attr)
|
|
attr.print(printer);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SubgroupReduceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult gpu::SubgroupReduceOp::verify() {
|
|
gpu::AllReduceOperation opName = getOp();
|
|
if (!verifyReduceOpAndType(opName, getType())) {
|
|
return emitError() << '`' << gpu::stringifyAllReduceOperation(opName)
|
|
<< "` accumulator is only compatible with Integer type";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AsyncOpInterface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void gpu::addAsyncDependency(Operation *op, Value token) {
|
|
op->insertOperands(0, {token});
|
|
if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
|
|
return;
|
|
auto attrName =
|
|
OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
|
|
auto sizeAttr = op->template getAttrOfType<DenseI32ArrayAttr>(attrName);
|
|
|
|
// Async dependencies is the only variadic operand.
|
|
if (!sizeAttr)
|
|
return;
|
|
|
|
SmallVector<int32_t, 8> sizes(sizeAttr.asArrayRef());
|
|
++sizes.front();
|
|
op->setAttr(attrName, Builder(op->getContext()).getDenseI32ArrayAttr(sizes));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LaunchOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LaunchOp::build(OpBuilder &builder, OperationState &result,
|
|
Value gridSizeX, Value gridSizeY, Value gridSizeZ,
|
|
Value getBlockSizeX, Value getBlockSizeY,
|
|
Value getBlockSizeZ, Value dynamicSharedMemorySize,
|
|
Type asyncTokenType, ValueRange asyncDependencies) {
|
|
result.addOperands(asyncDependencies);
|
|
if (asyncTokenType)
|
|
result.types.push_back(builder.getType<AsyncTokenType>());
|
|
|
|
// Add grid and block sizes as op operands, followed by the data operands.
|
|
result.addOperands({gridSizeX, gridSizeY, gridSizeZ, getBlockSizeX,
|
|
getBlockSizeY, getBlockSizeZ});
|
|
if (dynamicSharedMemorySize)
|
|
result.addOperands(dynamicSharedMemorySize);
|
|
|
|
// Create a kernel body region with kNumConfigRegionAttributes + N arguments,
|
|
// where the first kNumConfigRegionAttributes arguments have `index` type and
|
|
// the rest have the same types as the data operands.
|
|
Region *kernelRegion = result.addRegion();
|
|
Block *body = new Block();
|
|
for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i)
|
|
body->addArgument(builder.getIndexType(), result.location);
|
|
kernelRegion->push_back(body);
|
|
SmallVector<int32_t, 8> segmentSizes(8, 1);
|
|
segmentSizes.front() = asyncDependencies.size();
|
|
segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0;
|
|
result.addAttribute(getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(segmentSizes));
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockIds() {
|
|
assert(!getBody().empty() && "LaunchOp body must not be empty.");
|
|
auto args = getBody().getArguments();
|
|
return KernelDim3{args[0], args[1], args[2]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getThreadIds() {
|
|
assert(!getBody().empty() && "LaunchOp body must not be empty.");
|
|
auto args = getBody().getArguments();
|
|
return KernelDim3{args[3], args[4], args[5]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getGridSize() {
|
|
assert(!getBody().empty() && "LaunchOp body must not be empty.");
|
|
auto args = getBody().getArguments();
|
|
return KernelDim3{args[6], args[7], args[8]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockSize() {
|
|
assert(!getBody().empty() && "LaunchOp body must not be empty.");
|
|
auto args = getBody().getArguments();
|
|
return KernelDim3{args[9], args[10], args[11]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getGridSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(getAsyncDependencies().size());
|
|
return KernelDim3{operands[0], operands[1], operands[2]};
|
|
}
|
|
|
|
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(getAsyncDependencies().size());
|
|
return KernelDim3{operands[3], operands[4], operands[5]};
|
|
}
|
|
|
|
LogicalResult LaunchOp::verifyRegions() {
|
|
// Kernel launch takes kNumConfigOperands leading operands for grid/block
|
|
// sizes and transforms them into kNumConfigRegionAttributes region arguments
|
|
// for block/thread identifiers and grid/block sizes.
|
|
if (!getBody().empty()) {
|
|
if (getBody().getNumArguments() !=
|
|
LaunchOp::kNumConfigOperands + getNumOperands() -
|
|
(getDynamicSharedMemorySize() ? 1 : 0) -
|
|
getAsyncDependencies().size())
|
|
return emitOpError("unexpected number of region arguments");
|
|
}
|
|
|
|
// Block terminators without successors are expected to exit the kernel region
|
|
// and must be `gpu.terminator`.
|
|
for (Block &block : getBody()) {
|
|
if (block.empty())
|
|
continue;
|
|
if (block.back().getNumSuccessors() != 0)
|
|
continue;
|
|
if (!isa<gpu::TerminatorOp>(&block.back())) {
|
|
return block.back()
|
|
.emitError()
|
|
.append("expected '", gpu::TerminatorOp::getOperationName(),
|
|
"' or a terminator with successors")
|
|
.attachNote(getLoc())
|
|
.append("in '", LaunchOp::getOperationName(), "' body region");
|
|
}
|
|
}
|
|
|
|
if (getNumResults() == 0 && getAsyncToken())
|
|
return emitOpError("needs to be named when async keyword is specified");
|
|
|
|
return success();
|
|
}
|
|
|
|
// Pretty-print the kernel grid/block size assignment as
|
|
// (%iter-x, %iter-y, %iter-z) in
|
|
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
|
|
// where %size-* and %iter-* will correspond to the body region arguments.
|
|
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
|
|
KernelDim3 operands, KernelDim3 ids) {
|
|
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
|
|
p << size.x << " = " << operands.x << ", ";
|
|
p << size.y << " = " << operands.y << ", ";
|
|
p << size.z << " = " << operands.z << ')';
|
|
}
|
|
|
|
void LaunchOp::print(OpAsmPrinter &p) {
|
|
if (getAsyncToken()) {
|
|
p << " async";
|
|
if (!getAsyncDependencies().empty())
|
|
p << " [" << getAsyncDependencies() << ']';
|
|
}
|
|
// Print the launch configuration.
|
|
p << ' ' << getBlocksKeyword();
|
|
printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(),
|
|
getBlockIds());
|
|
p << ' ' << getThreadsKeyword();
|
|
printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(),
|
|
getThreadIds());
|
|
if (getDynamicSharedMemorySize())
|
|
p << ' ' << getDynamicSharedMemorySizeKeyword() << ' '
|
|
<< getDynamicSharedMemorySize();
|
|
|
|
p << ' ';
|
|
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
|
|
p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
|
|
LaunchOp::getOperandSegmentSizeAttr()});
|
|
}
|
|
|
|
// Parse the size assignment blocks for blocks and threads. These have the form
|
|
// (%region_arg, %region_arg, %region_arg) in
|
|
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
|
|
// where %region_arg are percent-identifiers for the region arguments to be
|
|
// introduced further (SSA defs), and %operand are percent-identifiers for the
|
|
// SSA value uses.
|
|
static ParseResult
|
|
parseSizeAssignment(OpAsmParser &parser,
|
|
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes,
|
|
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes,
|
|
MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) {
|
|
assert(indices.size() == 3 && "space for three indices expected");
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 3> args;
|
|
if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren,
|
|
/*allowResultNumber=*/false) ||
|
|
parser.parseKeyword("in") || parser.parseLParen())
|
|
return failure();
|
|
std::move(args.begin(), args.end(), indices.begin());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (i != 0 && parser.parseComma())
|
|
return failure();
|
|
if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) ||
|
|
parser.parseEqual() || parser.parseOperand(sizes[i]))
|
|
return failure();
|
|
}
|
|
|
|
return parser.parseRParen();
|
|
}
|
|
|
|
/// Parses a Launch operation.
|
|
/// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)?
|
|
// `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
|
|
/// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
|
|
/// region attr-dict?
|
|
/// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
|
|
ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Sizes of the grid and block.
|
|
SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands>
|
|
sizes(LaunchOp::kNumConfigOperands);
|
|
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes);
|
|
|
|
// Actual (data) operands passed to the kernel.
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands;
|
|
|
|
// Region arguments to be created.
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs(
|
|
LaunchOp::kNumConfigRegionAttributes);
|
|
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs);
|
|
|
|
// Parse optional async dependencies.
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies;
|
|
Type asyncTokenType;
|
|
if (failed(
|
|
parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) ||
|
|
parser.resolveOperands(asyncDependencies, asyncTokenType,
|
|
result.operands))
|
|
return failure();
|
|
if (parser.getNumResults() > 0)
|
|
result.types.push_back(asyncTokenType);
|
|
|
|
// Parse the size assignment segments: the first segment assigns grid sizes
|
|
// and defines values for block identifiers; the second segment assigns block
|
|
// sizes and defines values for thread identifiers. In the region argument
|
|
// list, identifiers precede sizes, and block-related values precede
|
|
// thread-related values.
|
|
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
|
|
parseSizeAssignment(parser, sizesRef.take_front(3),
|
|
regionArgsRef.slice(6, 3),
|
|
regionArgsRef.slice(0, 3)) ||
|
|
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
|
|
parseSizeAssignment(parser, sizesRef.drop_front(3),
|
|
regionArgsRef.slice(9, 3),
|
|
regionArgsRef.slice(3, 3)) ||
|
|
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
|
|
result.operands))
|
|
return failure();
|
|
|
|
OpAsmParser::UnresolvedOperand dynamicSharedMemorySize;
|
|
bool hasDynamicSharedMemorySize = false;
|
|
if (!parser.parseOptionalKeyword(
|
|
LaunchOp::getDynamicSharedMemorySizeKeyword())) {
|
|
hasDynamicSharedMemorySize = true;
|
|
if (parser.parseOperand(dynamicSharedMemorySize) ||
|
|
parser.resolveOperand(dynamicSharedMemorySize,
|
|
parser.getBuilder().getI32Type(),
|
|
result.operands))
|
|
return failure();
|
|
}
|
|
|
|
// Introduce the body region and parse it. The region has
|
|
// kNumConfigRegionAttributes arguments that correspond to
|
|
// block/thread identifiers and grid/block sizes, all of the `index` type.
|
|
Type index = parser.getBuilder().getIndexType();
|
|
SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
|
|
LaunchOp::kNumConfigRegionAttributes, index);
|
|
|
|
SmallVector<OpAsmParser::Argument> regionArguments;
|
|
for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) {
|
|
OpAsmParser::Argument arg;
|
|
arg.ssaName = std::get<0>(ssaValueAndType);
|
|
arg.type = std::get<1>(ssaValueAndType);
|
|
regionArguments.push_back(arg);
|
|
}
|
|
|
|
Region *body = result.addRegion();
|
|
if (parser.parseRegion(*body, regionArguments) ||
|
|
parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
SmallVector<int32_t, 8> segmentSizes(8, 1);
|
|
segmentSizes.front() = asyncDependencies.size();
|
|
segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0;
|
|
result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(),
|
|
parser.getBuilder().getDenseI32ArrayAttr(segmentSizes));
|
|
return success();
|
|
}
|
|
|
|
/// Simplify the gpu.launch when the range of a thread or block ID is
|
|
/// trivially known to be one.
|
|
struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
|
|
using OpRewritePattern<LaunchOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(LaunchOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// If the range implies a single value for `id`, replace `id`'s uses by
|
|
// zero.
|
|
Value zero;
|
|
bool simplified = false;
|
|
auto constPropIdUses = [&](Value id, Value size) {
|
|
// Check if size is trivially one.
|
|
if (!matchPattern(size, m_One()))
|
|
return;
|
|
if (id.getUses().empty())
|
|
return;
|
|
if (!simplified) {
|
|
// Create a zero value the first time.
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&op.getBody().front());
|
|
zero =
|
|
rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0);
|
|
}
|
|
rewriter.replaceAllUsesWith(id, zero);
|
|
simplified = true;
|
|
};
|
|
constPropIdUses(op.getBlockIds().x, op.getGridSizeX());
|
|
constPropIdUses(op.getBlockIds().y, op.getGridSizeY());
|
|
constPropIdUses(op.getBlockIds().z, op.getGridSizeZ());
|
|
constPropIdUses(op.getThreadIds().x, op.getBlockSizeX());
|
|
constPropIdUses(op.getThreadIds().y, op.getBlockSizeY());
|
|
constPropIdUses(op.getThreadIds().z, op.getBlockSizeZ());
|
|
|
|
return success(simplified);
|
|
}
|
|
};
|
|
|
|
void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
|
|
MLIRContext *context) {
|
|
rewrites.add<FoldLaunchArguments>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LaunchFuncOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
|
|
GPUFuncOp kernelFunc, KernelDim3 gridSize,
|
|
KernelDim3 getBlockSize, Value dynamicSharedMemorySize,
|
|
ValueRange kernelOperands, Type asyncTokenType,
|
|
ValueRange asyncDependencies) {
|
|
result.addOperands(asyncDependencies);
|
|
if (asyncTokenType)
|
|
result.types.push_back(builder.getType<AsyncTokenType>());
|
|
|
|
// Add grid and block sizes as op operands, followed by the data operands.
|
|
result.addOperands({gridSize.x, gridSize.y, gridSize.z, getBlockSize.x,
|
|
getBlockSize.y, getBlockSize.z});
|
|
if (dynamicSharedMemorySize)
|
|
result.addOperands(dynamicSharedMemorySize);
|
|
result.addOperands(kernelOperands);
|
|
auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
|
|
auto kernelSymbol =
|
|
SymbolRefAttr::get(kernelModule.getNameAttr(),
|
|
{SymbolRefAttr::get(kernelFunc.getNameAttr())});
|
|
result.addAttribute(getKernelAttrName(result.name), kernelSymbol);
|
|
SmallVector<int32_t, 9> segmentSizes(9, 1);
|
|
segmentSizes.front() = asyncDependencies.size();
|
|
segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0;
|
|
segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
|
|
result.addAttribute(getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(segmentSizes));
|
|
}
|
|
|
|
StringAttr LaunchFuncOp::getKernelModuleName() {
|
|
return getKernel().getRootReference();
|
|
}
|
|
|
|
StringAttr LaunchFuncOp::getKernelName() {
|
|
return getKernel().getLeafReference();
|
|
}
|
|
|
|
unsigned LaunchFuncOp::getNumKernelOperands() {
|
|
return getKernelOperands().size();
|
|
}
|
|
|
|
Value LaunchFuncOp::getKernelOperand(unsigned i) {
|
|
return getKernelOperands()[i];
|
|
}
|
|
|
|
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(getAsyncDependencies().size());
|
|
return KernelDim3{operands[0], operands[1], operands[2]};
|
|
}
|
|
|
|
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
|
|
auto operands = getOperands().drop_front(getAsyncDependencies().size());
|
|
return KernelDim3{operands[3], operands[4], operands[5]};
|
|
}
|
|
|
|
LogicalResult LaunchFuncOp::verify() {
|
|
auto module = (*this)->getParentOfType<ModuleOp>();
|
|
if (!module)
|
|
return emitOpError("expected to belong to a module");
|
|
|
|
if (!module->getAttrOfType<UnitAttr>(
|
|
GPUDialect::getContainerModuleAttrName()))
|
|
return emitOpError("expected the closest surrounding module to have the '" +
|
|
GPUDialect::getContainerModuleAttrName() +
|
|
"' attribute");
|
|
|
|
return success();
|
|
}
|
|
|
|
static ParseResult parseLaunchFuncOperands(
|
|
OpAsmParser &parser,
|
|
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames,
|
|
SmallVectorImpl<Type> &argTypes) {
|
|
if (parser.parseOptionalKeyword("args"))
|
|
return success();
|
|
|
|
SmallVector<OpAsmParser::Argument> args;
|
|
if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
|
|
/*allowType=*/true))
|
|
return failure();
|
|
for (auto &arg : args) {
|
|
argNames.push_back(arg.ssaName);
|
|
argTypes.push_back(arg.type);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
|
|
OperandRange operands, TypeRange types) {
|
|
if (operands.empty())
|
|
return;
|
|
printer << "args(";
|
|
llvm::interleaveComma(llvm::zip(operands, types), printer,
|
|
[&](const auto &pair) {
|
|
printer.printOperand(std::get<0>(pair));
|
|
printer << " : ";
|
|
printer.printType(std::get<1>(pair));
|
|
});
|
|
printer << ")";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value,
|
|
int32_t offset, int32_t width, ShuffleMode mode) {
|
|
build(builder, result, value,
|
|
builder.create<arith::ConstantOp>(result.location,
|
|
builder.getI32IntegerAttr(offset)),
|
|
builder.create<arith::ConstantOp>(result.location,
|
|
builder.getI32IntegerAttr(width)),
|
|
mode);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUFuncOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Adds a new block argument that corresponds to buffers located in
|
|
/// workgroup memory.
|
|
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) {
|
|
auto attrName = getNumWorkgroupAttributionsAttrName();
|
|
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
|
|
(*this)->setAttr(attrName,
|
|
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
|
|
return getBody().insertArgument(
|
|
getFunctionType().getNumInputs() + attr.getInt(), type, loc);
|
|
}
|
|
|
|
/// Adds a new block argument that corresponds to buffers located in
|
|
/// private memory.
|
|
BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) {
|
|
// Buffers on the private memory always come after buffers on the workgroup
|
|
// memory.
|
|
return getBody().addArgument(type, loc);
|
|
}
|
|
|
|
void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef name, FunctionType type,
|
|
TypeRange workgroupAttributions,
|
|
TypeRange privateAttributions,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
result.addAttribute(SymbolTable::getSymbolAttrName(),
|
|
builder.getStringAttr(name));
|
|
result.addAttribute(getFunctionTypeAttrName(result.name),
|
|
TypeAttr::get(type));
|
|
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
|
|
builder.getI64IntegerAttr(workgroupAttributions.size()));
|
|
result.addAttributes(attrs);
|
|
Region *body = result.addRegion();
|
|
Block *entryBlock = new Block;
|
|
|
|
// TODO: Allow passing in proper locations here.
|
|
for (Type argTy : type.getInputs())
|
|
entryBlock->addArgument(argTy, result.location);
|
|
for (Type argTy : workgroupAttributions)
|
|
entryBlock->addArgument(argTy, result.location);
|
|
for (Type argTy : privateAttributions)
|
|
entryBlock->addArgument(argTy, result.location);
|
|
|
|
body->getBlocks().push_back(entryBlock);
|
|
}
|
|
|
|
/// Parses a GPU function memory attribution.
|
|
///
|
|
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
|
|
/// (`private` `(` ssa-id-and-type-list `)`)?
|
|
///
|
|
/// Note that this function parses only one of the two similar parts, with the
|
|
/// keyword provided as argument.
|
|
static ParseResult
|
|
parseAttributions(OpAsmParser &parser, StringRef keyword,
|
|
SmallVectorImpl<OpAsmParser::Argument> &args) {
|
|
// If we could not parse the keyword, just assume empty list and succeed.
|
|
if (failed(parser.parseOptionalKeyword(keyword)))
|
|
return success();
|
|
|
|
return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
|
|
/*allowType=*/true);
|
|
}
|
|
|
|
/// Parses a GPU function.
|
|
///
|
|
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
|
|
/// (`->` function-result-list)? memory-attribution `kernel`?
|
|
/// function-attributes? region
|
|
ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::Argument> entryArgs;
|
|
SmallVector<DictionaryAttr> resultAttrs;
|
|
SmallVector<Type> resultTypes;
|
|
bool isVariadic;
|
|
|
|
// Parse the function name.
|
|
StringAttr nameAttr;
|
|
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
|
|
result.attributes))
|
|
return failure();
|
|
|
|
auto signatureLocation = parser.getCurrentLocation();
|
|
if (failed(function_interface_impl::parseFunctionSignature(
|
|
parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes,
|
|
resultAttrs)))
|
|
return failure();
|
|
|
|
if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty())
|
|
return parser.emitError(signatureLocation)
|
|
<< "gpu.func requires named arguments";
|
|
|
|
// Construct the function type. More types will be added to the region, but
|
|
// not to the function type.
|
|
Builder &builder = parser.getBuilder();
|
|
|
|
SmallVector<Type> argTypes;
|
|
for (auto &arg : entryArgs)
|
|
argTypes.push_back(arg.type);
|
|
auto type = builder.getFunctionType(argTypes, resultTypes);
|
|
result.addAttribute(getFunctionTypeAttrName(result.name),
|
|
TypeAttr::get(type));
|
|
|
|
function_interface_impl::addArgAndResultAttrs(
|
|
builder, result, entryArgs, resultAttrs, getArgAttrsAttrName(result.name),
|
|
getResAttrsAttrName(result.name));
|
|
|
|
// Parse workgroup memory attributions.
|
|
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
|
|
entryArgs)))
|
|
return failure();
|
|
|
|
// Store the number of operands we just parsed as the number of workgroup
|
|
// memory attributions.
|
|
unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs();
|
|
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
|
|
builder.getI64IntegerAttr(numWorkgroupAttrs));
|
|
|
|
// Parse private memory attributions.
|
|
if (failed(
|
|
parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs)))
|
|
return failure();
|
|
|
|
// Parse the kernel attribute if present.
|
|
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
|
|
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
|
|
builder.getUnitAttr());
|
|
|
|
// Parse attributes.
|
|
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
|
|
return failure();
|
|
|
|
// Parse the region. If no argument names were provided, take all names
|
|
// (including those of attributions) from the entry block.
|
|
auto *body = result.addRegion();
|
|
return parser.parseRegion(*body, entryArgs);
|
|
}
|
|
|
|
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
|
|
ArrayRef<BlockArgument> values) {
|
|
if (values.empty())
|
|
return;
|
|
|
|
p << ' ' << keyword << '(';
|
|
llvm::interleaveComma(
|
|
values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
|
|
p << ')';
|
|
}
|
|
|
|
void GPUFuncOp::print(OpAsmPrinter &p) {
|
|
p << ' ';
|
|
p.printSymbolName(getName());
|
|
|
|
FunctionType type = getFunctionType();
|
|
function_interface_impl::printFunctionSignature(p, *this, type.getInputs(),
|
|
/*isVariadic=*/false,
|
|
type.getResults());
|
|
|
|
printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions());
|
|
printAttributions(p, getPrivateKeyword(), getPrivateAttributions());
|
|
if (isKernel())
|
|
p << ' ' << getKernelKeyword();
|
|
|
|
function_interface_impl::printFunctionAttributes(
|
|
p, *this,
|
|
{getNumWorkgroupAttributionsAttrName(),
|
|
GPUDialect::getKernelFuncAttrName(), getFunctionTypeAttrName(),
|
|
getArgAttrsAttrName(), getResAttrsAttrName()});
|
|
p << ' ';
|
|
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
|
|
}
|
|
|
|
LogicalResult GPUFuncOp::verifyType() {
|
|
if (isKernel() && getFunctionType().getNumResults() != 0)
|
|
return emitOpError() << "expected void return type for kernel function";
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyAttributions(Operation *op,
|
|
ArrayRef<BlockArgument> attributions,
|
|
unsigned memorySpace) {
|
|
for (Value v : attributions) {
|
|
auto type = v.getType().dyn_cast<MemRefType>();
|
|
if (!type)
|
|
return op->emitOpError() << "expected memref type in attribution";
|
|
|
|
if (type.getMemorySpaceAsInt() != memorySpace) {
|
|
return op->emitOpError()
|
|
<< "expected memory space " << memorySpace << " in attribution";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Verifies the body of the function.
|
|
LogicalResult GPUFuncOp::verifyBody() {
|
|
if (empty())
|
|
return emitOpError() << "expected body with at least one block";
|
|
unsigned numFuncArguments = getNumArguments();
|
|
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
|
|
unsigned numBlockArguments = front().getNumArguments();
|
|
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
|
|
return emitOpError() << "expected at least "
|
|
<< numFuncArguments + numWorkgroupAttributions
|
|
<< " arguments to body region";
|
|
|
|
ArrayRef<Type> funcArgTypes = getFunctionType().getInputs();
|
|
for (unsigned i = 0; i < numFuncArguments; ++i) {
|
|
Type blockArgType = front().getArgument(i).getType();
|
|
if (funcArgTypes[i] != blockArgType)
|
|
return emitOpError() << "expected body region argument #" << i
|
|
<< " to be of type " << funcArgTypes[i] << ", got "
|
|
<< blockArgType;
|
|
}
|
|
|
|
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
|
|
GPUDialect::getWorkgroupAddressSpace())) ||
|
|
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
|
|
GPUDialect::getPrivateAddressSpace())))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyKnownLaunchSizeAttr(gpu::GPUFuncOp op,
|
|
StringRef attrName) {
|
|
auto maybeAttr = op->getAttr(attrName);
|
|
if (!maybeAttr)
|
|
return success();
|
|
auto array = maybeAttr.dyn_cast<DenseI32ArrayAttr>();
|
|
if (!array)
|
|
return op.emitOpError(attrName + " must be a dense i32 array");
|
|
if (array.size() != 3)
|
|
return op.emitOpError(attrName + " must contain exactly 3 elements");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GPUFuncOp::verify() {
|
|
if (failed(verifyKnownLaunchSizeAttr(*this, getKnownBlockSizeAttrName())))
|
|
return failure();
|
|
if (failed(verifyKnownLaunchSizeAttr(*this, getKnownGridSizeAttrName())))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult gpu::ReturnOp::verify() {
|
|
GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>();
|
|
|
|
FunctionType funType = function.getFunctionType();
|
|
|
|
if (funType.getNumResults() != getOperands().size())
|
|
return emitOpError()
|
|
.append("expected ", funType.getNumResults(), " result operands")
|
|
.attachNote(function.getLoc())
|
|
.append("return type declared here");
|
|
|
|
for (const auto &pair : llvm::enumerate(
|
|
llvm::zip(function.getFunctionType().getResults(), getOperands()))) {
|
|
auto [type, operand] = pair.value();
|
|
if (type != operand.getType())
|
|
return emitOpError() << "unexpected type `" << operand.getType()
|
|
<< "' for operand #" << pair.index();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUModuleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef name) {
|
|
ensureTerminator(*result.addRegion(), builder, result.location);
|
|
result.attributes.push_back(builder.getNamedAttr(
|
|
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
|
|
}
|
|
|
|
ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
StringAttr nameAttr;
|
|
if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
|
|
result.attributes) ||
|
|
// If module attributes are present, parse them.
|
|
parser.parseOptionalAttrDictWithKeyword(result.attributes))
|
|
return failure();
|
|
|
|
// Parse the module body.
|
|
auto *body = result.addRegion();
|
|
if (parser.parseRegion(*body, {}))
|
|
return failure();
|
|
|
|
// Ensure that this module has a valid terminator.
|
|
GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
|
|
return success();
|
|
}
|
|
|
|
void GPUModuleOp::print(OpAsmPrinter &p) {
|
|
p << ' ';
|
|
p.printSymbolName(getName());
|
|
p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
|
|
{mlir::SymbolTable::getSymbolAttrName()});
|
|
p << ' ';
|
|
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPUMemcpyOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult MemcpyOp::verify() {
|
|
auto srcType = getSrc().getType();
|
|
auto dstType = getDst().getType();
|
|
|
|
if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
|
|
return emitOpError("arguments have incompatible element type");
|
|
|
|
if (failed(verifyCompatibleShape(srcType, dstType)))
|
|
return emitOpError("arguments have incompatible shape");
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Erases a common case of copy ops where a destination value is used only by
|
|
/// the copy op, alloc and dealloc ops.
|
|
struct EraseTrivialCopyOp : public OpRewritePattern<MemcpyOp> {
|
|
using OpRewritePattern<MemcpyOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(MemcpyOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value dest = op.getDst();
|
|
Operation *destDefOp = dest.getDefiningOp();
|
|
// `dest` must be defined by an op having Allocate memory effect in order to
|
|
// perform the folding.
|
|
if (!destDefOp ||
|
|
!hasSingleEffect<MemoryEffects::Allocate>(destDefOp, dest))
|
|
return failure();
|
|
// We can erase `op` iff `dest` has no other use apart from its
|
|
// use by `op` and dealloc ops.
|
|
if (llvm::any_of(dest.getUsers(), [op, dest](Operation *user) {
|
|
return user != op &&
|
|
!hasSingleEffect<MemoryEffects::Free>(user, dest);
|
|
}))
|
|
return failure();
|
|
// We can perform the folding if and only if op has a single async
|
|
// dependency and produces an async token as result, or if it does not have
|
|
// any async dependency and does not produce any async token result.
|
|
if (op.getAsyncDependencies().size() > 1 ||
|
|
((op.getAsyncDependencies().empty() && op.getAsyncToken()) ||
|
|
(!op.getAsyncDependencies().empty() && !op.getAsyncToken())))
|
|
return failure();
|
|
rewriter.replaceOp(op, op.getAsyncDependencies());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void MemcpyOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<EraseTrivialCopyOp>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaLoadMatrixOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if the last dimension of the MemRefType has unit stride. Also
|
|
/// return true for memrefs with no strides.
|
|
static bool isLastMemrefDimUnitStride(MemRefType type) {
|
|
int64_t offset;
|
|
SmallVector<int64_t> strides;
|
|
if (failed(getStridesAndOffset(type, strides, offset))) {
|
|
return false;
|
|
}
|
|
return strides.back() == 1;
|
|
}
|
|
|
|
LogicalResult SubgroupMmaLoadMatrixOp::verify() {
|
|
auto srcType = getSrcMemref().getType();
|
|
auto resType = getRes().getType();
|
|
auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
|
|
auto operand = resMatrixType.getOperand();
|
|
auto srcMemrefType = srcType.cast<MemRefType>();
|
|
|
|
if (!isLastMemrefDimUnitStride(srcMemrefType))
|
|
return emitError(
|
|
"expected source memref most minor dim must have unit stride");
|
|
|
|
if (!operand.equals("AOp") && !operand.equals("BOp") &&
|
|
!operand.equals("COp"))
|
|
return emitError("only AOp, BOp and COp can be loaded");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaStoreMatrixOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult SubgroupMmaStoreMatrixOp::verify() {
|
|
auto srcType = getSrc().getType();
|
|
auto dstType = getDstMemref().getType();
|
|
auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
|
|
auto dstMemrefType = dstType.cast<MemRefType>();
|
|
|
|
if (!isLastMemrefDimUnitStride(dstMemrefType))
|
|
return emitError(
|
|
"expected destination memref most minor dim must have unit stride");
|
|
|
|
if (!srcMatrixType.getOperand().equals("COp"))
|
|
return emitError(
|
|
"expected the operand matrix being stored to have 'COp' operand type");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_SubgroupMmaComputeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult SubgroupMmaComputeOp::verify() {
|
|
enum OperandMap { A, B, C };
|
|
SmallVector<MMAMatrixType, 3> opTypes;
|
|
opTypes.push_back(getOpA().getType().cast<MMAMatrixType>());
|
|
opTypes.push_back(getOpB().getType().cast<MMAMatrixType>());
|
|
opTypes.push_back(getOpC().getType().cast<MMAMatrixType>());
|
|
|
|
if (!opTypes[A].getOperand().equals("AOp") ||
|
|
!opTypes[B].getOperand().equals("BOp") ||
|
|
!opTypes[C].getOperand().equals("COp"))
|
|
return emitError("operands must be in the order AOp, BOp, COp");
|
|
|
|
ArrayRef<int64_t> aShape, bShape, cShape;
|
|
aShape = opTypes[A].getShape();
|
|
bShape = opTypes[B].getShape();
|
|
cShape = opTypes[C].getShape();
|
|
|
|
if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
|
|
bShape[1] != cShape[1])
|
|
return emitError("operand shapes do not satisfy matmul constraints");
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<::mlir::OpFoldResult> &results) {
|
|
return memref::foldMemRefCast(*this);
|
|
}
|
|
|
|
LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<::mlir::OpFoldResult> &results) {
|
|
return memref::foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_WaitOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Remove gpu.wait op use of gpu.wait op def without async dependencies.
|
|
/// %t = gpu.wait async [] // No async dependencies.
|
|
/// ... gpu.wait ... [%t, ...] // %t can be removed.
|
|
struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(WaitOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
auto predicate = [](Value value) {
|
|
auto waitOp = value.getDefiningOp<WaitOp>();
|
|
return waitOp && waitOp->getNumOperands() == 0;
|
|
};
|
|
if (llvm::none_of(op.getAsyncDependencies(), predicate))
|
|
return failure();
|
|
SmallVector<Value> validOperands;
|
|
for (Value operand : op->getOperands()) {
|
|
if (predicate(operand))
|
|
continue;
|
|
validOperands.push_back(operand);
|
|
}
|
|
op->setOperands(validOperands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Simplify trivial gpu.wait ops for the following patterns.
|
|
/// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async
|
|
/// dependencies).
|
|
/// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with
|
|
/// %t0.
|
|
/// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async
|
|
/// dependencies nor return any token.
|
|
struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(WaitOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
// Erase gpu.wait ops that neither have any async dependencies nor return
|
|
// any async token.
|
|
if (op.getAsyncDependencies().empty() && !op.getAsyncToken()) {
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
// Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op.
|
|
if (llvm::hasSingleElement(op.getAsyncDependencies()) &&
|
|
op.getAsyncToken()) {
|
|
rewriter.replaceOp(op, op.getAsyncDependencies());
|
|
return success();
|
|
}
|
|
// Erase %t = gpu.wait async ... ops, where %t has no uses.
|
|
if (op.getAsyncToken() && op.getAsyncToken().use_empty()) {
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GPU_AllocOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult AllocOp::verify() {
|
|
auto memRefType = getMemref().getType().cast<MemRefType>();
|
|
|
|
if (static_cast<int64_t>(getDynamicSizes().size()) !=
|
|
memRefType.getNumDynamicDims())
|
|
return emitOpError("dimension operand count does not equal memref "
|
|
"dynamic dimension count");
|
|
|
|
unsigned numSymbols = 0;
|
|
if (!memRefType.getLayout().isIdentity())
|
|
numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols();
|
|
if (getSymbolOperands().size() != numSymbols) {
|
|
return emitOpError(
|
|
"symbol operand count does not equal memref symbol count");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
|
|
/// `memref::AllocOp`.
|
|
struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
|
|
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::DimOp dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto index = dimOp.getIndex().getDefiningOp<arith::ConstantIndexOp>();
|
|
if (!index)
|
|
return failure();
|
|
|
|
auto memrefType = dimOp.getSource().getType().dyn_cast<MemRefType>();
|
|
if (!memrefType || !memrefType.isDynamicDim(index.value()))
|
|
return failure();
|
|
|
|
auto alloc = dimOp.getSource().getDefiningOp<AllocOp>();
|
|
if (!alloc)
|
|
return failure();
|
|
|
|
Value substituteOp = *(alloc.getDynamicSizes().begin() +
|
|
memrefType.getDynamicDimIndex(index.value()));
|
|
rewriter.replaceOp(dimOp, substituteOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<SimplifyDimOfAllocOp>(context);
|
|
}
|
|
|
|
#include "mlir/Dialect/GPU/IR/GPUOpInterfaces.cpp.inc"
|
|
#include "mlir/Dialect/GPU/IR/GPUOpsEnums.cpp.inc"
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
|