Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
Javier Setoain da291bab81 [mlir] Add hoisting of transfer ops in affine loops
The only way to do this with the current hoisting strategy is by
lowering Affine to Scf first, but that prevents further passes on
Affine.

Differential Revision: https://reviews.llvm.org/D137600
2022-12-07 20:08:07 +00:00

559 lines
23 KiB
C++

//===- Hoisting.cpp - Linalg hoisting transformations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting invariant operations
// in the context of Linalg transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
using llvm::dbgs;
#define DEBUG_TYPE "linalg-hoisting"
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Represents a unit of hoistable TransferWriteOp. This may comprise other
/// instructions that need to be hoisted too.
struct HoistableWrite {
vector::TransferWriteOp transferWriteOp;
tensor::InsertSliceOp insertSliceOp;
};
/// Represents a unit of hoistable TransferReadOp. This may comprise other
/// instructions that need to be hoisted too.
struct HoistableRead {
vector::TransferReadOp transferReadOp;
tensor::ExtractSliceOp extractSliceOp;
};
} // namespace
/// Return true if op1 and op2 are the same constant or the same SSA value.
static bool isEqualOffsetSizeOrStride(OpFoldResult op1, OpFoldResult op2) {
auto getConstantIntValue = [](OpFoldResult ofr) -> std::optional<int64_t> {
Attribute attr = ofr.dyn_cast<Attribute>();
// Note: isa+cast-like pattern allows writing the condition below as 1 line.
if (!attr && ofr.get<Value>().getDefiningOp<arith::ConstantOp>())
attr = ofr.get<Value>().getDefiningOp<arith::ConstantOp>().getValue();
if (auto intAttr = attr.dyn_cast_or_null<IntegerAttr>())
return intAttr.getValue().getSExtValue();
return std::nullopt;
};
auto cst1 = getConstantIntValue(op1), cst2 = getConstantIntValue(op2);
if (cst1 && cst2 && *cst1 == *cst2)
return true;
auto v1 = op1.dyn_cast<Value>(), v2 = op2.dyn_cast<Value>();
return v1 && v2 && v1 == v2;
}
/// Return true is all offsets, sizes and strides are equal.
static bool sameOffsetsSizesAndStrides(tensor::ExtractSliceOp s,
tensor::InsertSliceOp si) {
if (s.getStaticOffsets().size() != si.getStaticOffsets().size())
return false;
if (s.getStaticSizes().size() != si.getStaticSizes().size())
return false;
if (s.getStaticStrides().size() != si.getStaticStrides().size())
return false;
for (auto it : llvm::zip(s.getMixedOffsets(), si.getMixedOffsets()))
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
return false;
for (auto it : llvm::zip(s.getMixedSizes(), si.getMixedSizes()))
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
return false;
for (auto it : llvm::zip(s.getMixedStrides(), si.getMixedStrides()))
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
return false;
return true;
}
/// Look for a HoistableRead, in the given tensor uses, accessing the same
/// offset as the HoistableWrite.
static HoistableRead findMatchingTransferRead(HoistableWrite write,
Value srcTensor) {
assert(write.transferWriteOp &&
"expected hoistable write to have a .transfer_write");
LLVM_DEBUG(DBGS() << "findMatchingTransferRead for: "
<< *write.transferWriteOp.getOperation() << "\n");
if (write.insertSliceOp)
LLVM_DEBUG(DBGS() << "findMatchingTransferRead inserSliceOp: "
<< *write.insertSliceOp.getOperation() << "\n");
SmallVector<Operation *> users(srcTensor.getUsers().begin(),
srcTensor.getUsers().end());
while (!users.empty()) {
Operation *user = users.pop_back_val();
LLVM_DEBUG(DBGS() << "findMatchingTransferRead inspect user: " << *user
<< "\n");
// If HoistableWrite involves a InsertSliceOp, we need to find a
// matching ExtractSliceOp.
tensor::ExtractSliceOp sliceOp;
Operation *maybeTransferReadUser = user;
if (write.insertSliceOp) {
sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
if (!sliceOp || sliceOp.getResult().getType() !=
write.insertSliceOp.getSource().getType())
continue;
LLVM_DEBUG(DBGS() << "check whether sameOffsetsSizesAndStrides: "
<< *sliceOp << " vs " << *write.insertSliceOp << "\n");
if (!sameOffsetsSizesAndStrides(sliceOp, write.insertSliceOp))
continue;
LLVM_DEBUG(DBGS() << "sameOffsetsSizesAndStrides: SUCCESS\n");
// If we got here, sliceOp is hoistable iff it has exactly 2 uses:
// 1. the transfer_write we want to hoist.
// 2. a matching transfer_read.
// Anything else, we skip.
bool skip = false;
Operation *otherUser = nullptr;
for (Operation *u : sliceOp->getUsers()) {
if (u == write.transferWriteOp)
continue;
if (otherUser) {
skip = true;
break;
}
otherUser = u;
}
if (skip || !otherUser)
continue;
maybeTransferReadUser = otherUser;
}
LLVM_DEBUG(DBGS() << "maybeTransferReadUser: " << *maybeTransferReadUser
<< "\n");
auto read = dyn_cast<vector::TransferReadOp>(maybeTransferReadUser);
if (read && read.getIndices() == write.transferWriteOp.getIndices() &&
read.getVectorType() == write.transferWriteOp.getVectorType())
return HoistableRead{read, sliceOp};
if (isa<vector::TransferWriteOp>(user)) {
// If we find a write with disjoint indices recurse through its uses.
if (vector::isDisjointTransferIndices(
cast<VectorTransferOpInterface>(user),
cast<VectorTransferOpInterface>(
write.transferWriteOp.getOperation()))) {
users.append(user->getUsers().begin(), user->getUsers().end());
}
}
}
return HoistableRead();
}
/// Check if the chunk of data inserted by the HoistableWrite are read by any
/// other op than the HoistableRead candidate.
static bool tensorChunkAccessedByUnknownOp(HoistableWrite write,
HoistableRead candidateRead,
BlockArgument tensorArg) {
// Make sure none of the other uses read the part of the tensor modified
// by the transfer_write.
llvm::SmallVector<Value::use_range, 1> uses;
uses.push_back(tensorArg.getUses());
while (!uses.empty()) {
for (OpOperand &use : uses.pop_back_val()) {
Operation *user = use.getOwner();
// Skip the candidate use, only inspect the "other" uses.
if (user == candidateRead.transferReadOp ||
user == candidateRead.extractSliceOp ||
user == write.transferWriteOp || user == write.insertSliceOp)
continue;
// Consider all transitive uses through a extract_slice / insert_slice.
// TODO: atm we just bail because a stronger analysis is needed for these
// cases.
if (isa<tensor::ExtractSliceOp, tensor::InsertSliceOp>(user))
return true;
// Consider all transitive uses through a vector.transfer_write.
if (auto writeUser = dyn_cast<vector::TransferWriteOp>(user)) {
uses.push_back(writeUser->getResult(0).getUses());
continue;
}
// Consider all nested uses through an scf::ForOp. We may have
// pass-through tensor arguments left from previous level of
// hoisting.
if (auto forUser = dyn_cast<scf::ForOp>(user)) {
Value arg = forUser.getLoopBody().getArgument(
use.getOperandNumber() - forUser.getNumControlOperands() +
/*iv value*/ 1);
uses.push_back(arg.getUses());
continue;
}
// Follow the use yield as long as it doesn't escape the original
// region.
scf::YieldOp yieldUser = dyn_cast<scf::YieldOp>(user);
if (yieldUser && write.transferWriteOp->getParentOp()->isAncestor(
yieldUser->getParentOp())) {
Value ret = yieldUser->getParentOp()->getResult(use.getOperandNumber());
uses.push_back(ret.getUses());
continue;
}
auto read = dyn_cast<vector::TransferReadOp>(user);
if (!read || !vector::isDisjointTransferIndices(
cast<VectorTransferOpInterface>(read.getOperation()),
cast<VectorTransferOpInterface>(
write.transferWriteOp.getOperation()))) {
return true;
}
}
}
return false;
}
/// Return the `forOp`-invariant HoistableWrite that produces `yieldOperand`.
/// Return the null HoistableWrite() if it is not comprised of a
/// vector.transfer_write + optional insert_slice or if any of the indexings
/// is `forOp`-dependent.
static HoistableWrite
getLoopInvariantTransferWriteOpDefining(scf::ForOp forOp,
OpOperand &yieldOperand) {
Value v = yieldOperand.get();
if (auto write = v.getDefiningOp<vector::TransferWriteOp>()) {
// Indexing must not depend on `forOp`.
for (Value operand : write.getIndices())
if (!forOp.isDefinedOutsideOfLoop(operand))
return HoistableWrite();
return HoistableWrite{write, nullptr};
}
if (auto insertSliceOp = v.getDefiningOp<tensor::InsertSliceOp>()) {
// Inserted slice must come from vector.transfer_write.
auto write =
insertSliceOp.getSource().getDefiningOp<vector::TransferWriteOp>();
if (!write)
return HoistableWrite();
// Tensor inserted into must be a BBArg at position matching yieldOperand's.
auto bbArg = insertSliceOp.getDest().dyn_cast<BlockArgument>();
if (!bbArg || bbArg.getOwner()->getParentOp() != forOp ||
bbArg.getArgNumber() != /*num iv=*/1 + yieldOperand.getOperandNumber())
return HoistableWrite();
// Indexing inserted into must not depend on `forOp`.
for (Value operand : insertSliceOp->getOperands().drop_front(
tensor::InsertSliceOp::getOffsetSizeAndStrideStartOperandIndex()))
if (!forOp.isDefinedOutsideOfLoop(operand))
return HoistableWrite();
return HoistableWrite{write, insertSliceOp};
}
return HoistableWrite();
}
/// Mechanical hoisting of a matching HoistableRead / HoistableWrite pair.
static void hoistReadWrite(HoistableRead read, HoistableWrite write,
BlockArgument tensorBBArg) {
scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
assert(read.transferReadOp && write.transferWriteOp &&
"expected transfer_read and transfer_write ops to be set");
assert(((read.extractSliceOp && write.insertSliceOp) ||
(!read.extractSliceOp && !write.insertSliceOp)) &&
"expected matching extract_slice / insert_slice");
LLVM_DEBUG(DBGS() << "In forOp:\n"
<< *forOp.getOperation()
<< "\nHoist: " << *read.transferReadOp.getOperation()
<< "\nHoist: " << *write.transferWriteOp.getOperation()
<< "\nInvolving: " << tensorBBArg << "\n");
// If a read slice is present, hoist it.
if (read.extractSliceOp)
forOp.moveOutOfLoop(read.extractSliceOp);
// Hoist the transfer_read op.
forOp.moveOutOfLoop(read.transferReadOp);
// TODO: don't hardcode /*numIvs=*/1.
assert(tensorBBArg.getArgNumber() >= /*numIvs=*/1);
unsigned initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;
// Update the source tensor.
if (read.extractSliceOp)
read.extractSliceOp.getSourceMutable().assign(
forOp.getInitArgs()[initArgNumber]);
else
read.transferReadOp.getSourceMutable().assign(
forOp.getInitArgs()[initArgNumber]);
// Hoist write after.
if (write.insertSliceOp)
write.insertSliceOp->moveAfter(forOp);
write.transferWriteOp->moveAfter(forOp);
// Update the yield.
auto yieldOp = cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
if (write.insertSliceOp)
yieldOp->setOperand(initArgNumber, write.insertSliceOp.getDest());
else
yieldOp->setOperand(initArgNumber, write.transferWriteOp.getSource());
// Rewrite `loop` with additional new yields.
OpBuilder b(read.transferReadOp);
NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) {
return SmallVector<Value>{write.transferWriteOp.getVector()};
};
auto newForOp = replaceLoopWithNewYields(
b, forOp, read.transferReadOp.getVector(), yieldFn);
// Transfer write has been hoisted, need to update the vector and tensor
// source. Replace the result of the loop to use the new tensor created
// outside the loop.
// Depending on whether a insert_slice is present or not, it carries the
// update on the tensor operands.
if (write.insertSliceOp) {
newForOp.getResult(initArgNumber)
.replaceAllUsesWith(write.insertSliceOp.getResult());
write.transferWriteOp.getSourceMutable().assign(
read.extractSliceOp.getResult());
write.insertSliceOp.getDestMutable().assign(
read.extractSliceOp.getSource());
} else {
newForOp.getResult(initArgNumber)
.replaceAllUsesWith(write.transferWriteOp.getResult());
write.transferWriteOp.getSourceMutable().assign(
newForOp.getResult(initArgNumber));
}
// Always update with the newly yield tensor and vector.
write.transferWriteOp.getVectorMutable().assign(newForOp.getResults().back());
}
// To hoist transfer op on tensor the logic can be significantly simplified
// compared to the case on buffer. The transformation follows this logic:
// 1. Look for transfer_write with a single use from ForOp yield
// 2. Check the uses of the matching block argument and look for a transfer_read
// with the same indices.
// 3. Check that all the other uses of the tensor argument are either disjoint
// tensor_read or transfer_write. For transfer_write uses recurse to make sure
// the new tensor has the same restrictions on its uses.
// 4. Hoist the tensor_read/tensor_write and update the tensor SSA links.
// After this transformation the scf.forOp may have unused arguments that can be
// remove by the canonicalization pass.
void mlir::linalg::hoistRedundantVectorTransfersOnTensor(func::FuncOp func) {
bool changed = true;
while (changed) {
changed = false;
func.walk([&](scf::ForOp forOp) {
Operation *yield = forOp.getBody()->getTerminator();
for (const auto &it : llvm::enumerate(forOp.getRegionIterArgs())) {
OpOperand &ret = yield->getOpOperand(it.index());
HoistableWrite write =
getLoopInvariantTransferWriteOpDefining(forOp, ret);
if (!write.transferWriteOp || !write.transferWriteOp->hasOneUse())
continue;
LLVM_DEBUG(dbgs() << "\n";
DBGS() << "Candidate write for hoisting: "
<< *write.transferWriteOp.getOperation() << "\n");
if (write.insertSliceOp)
LLVM_DEBUG(DBGS() << "Candidate insert_slice for hoisting: "
<< *write.insertSliceOp.getOperation() << "\n");
if (llvm::any_of(write.transferWriteOp.getIndices(),
[&forOp](Value index) {
return !forOp.isDefinedOutsideOfLoop(index);
}))
continue;
// Find a read with the same type and indices.
HoistableRead matchingRead =
findMatchingTransferRead(write, it.value());
// Make sure none of the other uses read the part of the tensor modified
// by the transfer_write.
if (!matchingRead.transferReadOp ||
tensorChunkAccessedByUnknownOp(write, matchingRead, it.value()))
continue;
LLVM_DEBUG(DBGS() << "Start hoisting\n");
hoistReadWrite(matchingRead, write, it.value());
changed = true;
forOp.erase();
// Need to interrupt and restart: erasing the loop messes up the walk.
return WalkResult::interrupt();
}
return WalkResult::advance();
});
// Apply canonicalization so the newForOp + yield folds immediately, thus
// cleaning up the IR and potentially enabling more hoisting.
if (changed) {
RewritePatternSet patterns(func->getContext());
scf::ForOp::getCanonicalizationPatterns(patterns, func->getContext());
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
}
}
}
void mlir::linalg::hoistRedundantVectorTransfers(func::FuncOp func) {
bool changed = true;
while (changed) {
changed = false;
// First move loop invariant ops outside of their loop. This needs to be
// done before as we cannot move ops without interrupting the function walk.
func.walk(
[&](LoopLikeOpInterface loopLike) { moveLoopInvariantCode(loopLike); });
func.walk([&](vector::TransferReadOp transferRead) {
if (!transferRead.getShapedType().isa<MemRefType>())
return WalkResult::advance();
LLVM_DEBUG(DBGS() << "Candidate for hoisting: "
<< *transferRead.getOperation() << "\n");
auto loop = dyn_cast<LoopLikeOpInterface>(transferRead->getParentOp());
LLVM_DEBUG(DBGS() << "Parent op: " << *transferRead->getParentOp()
<< "\n");
if (!isa_and_nonnull<scf::ForOp, AffineForOp>(loop))
return WalkResult::advance();
LLVM_DEBUG(DBGS() << "Candidate read: " << *transferRead.getOperation()
<< "\n");
SetVector<Operation *> forwardSlice;
getForwardSlice(transferRead.getOperation(), &forwardSlice);
// Look for the last TransferWriteOp in the forwardSlice of
// `transferRead` that operates on the same memref.
vector::TransferWriteOp transferWrite;
for (auto *sliceOp : llvm::reverse(forwardSlice)) {
auto candidateWrite = dyn_cast<vector::TransferWriteOp>(sliceOp);
if (!candidateWrite ||
candidateWrite.getSource() != transferRead.getSource())
continue;
transferWrite = candidateWrite;
}
// All operands of the TransferRead must be defined outside of the loop.
for (auto operand : transferRead.getOperands())
if (!loop.isDefinedOutsideOfLoop(operand))
return WalkResult::advance();
// Only hoist transfer_read / transfer_write pairs for now.
if (!transferWrite)
return WalkResult::advance();
LLVM_DEBUG(DBGS() << "Candidate: " << *transferWrite.getOperation()
<< "\n");
// Approximate aliasing by checking that:
// 1. indices are the same,
// 2. no other operations in the loop access the same memref except
// for transfer_read/transfer_write accessing statically disjoint
// slices.
if (transferRead.getIndices() != transferWrite.getIndices() &&
transferRead.getVectorType() == transferWrite.getVectorType())
return WalkResult::advance();
// TODO: may want to memoize this information for performance but it
// likely gets invalidated often.
DominanceInfo dom(loop);
if (!dom.properlyDominates(transferRead.getOperation(), transferWrite))
return WalkResult::advance();
for (auto &use : transferRead.getSource().getUses()) {
if (!loop->isAncestor(use.getOwner()))
continue;
if (use.getOwner() == transferRead.getOperation() ||
use.getOwner() == transferWrite.getOperation())
continue;
if (auto transferWriteUse =
dyn_cast<vector::TransferWriteOp>(use.getOwner())) {
if (!vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(transferWrite.getOperation()),
cast<VectorTransferOpInterface>(
transferWriteUse.getOperation())))
return WalkResult::advance();
} else if (auto transferReadUse =
dyn_cast<vector::TransferReadOp>(use.getOwner())) {
if (!vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(transferWrite.getOperation()),
cast<VectorTransferOpInterface>(
transferReadUse.getOperation())))
return WalkResult::advance();
} else {
// Unknown use, we cannot prove that it doesn't alias with the
// transferRead/transferWrite operations.
return WalkResult::advance();
}
}
// Hoist read before.
loop.moveOutOfLoop(transferRead);
// Hoist write after.
transferWrite->moveAfter(loop);
// Rewrite `loop` with new yields by cloning and erase the original loop.
OpBuilder b(transferRead);
NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) {
return SmallVector<Value>{transferWrite.getVector()};
};
// Transfer write has been hoisted, need to update the written vector by
// the value yielded by the newForOp.
return TypeSwitch<Operation *, WalkResult>(loop)
.Case<scf::ForOp>([&](scf::ForOp scfForOp) {
auto newForOp = replaceLoopWithNewYields(
b, scfForOp, transferRead.getVector(), yieldFn);
transferWrite.getVectorMutable().assign(
newForOp.getResults().back());
changed = true;
loop.erase();
// Need to interrupt and restart because erasing the loop messes up
// the walk.
return WalkResult::interrupt();
})
.Case<AffineForOp>([&](AffineForOp affineForOp) {
auto newForOp = replaceForOpWithNewYields(
b, affineForOp, transferRead.getVector(),
SmallVector<Value>{transferWrite.getVector()},
transferWrite.getVector());
// Replace all uses of the `transferRead` with the corresponding
// basic block argument.
transferRead.getVector().replaceUsesWithIf(
newForOp.getLoopBody().getArguments().back(),
[&](OpOperand &use) {
Operation *user = use.getOwner();
return newForOp->isProperAncestor(user);
});
transferWrite.getVectorMutable().assign(
newForOp.getResults().back());
changed = true;
loop.erase();
// Need to interrupt and restart because erasing the loop messes up
// the walk.
return WalkResult::interrupt();
})
.Default([](Operation *) { return WalkResult::interrupt(); });
});
}
}