last bits and pieces of the environment refactoring Reviewed By: Peiming Differential Revision: https://reviews.llvm.org/D140709
1621 lines
64 KiB
C++
1621 lines
64 KiB
C++
//===- Sparsification.cpp - Implementation of sparsification --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements converting sparse tensor types to actual sparse code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenEnv.h"
|
|
#include "CodegenUtils.h"
|
|
#include "LoopEmitter.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TensorEncoding.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Iteration graph sorting.
|
|
enum SortMask {
|
|
kSparseOnly = 0x0,
|
|
kIncludeDense = 0x1,
|
|
kIncludeUndef = 0x2,
|
|
kIncludeAll = 0x3
|
|
};
|
|
|
|
/// A helper class that visits an affine expression and tries to find an
|
|
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
|
|
/// the desired iterator type.
|
|
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
|
|
public:
|
|
explicit AffineDimFinder(linalg::GenericOp op)
|
|
: iterTypes(op.getIteratorTypesArray()) {}
|
|
void visitDimExpr(AffineDimExpr expr) {
|
|
if (pickedDim == nullptr || pickIterType == iterTypes[expr.getPosition()]) {
|
|
pickedDim = expr;
|
|
}
|
|
}
|
|
|
|
/// Set the desired iterator type that we want to pick.
|
|
void setPickedIterType(utils::IteratorType iterType) {
|
|
pickIterType = iterType;
|
|
}
|
|
|
|
/// Get the desired AffineDimExpr.
|
|
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
|
|
|
|
private:
|
|
/// The picked AffineDimExpr after visit.
|
|
AffineExpr pickedDim;
|
|
/// The iterator type that we want.
|
|
utils::IteratorType pickIterType;
|
|
/// The mapping between dim=>iterator type.
|
|
SmallVector<utils::IteratorType> iterTypes;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler analysis methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Determines if affine expression is invariant.
|
|
static bool isInvariantAffine(AffineExpr a, ArrayRef<unsigned> loopStack,
|
|
unsigned ldx, bool &atLevel) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
if (idx == ldx) {
|
|
atLevel = true;
|
|
// Must be invariant if we are at the level.
|
|
return true;
|
|
}
|
|
bool isInvariant = false;
|
|
for (unsigned loop : loopStack) {
|
|
isInvariant = (loop == idx);
|
|
if (isInvariant)
|
|
break;
|
|
}
|
|
return isInvariant;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, atLevel) &&
|
|
isInvariantAffine(binOp.getRHS(), loopStack, ldx, atLevel);
|
|
}
|
|
default: {
|
|
assert(a.isa<AffineConstantExpr>());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if affine expression is invariant.
|
|
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, unsigned ldx,
|
|
bool &atLevel) {
|
|
return isInvariantAffine(a, env.getLoopCurStack(), ldx, atLevel);
|
|
}
|
|
|
|
/// Helper method to construct a permuted dimension ordering
|
|
/// that adheres to the given topological sort.
|
|
static AffineMap permute(CodegenEnv &env, AffineMap m) {
|
|
assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
|
|
env.topSortSize() &&
|
|
"size mismatch");
|
|
// Construct the inverse of `m`; to avoid the asymptotic complexity
|
|
// of calling `m.getPermutedPosition` repeatedly.
|
|
SmallVector<unsigned> perm;
|
|
unsigned numResults = m.getNumResults();
|
|
BitVector worklist(numResults, true);
|
|
unsigned loopDepth = 1;
|
|
|
|
// Construct the permutation.
|
|
while (worklist.any() && loopDepth <= env.topSortSize()) {
|
|
unsigned preSize = perm.size();
|
|
for (auto dim : worklist.set_bits()) {
|
|
bool atLevel = false;
|
|
if (m.getResult(dim).isa<AffineConstantExpr>() ||
|
|
(isInvariantAffine(m.getResult(dim),
|
|
env.getTopSortSlice(0, loopDepth),
|
|
env.topSortAt(loopDepth - 1), atLevel) &&
|
|
atLevel)) {
|
|
// If the matching affine is constant expression or just become
|
|
// invariant. We can visit the dimension now without breaking the
|
|
// topSort constraint.
|
|
perm.push_back(dim);
|
|
}
|
|
}
|
|
|
|
// Removes resolved dimension.
|
|
for (unsigned i = preSize, e = perm.size(); i < e; i++)
|
|
worklist.reset(perm[i]);
|
|
|
|
// Tries to entering the next loop level.
|
|
loopDepth += 1;
|
|
}
|
|
|
|
assert(perm.size() == numResults);
|
|
return AffineMap::getPermutationMap(perm, env.op().getContext());
|
|
}
|
|
|
|
/// Helper method to inspect affine expressions. Rejects cases where the
|
|
/// same index is used more than once. Also rejects compound affine
|
|
/// expressions in sparse dimensions.
|
|
/// filterIdx stores the current filter loop idx should be used for the next
|
|
/// compound affine sparse level, and it will be incremented by one when
|
|
/// used.
|
|
static bool findAffine(Merger &merger, unsigned tensor, unsigned dim,
|
|
AffineExpr a, DimLevelType dlt, unsigned &filterLdx,
|
|
bool setLvlFormat = true) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
if (!isUndefDLT(merger.getDimLevelType(tensor, idx)))
|
|
return false; // used more than once
|
|
|
|
if (setLvlFormat)
|
|
merger.setDimAndDimLevelType(tensor, idx, dim, dlt);
|
|
return true;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul:
|
|
case AffineExprKind::Constant: {
|
|
if (!isDenseDLT(dlt) && setLvlFormat) {
|
|
assert(isUndefDLT(merger.getDimLevelType(tensor, filterLdx)));
|
|
// Use a filter loop for sparse affine expression.
|
|
merger.setDimAndDimLevelType(tensor, filterLdx++, dim, dlt);
|
|
}
|
|
|
|
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
|
|
// We do not set dim level format for affine expresssion like d0 + d1 on
|
|
// either loop index at d0 or d1.
|
|
// We continue the recursion merely to check whether current affine is
|
|
// admissible or not.
|
|
return findAffine(merger, tensor, dim, binOp.getLHS(), dlt, filterLdx,
|
|
false) &&
|
|
findAffine(merger, tensor, dim, binOp.getRHS(), dlt, filterLdx,
|
|
false);
|
|
}
|
|
// Falls through when it is a constant Affine
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Get the total number of compound affine expressions in affineMap that are
|
|
/// attached to the given tensor. For the following inputs:
|
|
///
|
|
/// affineMap = (d0, d1, d2) => (d0 + d1, d2)
|
|
/// tensor = ["compressed", "compressed"]
|
|
///
|
|
/// Returns 1 (because the first level is compressed and its corresponding
|
|
/// affineMap is d0 + d1)
|
|
static unsigned getNumCompoundAffineOnSparseDims(AffineMap affineMap,
|
|
Value tensor) {
|
|
unsigned num = 0;
|
|
auto enc = getSparseTensorEncoding(tensor.getType());
|
|
if (enc) {
|
|
ArrayRef<AffineExpr> exps = affineMap.getResults();
|
|
for (unsigned rank = 0; rank < exps.size(); rank++) {
|
|
auto aidx = toOrigDim(enc, rank);
|
|
auto affine = exps[aidx];
|
|
if (!affine.isa<AffineDimExpr>())
|
|
if (!isDenseDLT(getDimLevelType(enc, rank)))
|
|
num++;
|
|
}
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
/// Get the total number of compound affine expressions attached on a sparse
|
|
/// level in the given GenericOp.
|
|
static unsigned getNumCompoundAffineOnSparseDims(linalg::GenericOp op) {
|
|
unsigned num = 0;
|
|
for (OpOperand &t : op->getOpOperands())
|
|
num += getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(&t),
|
|
t.get());
|
|
return num;
|
|
}
|
|
|
|
/// Helper method to inspect sparse encodings in the tensor types.
|
|
/// Fills the per-dimension sparsity information for all tensors.
|
|
/// Returns true if the sparse annotations and affine subscript
|
|
/// expressions of all tensors are admissible. Returns false if
|
|
/// no annotations are found or inadmissible constructs occur.
|
|
static bool findSparseAnnotations(CodegenEnv &env) {
|
|
bool annotated = false;
|
|
unsigned filterLdx = env.merger().getFilterLoopStartingIdx();
|
|
for (OpOperand &t : env.op()->getOpOperands()) {
|
|
auto map = env.op().getMatchingIndexingMap(&t);
|
|
auto enc = getSparseTensorEncoding(t.get().getType());
|
|
if (enc)
|
|
annotated = true;
|
|
assert(map.getNumResults() == env.op().getRank(&t));
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
unsigned tensor = t.getOperandNumber();
|
|
AffineExpr a = map.getResult(toOrigDim(enc, d));
|
|
if (!findAffine(env.merger(), tensor, d, a, getDimLevelType(enc, d),
|
|
filterLdx))
|
|
return false; // inadmissible affine expression
|
|
}
|
|
}
|
|
assert(filterLdx == env.merger().getNumLoops());
|
|
return annotated;
|
|
}
|
|
|
|
/// A helper to compute a topological sort. O(n^2) time complexity
|
|
/// as we use adj matrix for the graph.
|
|
/// The sorted result will put the first Reduction iterator to the
|
|
/// latest possible index.
|
|
static bool topSortOptimal(CodegenEnv &env, unsigned n,
|
|
ArrayRef<utils::IteratorType> iteratorTypes,
|
|
std::vector<unsigned> &inDegree,
|
|
std::vector<std::vector<bool>> &adjM) {
|
|
std::vector<unsigned> redIt; // reduce iterator with 0 degree
|
|
std::vector<unsigned> parIt; // parallel iterator with 0 degree
|
|
std::vector<unsigned> filterIt; // filter loop with 0 degree
|
|
for (unsigned i = 0; i < n; i++) {
|
|
if (inDegree[i] == 0) {
|
|
if (env.merger().isFilterLoop(i))
|
|
filterIt.push_back(i);
|
|
else if (linalg::isReductionIterator(iteratorTypes[i]))
|
|
redIt.push_back(i);
|
|
else
|
|
parIt.push_back(i);
|
|
}
|
|
}
|
|
|
|
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
|
|
// We always choose in order of filter loop -> parallel loop -> reduction
|
|
// loop because
|
|
// 1. Putting reduction loop early might make the loop sequence
|
|
// inadmissible.
|
|
// 2. Filter loops should be put as early as possible for better
|
|
// performance, since only one (if any) iteration will carry the
|
|
// computation. E.g., for (1 to N)
|
|
// for (1 to M)
|
|
// for (1 to K)
|
|
// if (xxx)
|
|
// O(X) computation => O(NMK+NMX) time complexity
|
|
//
|
|
// By putting the filter loop one level up, we got
|
|
//
|
|
// for (1 to N)
|
|
// for (1 to K)
|
|
// if (xxx)
|
|
// for (1 to M)
|
|
// O(X) computation => O(NK+NMX) time complexity
|
|
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
|
|
auto src = it.back();
|
|
env.topSortPushBack(src);
|
|
it.pop_back();
|
|
// Update in-degree, and push 0-degree node into worklist.
|
|
for (unsigned dst = 0; dst < n; dst++) {
|
|
if (adjM[src][dst] && --inDegree[dst] == 0) {
|
|
if (env.merger().isFilterLoop(dst))
|
|
filterIt.push_back(dst);
|
|
else if (linalg::isReductionIterator(iteratorTypes[dst]))
|
|
redIt.push_back(dst);
|
|
else
|
|
parIt.push_back(dst);
|
|
}
|
|
}
|
|
}
|
|
return env.topSortSize() == n;
|
|
}
|
|
|
|
/// Helper method to add all constraints from the indices in one affine
|
|
/// expression before all indices in the other affine expression. For
|
|
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
|
|
/// The affine expression `a` is empty iff `fidx` have a value, leading to
|
|
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
|
|
/// The affine expression `b` is empty iff `tidx` have a value, leading to
|
|
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
|
|
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
|
|
std::vector<unsigned> &inDegree, AffineExpr a,
|
|
AffineExpr b, Optional<unsigned> fidx,
|
|
Optional<unsigned> tidx) {
|
|
if (!a && !b) {
|
|
// Recursion leaf.
|
|
assert(fidx && tidx);
|
|
unsigned f = *fidx, t = *tidx;
|
|
if (!adjM[f][t]) {
|
|
adjM[f][t] = true;
|
|
inDegree[t]++;
|
|
}
|
|
return;
|
|
}
|
|
// Picks an affine expression and expand (recurse into) it.
|
|
auto toExpand = a ? a : b;
|
|
switch (toExpand.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
auto idx = toExpand.cast<AffineDimExpr>().getPosition();
|
|
if (toExpand == a)
|
|
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
|
|
else // toExpand == b
|
|
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
|
|
break;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
|
|
if (toExpand == a) {
|
|
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
|
|
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
|
|
} else {
|
|
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
|
|
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void tryLoosenAffineDenseConstraints(linalg::GenericOp op,
|
|
Optional<unsigned> &fldx,
|
|
AffineExpr &fa,
|
|
Optional<unsigned> &tldx,
|
|
AffineExpr &ta) {
|
|
// We use a heuristic here to only pick one dim expression from each
|
|
// compound affine expression to establish the order between two dense
|
|
// dimensions.
|
|
if (!tldx) {
|
|
AffineDimFinder finder(op);
|
|
// NOTE: The ordering can only be loosen when the destination level is
|
|
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
|
|
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
|
|
// no ordering like d0->d2->d1).
|
|
// TODO: this is obviously a sub optimal solution.
|
|
if (!fldx && !fa.isa<AffineConstantExpr>()) {
|
|
// Heuristic: we prefer parallel loop for lhs to reduce the chance
|
|
// we add reduce < parallel ordering.
|
|
finder.setPickedIterType(utils::IteratorType::parallel);
|
|
finder.walkPostOrder(fa);
|
|
fa = finder.getDimExpr();
|
|
fldx = finder.getDimExpr().getPosition();
|
|
}
|
|
if (!ta.isa<AffineConstantExpr>()) {
|
|
// Heuristic: we prefer reduction loop for rhs to reduce the chance
|
|
// addint reduce < parallel ordering.
|
|
finder.setPickedIterType(utils::IteratorType::reduction);
|
|
finder.walkPostOrder(ta);
|
|
ta = finder.getDimExpr();
|
|
tldx = finder.getDimExpr().getPosition();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Computes a topologically sorted iteration graph for the linalg
|
|
/// operation. Ensures all tensors are visited in natural index order. This
|
|
/// is essential for sparse storage formats since these only support access
|
|
/// along fixed dimensions. Even for dense storage formats, however, the
|
|
/// natural index order yields innermost unit-stride access with better
|
|
/// spatial locality.
|
|
static bool computeIterationGraph(CodegenEnv &env, unsigned mask,
|
|
OpOperand *skip = nullptr) {
|
|
// Set up an n x n from/to adjacency matrix of the iteration graph
|
|
// for the implicit loop indices i_0 .. i_n-1.
|
|
unsigned n = env.merger().getNumLoops();
|
|
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
|
|
std::vector<unsigned> inDegree(n, 0); // in-degree of each node.
|
|
auto iteratorTypes = env.op().getIteratorTypesArray();
|
|
// Iterate over the indexing maps of every tensor in the tensor expression.
|
|
for (OpOperand &t : env.op()->getOpOperands()) {
|
|
// Get map and encoding.
|
|
auto map = env.op().getMatchingIndexingMap(&t);
|
|
auto enc = getSparseTensorEncoding(t.get().getType());
|
|
assert(map.getNumDims() + getNumCompoundAffineOnSparseDims(env.op()) == n);
|
|
// Skip dense tensor constraints when not requested.
|
|
if (!(mask & SortMask::kIncludeDense) && !enc)
|
|
continue;
|
|
// Each tensor expression and optional dimension ordering (row-major
|
|
// by default) puts an ordering constraint on the loop indices. For
|
|
// example, the tensor expresion A_ijk forces the ordering i < j < k
|
|
// on the loop indices if no explicit dimension ordering is given.
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr ta = map.getResult(toOrigDim(enc, d));
|
|
Optional<unsigned> tldx =
|
|
env.merger().getLoopIdx(t.getOperandNumber(), d);
|
|
|
|
// Filter loops should be constructed after all the dependent loops,
|
|
// i.e., d0 + d1 < filter_loop(d0 + d1)
|
|
if (tldx && env.merger().isFilterLoop(*tldx)) {
|
|
assert(!ta.isa<AffineDimExpr>() &&
|
|
!isDenseDLT(getDimLevelType(enc, d)));
|
|
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt,
|
|
tldx);
|
|
// Now that the ordering of affine expression is captured by filter
|
|
// loop idx, we only need to ensure the affine ordering against filter
|
|
// loop. Thus, we reset the affine express to nil here to mark it as
|
|
// resolved.
|
|
ta = AffineExpr();
|
|
}
|
|
|
|
// Skip tensor during cycle resolution, though order between filter loop
|
|
// and dependent loops need to be guaranteed unconditionally.
|
|
if (&t == skip)
|
|
continue;
|
|
|
|
if (d > 0) {
|
|
AffineExpr fa = map.getResult(toOrigDim(enc, d - 1));
|
|
Optional<unsigned> fldx =
|
|
env.merger().getLoopIdx(t.getOperandNumber(), d - 1);
|
|
|
|
// Applying order constraints on every pair of dimExpr between two
|
|
// compound affine expressions can sometime too strict:
|
|
// E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
|
|
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
|
|
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
|
|
if (!(mask & SortMask::kIncludeDense))
|
|
tryLoosenAffineDenseConstraints(env.op(), fldx, fa, tldx, ta);
|
|
|
|
// (d0 + d1) < (d2 + d3), or
|
|
// filter_loop_d-1 < (d2 + d3), or
|
|
// (d0 + d1) < filter_loop_d, or
|
|
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
|
|
// above.
|
|
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
|
|
}
|
|
}
|
|
// Push unrelated loops into sparse iteration space, so these
|
|
// will be skipped more often.
|
|
if (mask & SortMask::kIncludeUndef) {
|
|
unsigned tensor = t.getOperandNumber();
|
|
for (unsigned i = 0; i < n; i++)
|
|
if (isCompressedDLT(env.dlt(tensor, i)) ||
|
|
isSingletonDLT(env.dlt(tensor, i))) {
|
|
for (unsigned j = 0; j < n; j++)
|
|
if (isUndefDLT(env.dlt(tensor, j))) {
|
|
adjM[i][j] = true;
|
|
inDegree[j]++;
|
|
}
|
|
} else {
|
|
assert(isDenseDLT(env.dlt(tensor, i)) ||
|
|
isUndefDLT(env.dlt(tensor, i)));
|
|
}
|
|
}
|
|
}
|
|
// Topologically sort the iteration graph to determine loop order.
|
|
// Report failure for a cyclic iteration graph.
|
|
env.topSortClear(n);
|
|
return topSortOptimal(env, n, iteratorTypes, inDegree, adjM);
|
|
}
|
|
|
|
/// Returns true if tensor materializes uninitialized into the computation.
|
|
static bool isMaterializing(Value val) {
|
|
return val.getDefiningOp<tensor::EmptyOp>() ||
|
|
val.getDefiningOp<bufferization::AllocTensorOp>();
|
|
}
|
|
|
|
/// Returns true when the tensor expression is admissible for codegen.
|
|
/// Since all sparse input tensors are admissible, we just need to check
|
|
/// whether the out tensor in the tensor expression codegen is admissible.
|
|
/// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
|
|
/// nesting depth when a "truly dynamic" sparse tensor output occurs.
|
|
static bool isAdmissibleTensorExp(CodegenEnv &env, unsigned exp,
|
|
OpOperand **sparseOut,
|
|
unsigned *outerParNest) {
|
|
// We reject any expression that makes a reduction from `-outTensor`, as those
|
|
// expressions create a dependency between the current iteration (i) and the
|
|
// previous iteration (i-1). It would require iterating over the whole
|
|
// coordinate space, which prevent exploiting sparsity for faster code.
|
|
for (utils::IteratorType it : env.op().getIteratorTypesArray()) {
|
|
if (it == utils::IteratorType::reduction) {
|
|
if (env.merger().hasNegateOnOut(exp))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
OpOperand *lhs = env.op().getDpsInitOperand(0);
|
|
unsigned tensor = lhs->getOperandNumber();
|
|
auto enc = getSparseTensorEncoding(lhs->get().getType());
|
|
// An non-annotated output tensor is assumed dense, and becomes a random
|
|
// access n-dim memref. Admissible since insertions cannot occur.
|
|
if (!enc)
|
|
return true;
|
|
// An all-dense annotated "sparse" output tensor becomes a linearized random
|
|
// access 1-dim memref. Also admissible since insertions cannot occur.
|
|
bool allDense = true;
|
|
unsigned numLoops =
|
|
env.merger().getNumLoops(); // numNativeLoops + numFilterLoops
|
|
for (unsigned i = 0; i < env.merger().getNumLoops(); i++)
|
|
if (isCompressedDLT(env.dlt(tensor, i)) ||
|
|
isSingletonDLT(env.dlt(tensor, i))) {
|
|
allDense = false;
|
|
break;
|
|
} else {
|
|
assert(isDenseDLT(env.dlt(tensor, i)) || isUndefDLT(env.dlt(tensor, i)));
|
|
}
|
|
if (allDense)
|
|
return true;
|
|
|
|
// TODO: support compound affine expression on sparse output.
|
|
if (getNumCompoundAffineOnSparseDims(env.op().getMatchingIndexingMap(lhs),
|
|
lhs->get()) != 0)
|
|
return false;
|
|
|
|
// A tensor expression with a sparse output tensor that changes its values
|
|
// but not its nonzero structure, an operation called "simply dynamic" in
|
|
// [Bik96,Ch9], is also admissible without special env.
|
|
if (env.merger().isSingleCondition(tensor, exp))
|
|
return true;
|
|
|
|
// Accept "truly dynamic" if the output tensor materializes uninitialized
|
|
// into the computation and insertions occur in lexicographic index order.
|
|
if (isMaterializing(lhs->get())) {
|
|
auto iteratorTypes = env.op().getIteratorTypesArray();
|
|
unsigned nest = 0;
|
|
for (unsigned i = 0; i < numLoops; i++) {
|
|
if (!env.merger().isFilterLoop(env.topSortAt(i))) {
|
|
// We only count non-filter loops as filter loops should be considered
|
|
// as a special type of parallel loops.
|
|
if (linalg::isReductionIterator(iteratorTypes[env.topSortAt(i)]))
|
|
break; // terminate at first reduction
|
|
nest++;
|
|
}
|
|
}
|
|
// Determine admissible dynamic insertion situations:
|
|
// (1) fully injective, since there are no reductions,
|
|
// (2) admissible 1-d expansion in innermost dimension.
|
|
if (nest >= env.op().getRank(lhs) - 1) {
|
|
*sparseOut = lhs;
|
|
*outerParNest = nest;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (statements and expressions).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Local bufferization of all dense and sparse data structures.
|
|
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
|
|
|
|
env.emitter().initializeLoopEmit(
|
|
builder, loc,
|
|
/// Generates buffer for the output tensor.
|
|
/// Note that all sparse kernels assume that when all elements are written
|
|
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
|
|
/// to all zeroes and only nonzeroes values are computed and written out.
|
|
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
|
|
/// for the updates and no assumption on the original contents of the
|
|
/// output buffer is necessary.
|
|
[&op](OpBuilder &builder, Location loc, Value memref,
|
|
Value tensor) -> Value {
|
|
// Must not be a sparse tensor.
|
|
assert(!getSparseTensorEncoding(tensor.getType()));
|
|
// Two output tensor references should point to the same object.
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
assert(lhs->get() == tensor);
|
|
// An output tensor can simply materialize from the buffer of the tensor
|
|
// that appears in the outs() clause. For updates, this has the
|
|
// advantage that only the nonzero value are involved in the
|
|
// computation, keeping the operation O(nnz). In all other cases, we are
|
|
// forced to zero out the buffer to enforce the assumption above, which
|
|
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
|
|
// O(nnz) for matrices).
|
|
// TODO: use better analysis to avoid zeroing out the buffer?
|
|
bool isInit = op.isInitTensor(lhs);
|
|
Value init = memref;
|
|
if (!isInit) {
|
|
Value zero = constantZero(builder, loc,
|
|
getElementTypeOrSelf(tensor.getType()));
|
|
builder.create<linalg::FillOp>(loc, ValueRange{zero},
|
|
ValueRange{init});
|
|
}
|
|
return init;
|
|
});
|
|
}
|
|
|
|
/// Generates index for load/store on sparse tensor.
|
|
static Value genIndex(CodegenEnv &env, OpOperand *t) {
|
|
auto map = env.op().getMatchingIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
AffineExpr a = map.getResult(toOrigDim(enc, map.getNumResults() - 1));
|
|
assert(a.getKind() == AffineExprKind::DimId);
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
return env.getLoopIdxValue(idx);
|
|
}
|
|
|
|
/// Generates subscript for load/store on a dense or sparse tensor.
|
|
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
|
|
SmallVectorImpl<Value> &args) {
|
|
linalg::GenericOp op = env.op();
|
|
unsigned tensor = t->getOperandNumber();
|
|
auto map = op.getMatchingIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
unsigned rank = map.getNumResults();
|
|
if (enc) {
|
|
Value pidx = env.emitter().getPidxs()[tensor].back();
|
|
assert(pidx);
|
|
args.push_back(pidx); // position index
|
|
} else {
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
AffineExpr a = map.getResult(d);
|
|
args.push_back(env.emitter().genAffine(builder, a, op.getLoc()));
|
|
}
|
|
}
|
|
return env.emitter().getValBuffer()[tensor];
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor load.
|
|
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
|
|
OpOperand *t) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Direct lexicographic index order, tensor loads as zero.
|
|
if (!env.isExpand()) {
|
|
Type tp = getElementTypeOrSelf(t->get().getType());
|
|
return constantZero(builder, loc, tp);
|
|
}
|
|
// Load from expanded access pattern.
|
|
Value index = genIndex(env, t);
|
|
return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor load for reduction.
|
|
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
|
|
OpOperand *t) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
Value identity = env.getCustomRedId();
|
|
// Direct lexicographic index order, tensor loads as identity.
|
|
if (!env.isExpand())
|
|
return identity;
|
|
// Load from expanded access pattern if filled, identity otherwise.
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value index = genIndex(env, t);
|
|
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
|
|
Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
|
|
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor store.
|
|
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
|
|
Value rhs) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Direct insertion in lexicographic index order.
|
|
if (!env.isExpand()) {
|
|
unsigned rank = op.getRank(t);
|
|
SmallVector<Value> indices;
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
assert(env.emitter().getLoopIV(i));
|
|
indices.push_back(env.emitter().getLoopIV(i));
|
|
}
|
|
Value chain = env.getInsertionChain();
|
|
env.updateInsertionChain(
|
|
builder.create<InsertOp>(loc, rhs, chain, indices));
|
|
return;
|
|
}
|
|
// Generates insertion code along expanded access pattern.
|
|
// if (!expFilled[i]) then
|
|
// expFilled[i] = true
|
|
// expAdded[inserts++] = i
|
|
// endif
|
|
// values[i] = rhs
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value added = env.getExpandAdded();
|
|
Value count = env.getExpandCount();
|
|
Value index = genIndex(env, t);
|
|
Value fval = constantI1(builder, loc, false);
|
|
Value tval = constantI1(builder, loc, true);
|
|
// If statement.
|
|
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
|
|
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
isFilled, fval);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
|
|
/*else=*/true);
|
|
// True branch.
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
builder.create<memref::StoreOp>(loc, tval, filled, index);
|
|
builder.create<memref::StoreOp>(loc, index, added, count);
|
|
Value one = constantIndex(builder, loc, 1);
|
|
Value add = builder.create<arith::AddIOp>(loc, count, one);
|
|
builder.create<scf::YieldOp>(loc, add);
|
|
// False branch.
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, count);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
// Value assignment.
|
|
env.updateExpandCount(ifOp.getResult(0));
|
|
builder.create<memref::StoreOp>(loc, rhs, values, index);
|
|
}
|
|
|
|
/// Generates a load on a dense or sparse tensor.
|
|
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, unsigned exp) {
|
|
// Test if the load was hoisted to a higher loop nest.
|
|
Value val = env.exp(exp).val;
|
|
if (val)
|
|
return val;
|
|
|
|
// Load during insertion.
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
|
|
if (env.isSparseOutput(t)) {
|
|
if (env.isCustomReduc())
|
|
return genInsertionLoadReduce(env, builder, t);
|
|
return genInsertionLoad(env, builder, t);
|
|
}
|
|
// Actual load.
|
|
SmallVector<Value> args;
|
|
Value ptr = genSubscript(env, builder, t, args);
|
|
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
|
|
}
|
|
|
|
/// Generates a store on a dense or sparse tensor.
|
|
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, unsigned exp,
|
|
Value rhs) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Test if this is a scalarized reduction.
|
|
if (env.isReduc()) {
|
|
env.updateReduc(rhs);
|
|
return;
|
|
}
|
|
// Store during insertion.
|
|
OpOperand *t = op.getDpsInitOperand(0);
|
|
if (env.isSparseOutput(t)) {
|
|
if (!rhs) {
|
|
// Only unary and binary are allowed to return uninitialized rhs
|
|
// to indicate missing output.
|
|
assert(env.exp(exp).kind == kUnary || env.exp(exp).kind == kBinary);
|
|
} else if (env.exp(exp).kind == kSelect) {
|
|
// Select operation insertion.
|
|
Value chain = env.getInsertionChain();
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
// Existing value was preserved to be used here.
|
|
assert(env.exp(exp).val);
|
|
Value v0 = env.exp(exp).val;
|
|
genInsertionStore(env, builder, t, v0);
|
|
env.exp(exp).val = Value();
|
|
// Yield modified insertion chain along true branch.
|
|
Value mchain = env.getInsertionChain();
|
|
builder.create<scf::YieldOp>(op.getLoc(), mchain);
|
|
// Yield original insertion chain along false branch.
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, chain);
|
|
// Done with if statement.
|
|
env.updateInsertionChain(ifOp->getResult(0));
|
|
builder.setInsertionPointAfter(ifOp);
|
|
} else {
|
|
genInsertionStore(env, builder, t, rhs);
|
|
}
|
|
return;
|
|
}
|
|
// Actual store.
|
|
SmallVector<Value> args;
|
|
Value ptr = genSubscript(env, builder, t, args);
|
|
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
|
|
}
|
|
|
|
/// Generates an invariant value.
|
|
inline static Value genInvariantValue(CodegenEnv &env, unsigned exp) {
|
|
return env.exp(exp).val;
|
|
}
|
|
|
|
/// Generates an index value.
|
|
inline static Value genIndexValue(CodegenEnv &env, unsigned idx) {
|
|
return env.getLoopIdxValue(idx);
|
|
}
|
|
|
|
/// Semi-ring branches are simply inlined by the sparse compiler. Prior
|
|
/// analysis has verified that all computations are "local" to the inlined
|
|
/// branch or otherwise invariantly defined outside the loop nest, with the
|
|
/// exception of index computations, which need to be relinked to actual
|
|
/// inlined cloned code.
|
|
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
|
|
Value e, unsigned ldx) {
|
|
if (Operation *def = e.getDefiningOp()) {
|
|
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
|
|
return genIndexValue(env, indexOp.getDim());
|
|
if (def->getBlock() == block) {
|
|
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
|
|
def->setOperand(
|
|
i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/// Recursively generates tensor expression.
|
|
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, unsigned exp,
|
|
unsigned ldx) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
|
|
if (exp == -1u)
|
|
return Value();
|
|
if (env.exp(exp).kind == Kind::kTensor)
|
|
return genTensorLoad(env, rewriter, exp);
|
|
if (env.exp(exp).kind == Kind::kInvariant)
|
|
return genInvariantValue(env, exp);
|
|
if (env.exp(exp).kind == Kind::kIndex)
|
|
return genIndexValue(env, env.exp(exp).index);
|
|
|
|
if (env.exp(exp).kind == Kind::kReduce)
|
|
env.startCustomReduc(exp); // enter custom
|
|
|
|
Value v0 = genExp(env, rewriter, env.exp(exp).children.e0, ldx);
|
|
Value v1 = genExp(env, rewriter, env.exp(exp).children.e1, ldx);
|
|
Value ee = env.merger().buildExp(rewriter, loc, exp, v0, v1);
|
|
if (ee && (env.exp(exp).kind == Kind::kUnary ||
|
|
env.exp(exp).kind == Kind::kBinary ||
|
|
env.exp(exp).kind == Kind::kBinaryBranch ||
|
|
env.exp(exp).kind == Kind::kReduce ||
|
|
env.exp(exp).kind == Kind::kSelect))
|
|
ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);
|
|
|
|
if (env.exp(exp).kind == Kind::kReduce)
|
|
env.endCustomReduc(); // exit custom
|
|
|
|
if (env.exp(exp).kind == kSelect) {
|
|
assert(!env.exp(exp).val);
|
|
env.exp(exp).val = v0; // Preserve value for later use.
|
|
}
|
|
|
|
return ee;
|
|
}
|
|
|
|
/// Hoists loop invariant tensor loads for which indices have been exhausted.
|
|
static void genInvariants(CodegenEnv &env, OpBuilder &builder, unsigned exp,
|
|
unsigned ldx, bool atStart) {
|
|
if (exp == -1u)
|
|
return;
|
|
if (env.exp(exp).kind == Kind::kTensor) {
|
|
// Inspect tensor indices.
|
|
bool atLevel = ldx == -1u;
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
|
|
auto map = op.getMatchingIndexingMap(&t);
|
|
auto enc = getSparseTensorEncoding(t.get().getType());
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr a = map.getResult(toOrigDim(enc, d));
|
|
Optional<unsigned> sldx =
|
|
env.merger().getLoopIdx(t.getOperandNumber(), d);
|
|
if (sldx && env.merger().isFilterLoop(*sldx)) {
|
|
if (!env.getLoopIdxValue(*sldx))
|
|
// The filter loops has not been constructed.
|
|
return;
|
|
if (*sldx == ldx)
|
|
atLevel = true;
|
|
} else if (!isInvariantAffine(env, a, ldx, atLevel))
|
|
return; // still in play
|
|
}
|
|
// All exhausted at this level (atLevel denotes exactly at this level).
|
|
if (!atLevel)
|
|
return;
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
if (lhs == &t) {
|
|
// Start or end a scalarized reduction
|
|
if (atStart) {
|
|
Value load = env.isCustomReduc() ? env.getCustomRedId()
|
|
: genTensorLoad(env, builder, exp);
|
|
env.startReduc(exp, load);
|
|
} else {
|
|
genTensorStore(env, builder, exp, env.endReduc());
|
|
}
|
|
} else {
|
|
// Start or end loop invariant hoisting of a tensor load.
|
|
env.exp(exp).val = atStart ? genTensorLoad(env, builder, exp) : Value();
|
|
}
|
|
} else if (env.exp(exp).kind != Kind::kInvariant &&
|
|
env.exp(exp).kind != Kind::kIndex) {
|
|
// Traverse into the binary operations. Note that we only hoist
|
|
// tensor loads, since subsequent MLIR/LLVM passes know how to
|
|
// deal with all other kinds of derived loop invariants.
|
|
if (env.exp(exp).kind == Kind::kReduce)
|
|
env.startCustomReduc(exp); // enter custom
|
|
unsigned e0 = env.exp(exp).children.e0;
|
|
unsigned e1 = env.exp(exp).children.e1;
|
|
genInvariants(env, builder, e0, ldx, atStart);
|
|
genInvariants(env, builder, e1, ldx, atStart);
|
|
if (env.exp(exp).kind == Kind::kReduce)
|
|
env.endCustomReduc(); // exit custom
|
|
}
|
|
}
|
|
|
|
/// Generates an expanded access pattern in innermost dimension.
|
|
static void genExpand(CodegenEnv &env, OpBuilder &builder, unsigned at,
|
|
bool atStart) {
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
|
|
return; // not needed at this level
|
|
assert(!env.isReduc());
|
|
// Generate start or end of an expanded access pattern. Note that because
|
|
// an expension does not rely on the ongoing contents of the sparse storage
|
|
// scheme, we can use the original tensor as incoming SSA value (which
|
|
// simplifies codegen a bit). If expansion on the actual contents is ever
|
|
// needed, we will need to use the SSA value in the insertion chain instead.
|
|
Value tensor = lhs->get();
|
|
Location loc = op.getLoc();
|
|
if (atStart) {
|
|
auto dynShape = {ShapedType::kDynamic};
|
|
Type etp = tensor.getType().cast<ShapedType>().getElementType();
|
|
Type t1 = MemRefType::get(dynShape, etp);
|
|
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
|
|
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
|
|
Type t4 = builder.getIndexType();
|
|
auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
|
|
assert(r.getNumResults() == 4);
|
|
env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
|
|
r.getResult(3));
|
|
} else {
|
|
SmallVector<Value> indices;
|
|
for (unsigned i = 0; i < at; i++)
|
|
indices.push_back(env.emitter().getLoopIV(i));
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value added = env.getExpandAdded();
|
|
Value count = env.getExpandCount();
|
|
Value chain = env.getInsertionChain();
|
|
Value compress = builder.create<CompressOp>(loc, values, filled, added,
|
|
count, chain, indices);
|
|
env.updateInsertionChain(compress);
|
|
env.endExpand();
|
|
}
|
|
}
|
|
|
|
/// Returns parallelization strategy. Any implicit loop in the Linalg
|
|
/// operation that is marked "parallel" is a candidate. Whether it is actually
|
|
/// converted to a parallel operation depends on the requested strategy.
|
|
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
|
|
// Reject parallelization of sparse output.
|
|
if (env.hasSparseOutput())
|
|
return false;
|
|
// Parallel loops on tensor expansion can cause data races.
|
|
if (env.isExpand())
|
|
return false;
|
|
// Inspect strategy.
|
|
switch (env.options().parallelizationStrategy) {
|
|
case SparseParallelizationStrategy::kNone:
|
|
return false;
|
|
case SparseParallelizationStrategy::kDenseOuterLoop:
|
|
return isOuter && !isSparse;
|
|
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
|
|
return isOuter;
|
|
case SparseParallelizationStrategy::kDenseAnyLoop:
|
|
return !isSparse;
|
|
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected parallelization strategy");
|
|
}
|
|
|
|
/// Generates a for-loop on a single index.
|
|
static Operation *genFor(CodegenEnv &env, OpBuilder &builder, bool isOuter,
|
|
bool isInner, unsigned idx, ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
auto iteratorTypes = op.getIteratorTypesArray();
|
|
bool isSparse = llvm::any_of(tids, [idx, &env](size_t tid) {
|
|
return isCompressedDLT(env.dlt(tid, idx)) ||
|
|
isSingletonDLT(env.dlt(tid, idx));
|
|
});
|
|
|
|
bool isParallel = isParallelFor(env, isOuter, isSparse);
|
|
|
|
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
if (env.merger().isFilterLoop(idx)) {
|
|
size_t tid = tids.front(), dim = dims.front();
|
|
// tids/dims must only have one value because filter loops only
|
|
// corresponding to the one and only sparse tensor level.
|
|
assert(isSparse && tids.size() == 1 && dims.size() == 1);
|
|
OpOperand *t = &op->getOpOperand(tid);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
// Retrieves the affine expression for the filter loop.
|
|
AffineExpr a =
|
|
op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, dim));
|
|
return env.emitter().enterFilterLoopOverTensorAtDim(builder, loc, tid,
|
|
dim, a, reduc);
|
|
}
|
|
return env.emitter().enterLoopOverTensorAtDim(builder, loc, tids, dims,
|
|
reduc, isParallel);
|
|
});
|
|
assert(loop);
|
|
return loop;
|
|
}
|
|
|
|
/// Emit a while-loop for co-iteration over multiple indices.
|
|
static Operation *genWhile(CodegenEnv &env, OpBuilder &builder, unsigned idx,
|
|
bool needsUniv, ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims) {
|
|
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
// Construct the while-loop with a parameter for each
|
|
// index.
|
|
return env.emitter().enterCoIterationOverTensorsAtDims(
|
|
builder, env.op().getLoc(), tids, dims, needsUniv, reduc);
|
|
});
|
|
assert(loop);
|
|
return loop;
|
|
}
|
|
|
|
/// Generates a for-loop or a while-loop, depending on whether it implements
|
|
/// singleton iteration or co-iteration over the given conjunction.
|
|
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, unsigned at,
|
|
bool needsUniv, ArrayRef<size_t> tids,
|
|
ArrayRef<size_t> dims, bool isFor) {
|
|
assert(tids.size() == dims.size());
|
|
unsigned idx = env.topSortAt(at);
|
|
if (isFor) {
|
|
bool isOuter = at == 0;
|
|
bool isInner = at == env.topSortSize() - 1;
|
|
return genFor(env, builder, isOuter, isInner, idx, tids, dims);
|
|
}
|
|
return genWhile(env, builder, idx, needsUniv, tids, dims);
|
|
}
|
|
|
|
/// Generates the induction structure for a while-loop.
|
|
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, unsigned idx,
|
|
bool needsUniv, BitVector &induction,
|
|
scf::WhileOp whileOp) {
|
|
Location loc = env.op().getLoc();
|
|
// Finalize each else branch of all if statements.
|
|
if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
|
|
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
|
|
builder.getInsertionBlock()->getParentOp())) {
|
|
unsigned y = 0;
|
|
SmallVector<Value> yields;
|
|
if (env.isReduc()) {
|
|
yields.push_back(env.getReduc());
|
|
env.updateReduc(ifOp.getResult(y++));
|
|
}
|
|
if (env.isExpand()) {
|
|
yields.push_back(env.getExpandCount());
|
|
env.updateExpandCount(ifOp->getResult(y++));
|
|
}
|
|
if (env.getInsertionChain()) {
|
|
yields.push_back(env.getInsertionChain());
|
|
env.updateInsertionChain(ifOp->getResult(y++));
|
|
}
|
|
assert(y == yields.size());
|
|
builder.create<scf::YieldOp>(loc, yields);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
}
|
|
}
|
|
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
|
|
}
|
|
|
|
/// Generates a single if-statement within a while-loop.
|
|
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, unsigned idx,
|
|
BitVector &conditions) {
|
|
Location loc = env.op().getLoc();
|
|
SmallVector<Type> types;
|
|
Value cond;
|
|
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
|
|
if (!conditions[b])
|
|
continue;
|
|
unsigned tensor = env.merger().tensor(b);
|
|
assert(idx == env.merger().index(b));
|
|
Value clause;
|
|
if (isCompressedDLT(env.dlt(b)) || isSingletonDLT(env.dlt(b))) {
|
|
auto dim = *env.merger().getDimNum(tensor, idx);
|
|
Value op1 = env.emitter().getCoord()[tensor][dim];
|
|
Value op2 = env.getLoopIdxValue(idx);
|
|
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1,
|
|
op2);
|
|
} else {
|
|
assert(isDenseDLT(env.merger().getDimLevelType(b)) ||
|
|
isUndefDLT(env.merger().getDimLevelType(b)));
|
|
clause = constantI1(builder, loc, true);
|
|
}
|
|
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
|
|
}
|
|
if (env.isReduc())
|
|
types.push_back(env.getReduc().getType());
|
|
if (env.isExpand())
|
|
types.push_back(builder.getIndexType());
|
|
if (env.getInsertionChain())
|
|
types.push_back(env.getInsertionChain().getType());
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
return ifOp;
|
|
}
|
|
|
|
/// Generates end of true branch of if-statement within a while-loop.
|
|
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
|
|
Operation *loop, Value redInput, Value cntInput,
|
|
Value insInput) {
|
|
SmallVector<Value> operands;
|
|
if (env.isReduc()) {
|
|
operands.push_back(env.getReduc());
|
|
env.updateReduc(redInput);
|
|
}
|
|
if (env.isExpand()) {
|
|
operands.push_back(env.getExpandCount());
|
|
env.updateExpandCount(cntInput);
|
|
}
|
|
if (env.getInsertionChain()) {
|
|
operands.push_back(env.getInsertionChain());
|
|
env.updateInsertionChain(insInput);
|
|
}
|
|
if (!operands.empty())
|
|
builder.create<scf::YieldOp>(env.op().getLoc(), operands);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (loop sequence).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Starts a loop sequence at given level. Returns true if
|
|
/// the universal loop index must be maintained at this level.
|
|
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
|
|
unsigned at, unsigned idx, unsigned ldx,
|
|
unsigned lts) {
|
|
assert(!env.getLoopIdxValue(idx));
|
|
// Emit invariants at this loop sequence level.
|
|
genInvariants(env, builder, exp, ldx, /*atStart=*/true);
|
|
// Emit access pattern expansion for sparse tensor output.
|
|
genExpand(env, builder, at, /*atStart=*/true);
|
|
// Emit further intitialization at this loop sequence level.
|
|
unsigned l0 = env.set(lts)[0];
|
|
bool needsUniv = false;
|
|
|
|
SmallVector<size_t> tids;
|
|
SmallVector<size_t> dims;
|
|
env.merger().foreachTidDimPairInBits(
|
|
env.lat(l0).bits,
|
|
[&](unsigned b, unsigned tid, Optional<unsigned> dim, DimLevelType dlt) {
|
|
assert(env.merger().index(b) == idx);
|
|
if (isDenseDLT(dlt) || isUndefDLT(dlt)) {
|
|
needsUniv = true;
|
|
} else {
|
|
// sparse/singleton dim levels.
|
|
tids.push_back(tid);
|
|
dims.push_back(*dim);
|
|
}
|
|
});
|
|
|
|
env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tids, dims);
|
|
|
|
// Maintain the universal index only if it is actually
|
|
// consumed by a subsequent lattice point.
|
|
if (needsUniv) {
|
|
unsigned lsize = env.set(lts).size();
|
|
for (unsigned i = 1; i < lsize; i++) {
|
|
unsigned li = env.set(lts)[i];
|
|
if (!env.merger().hasAnySparse(env.lat(li).simple))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void genConstantDenseAddressFromLevel(CodegenEnv &env,
|
|
OpBuilder &builder, unsigned tid,
|
|
unsigned lvl) {
|
|
// TODO: Handle affine expression on output tensor.
|
|
linalg::GenericOp op = env.op();
|
|
assert(tid < op.getNumDpsInputs());
|
|
OpOperand *input = op.getDpsInputOperands()[tid];
|
|
ArrayRef<AffineExpr> affines = op.getMatchingIndexingMap(input).getResults();
|
|
auto enc = getSparseTensorEncoding(input->get().getType());
|
|
if (enc) {
|
|
for (unsigned i = lvl, e = affines.size(); i < e; i++) {
|
|
AffineExpr affine = affines[toOrigDim(enc, i)];
|
|
if (isDenseDLT(getDimLevelType(enc, i)) &&
|
|
affine.isa<AffineConstantExpr>())
|
|
env.emitter().genDenseAffineAddressAtCurLevel(
|
|
builder, op.getLoc(), input->getOperandNumber(), i, affine);
|
|
else
|
|
return; // break on first non-dense non-constant level
|
|
}
|
|
}
|
|
}
|
|
|
|
static void genInitConstantDenseAddress(CodegenEnv &env,
|
|
RewriterBase &rewriter) {
|
|
// We can generate address for constant affine expression before any loops
|
|
// starting from the first level as they do not depend on any thing.
|
|
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
|
|
// levels can be determined before loops.
|
|
for (unsigned tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
|
|
genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
|
|
}
|
|
|
|
/// Return true if the lattices bit can be iterated by a for loop.
|
|
static bool translateBitsToTidDimPairs(
|
|
CodegenEnv &env, unsigned li, unsigned idx, SmallVectorImpl<size_t> &tids,
|
|
SmallVectorImpl<size_t> &dims, SmallVectorImpl<size_t> &affineTids,
|
|
SmallVectorImpl<size_t> &affineDims, SmallVectorImpl<AffineExpr> &exps) {
|
|
const BitVector &all = env.lat(li).bits;
|
|
const BitVector &simple = env.lat(li).simple;
|
|
|
|
unsigned numloopCond = 0;
|
|
// Converts bits to array + dim pair
|
|
env.merger().foreachTidDimPairInBits(all, [&, idx](unsigned b, unsigned tid,
|
|
Optional<unsigned> dim,
|
|
DimLevelType dlt) {
|
|
if (simple.test(b)) {
|
|
if (isUndefDLT(dlt)) {
|
|
// An undefined dlt in the lattices, we probably mean to iterate based
|
|
// on the dim of output tensor.
|
|
// E.g., this could be a synthetic tensor (for invariants and sparse
|
|
// output tensor).
|
|
// out[i][j] = invariant; or a broadcast
|
|
// out[i][j] = in[i] (j is undef for input)
|
|
tid = env.merger().getOutTensorID();
|
|
dim = env.merger().getDimNum(tid, idx);
|
|
// Skips invalid dim (e.g., when this is a zero ranked tensor).
|
|
if (!dim)
|
|
return;
|
|
}
|
|
tids.push_back(tid);
|
|
dims.push_back(*dim);
|
|
numloopCond++;
|
|
} else if (isDenseDLT(dlt)) {
|
|
tids.push_back(tid);
|
|
dims.push_back(*dim);
|
|
} else {
|
|
assert(isUndefDLT(dlt));
|
|
linalg::GenericOp op = env.op();
|
|
if (tid >= op.getNumDpsInputs())
|
|
// We only handle affine expression on input tensors (for now).
|
|
return;
|
|
OpOperand *operand = &op->getOpOperand(tid);
|
|
auto enc = getSparseTensorEncoding(operand->get().getType());
|
|
// Non-annotated dense tensors requires no special handling.
|
|
if (!enc)
|
|
return;
|
|
|
|
ArrayRef<AffineExpr> affines =
|
|
op.getMatchingIndexingMap(operand).getResults();
|
|
assert(affines.size() == enc.getDimLevelType().size());
|
|
for (unsigned i = 0, e = affines.size(); i < e; i++) {
|
|
AffineExpr exp = affines[toOrigDim(enc, i)];
|
|
// Skip simple affine expression and non dense dimensions (which has
|
|
// it own filter loop).
|
|
if (exp.isa<AffineDimExpr>() || !isDenseDLT(getDimLevelType(enc, i)))
|
|
continue;
|
|
|
|
// Constant affine expression are handled in genLoop
|
|
if (!exp.isa<AffineConstantExpr>()) {
|
|
bool atLevel = false;
|
|
if (isInvariantAffine(env, exp, idx, atLevel) && atLevel) {
|
|
// If the compound affine is invariant and we are right at the
|
|
// level. We need to generate the address according to the affine
|
|
// expression. This is also the best place we can do it to avoid
|
|
// putting it inside inner loops.
|
|
// NOTE: It assumes that the levels of the input tensor are
|
|
// initialized in order (and it is also currently guaranteed by
|
|
// computeIterationGraph), another more admissible approach might be
|
|
// accepting out-of-order access between consecutive dense levels.
|
|
affineTids.push_back(tid);
|
|
affineDims.push_back(i);
|
|
exps.push_back(exp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
if (isDenseDLT(env.dlt(env.merger().getOutTensorID(), idx))) {
|
|
// Note that we generate dense indices of the output tensor
|
|
// unconditionally, since they may not appear in the lattice, but may be
|
|
// needed for linearized env.
|
|
auto dim = *env.merger().getDimNum(env.merger().getOutTensorID(), idx);
|
|
tids.push_back(env.merger().getOutTensorID());
|
|
dims.push_back(dim);
|
|
}
|
|
|
|
assert(numloopCond > 0);
|
|
// If we just need to one loop conditions, the loop can be generated by a for
|
|
// loop.
|
|
return numloopCond == 1;
|
|
}
|
|
|
|
/// Starts a single loop in current sequence.
|
|
static Operation *startLoop(CodegenEnv &env, OpBuilder &builder, unsigned at,
|
|
unsigned li, bool needsUniv) {
|
|
// The set of tensors + dims to generate loops on
|
|
SmallVector<size_t> tids, dims;
|
|
// The set of dense tensors with non-trivial affine expression that just
|
|
// becomes invariant and the address shall now be generated at the current
|
|
// level.
|
|
SmallVector<size_t> affineTids, affineDims;
|
|
SmallVector<AffineExpr> affines;
|
|
bool isFor = translateBitsToTidDimPairs(
|
|
env, li, env.topSortAt(at), tids, dims, affineTids, affineDims, affines);
|
|
|
|
// Emit the for/while-loop control.
|
|
Operation *loop = genLoop(env, builder, at, needsUniv, tids, dims, isFor);
|
|
for (auto [tid, dim, exp] : llvm::zip(affineTids, affineDims, affines)) {
|
|
env.emitter().genDenseAffineAddressAtCurLevel(builder, env.op().getLoc(),
|
|
tid, dim, exp);
|
|
}
|
|
|
|
// Until now, we have entered every <tid, dim> pair in {cond, extra,
|
|
// affine}Tids/Dims. The addresses of the upcoming levels which are dependent
|
|
// on constant affines expression may now be determined.
|
|
auto allTids = llvm::concat<size_t>(tids, affineTids);
|
|
auto allDims = llvm::concat<size_t>(dims, affineDims);
|
|
for (auto [tid, dim] : llvm::zip(allTids, allDims)) {
|
|
if (tid != env.merger().getOutTensorID())
|
|
genConstantDenseAddressFromLevel(env, builder, tid, dim + 1);
|
|
}
|
|
|
|
return loop;
|
|
}
|
|
|
|
/// Ends a single loop in current sequence. Returns new values for needsUniv.
|
|
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
|
|
unsigned idx, unsigned li, bool needsUniv) {
|
|
// End a while-loop.
|
|
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
|
|
finalizeWhileOp(env, rewriter, idx, needsUniv, env.lat(li).bits, whileOp);
|
|
} else {
|
|
needsUniv = false;
|
|
}
|
|
|
|
env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
|
|
return std::nullopt;
|
|
});
|
|
|
|
return needsUniv;
|
|
}
|
|
|
|
/// Ends a loop sequence at given level.
|
|
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
|
|
unsigned at, unsigned idx, unsigned ldx) {
|
|
assert(env.getLoopIdxValue(idx) == nullptr);
|
|
env.emitter().exitCurrentLoopSeq();
|
|
// Unmark bookkeeping of invariants and loop index.
|
|
genInvariants(env, builder, exp, ldx, /*atStart=*/false);
|
|
// Finalize access pattern expansion for sparse tensor output.
|
|
genExpand(env, builder, at, /*atStart=*/false);
|
|
}
|
|
|
|
/// Recursively generates code while computing iteration lattices in order
|
|
/// to manage the complexity of implementing co-iteration over unions
|
|
/// and intersections of sparse iterations spaces.
|
|
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, unsigned exp,
|
|
unsigned at) {
|
|
// At each leaf, assign remaining tensor (sub)expression to output tensor.
|
|
if (at == env.topSortSize()) {
|
|
unsigned ldx = env.topSortAt(at - 1);
|
|
Value rhs = genExp(env, rewriter, exp, ldx);
|
|
genTensorStore(env, rewriter, exp, rhs);
|
|
return;
|
|
}
|
|
|
|
// Construct iteration lattices for current loop index, with L0 at top.
|
|
unsigned idx = env.topSortAt(at);
|
|
unsigned ldx = at == 0 ? -1u : env.topSortAt(at - 1);
|
|
unsigned lts = env.merger().optimizeSet(env.merger().buildLattices(exp, idx));
|
|
|
|
// TODO: sort
|
|
// TODO: dedup
|
|
|
|
// Start a loop sequence.
|
|
bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);
|
|
|
|
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
|
|
unsigned lsize = env.set(lts).size();
|
|
for (unsigned i = 0; i < lsize; i++) {
|
|
// Start a loop.
|
|
unsigned li = env.set(lts)[i];
|
|
Operation *loop = startLoop(env, rewriter, at, li, needsUniv);
|
|
|
|
// Visit all lattices points with Li >= Lj to generate the
|
|
// loop-body, possibly with if statements for coiteration.
|
|
Value redInput = env.getReduc();
|
|
Value cntInput = env.getExpandCount();
|
|
Value insInput = env.getInsertionChain();
|
|
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
|
|
for (unsigned j = 0; j < lsize; j++) {
|
|
unsigned lj = env.set(lts)[j];
|
|
unsigned ej = env.lat(lj).exp;
|
|
if (li == lj || env.merger().latGT(li, lj)) {
|
|
// Recurse into body of each branch.
|
|
if (isWhile) {
|
|
scf::IfOp ifOp = genIf(env, rewriter, idx, env.lat(lj).simple);
|
|
genStmt(env, rewriter, ej, at + 1);
|
|
endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput);
|
|
} else {
|
|
genStmt(env, rewriter, ej, at + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// End a loop.
|
|
needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv);
|
|
}
|
|
|
|
// End a loop sequence.
|
|
endLoopSeq(env, rewriter, exp, at, idx, ldx);
|
|
}
|
|
|
|
/// Converts the result computed by the sparse kernel into the required form.
|
|
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
Value tensor = lhs->get();
|
|
Type resType = tensor.getType();
|
|
if (getSparseTensorEncoding(resType)) {
|
|
// The sparse tensor rematerializes from the original sparse tensor's
|
|
// underlying sparse storage format. For an insertion chain, the
|
|
// tensor materializes from the chain with 'hasInserts' enabled.
|
|
bool hasInserts = false;
|
|
if (Value chain = env.getInsertionChain()) {
|
|
hasInserts = true;
|
|
tensor = chain;
|
|
}
|
|
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
|
|
} else {
|
|
// To rematerialize an non-annotated tensor, simply load it
|
|
// from the bufferized value.
|
|
Value val = env.emitter().getValBuffer().back(); // value array
|
|
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler rewriting methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Sparse rewriting rule for generic Lingalg operation.
|
|
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
|
|
public:
|
|
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
|
|
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
|
|
|
|
LogicalResult matchAndRewrite(linalg::GenericOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Only accept single output operations.
|
|
if (op.getNumDpsInits() != 1)
|
|
return failure();
|
|
|
|
// Sets up a code generation environment.
|
|
unsigned numTensors = op->getNumOperands();
|
|
unsigned numLoops = op.getNumLoops();
|
|
unsigned numFilterLoops = getNumCompoundAffineOnSparseDims(op);
|
|
CodegenEnv env(op, options, numTensors, numLoops, numFilterLoops);
|
|
|
|
// Detects sparse annotations and translates the per-dimension sparsity
|
|
// information for all tensors to loop indices in the kernel.
|
|
if (!findSparseAnnotations(env))
|
|
return failure();
|
|
|
|
// Builds the tensor expression for the Linalg operation in SSA form.
|
|
Optional<unsigned> optExp = env.merger().buildTensorExpFromLinalg(op);
|
|
if (!optExp)
|
|
return failure();
|
|
unsigned exp = *optExp;
|
|
|
|
// Computes a topologically sorted iteration graph to ensure tensors
|
|
// are visited in natural index order. Gradually relaxes the considered
|
|
// constraints until an acyclic iteration graph results, such that sparse
|
|
// code generation can proceed. As a last resort, an attempt is made
|
|
// to resolve cycles by inserting a conversion.
|
|
bool isAdmissible = false;
|
|
bool hasCycle = true;
|
|
OpOperand *sparseOut = nullptr;
|
|
unsigned outerParNest = -1u;
|
|
// An const list of all masks that we used for interation graph
|
|
// computation. Must be ordered from more strict to less strict.
|
|
const auto allMask = {SortMask::kIncludeAll, SortMask::kIncludeUndef,
|
|
SortMask::kIncludeDense, SortMask::kSparseOnly};
|
|
for (auto mask : allMask)
|
|
if (computeIterationGraph(env, mask)) {
|
|
hasCycle = false;
|
|
if (isAdmissibleTensorExp(env, exp, &sparseOut, &outerParNest)) {
|
|
isAdmissible = true;
|
|
break;
|
|
}
|
|
// else try a set of less strict constraints.
|
|
}
|
|
if (hasCycle)
|
|
return resolveCycle(env, rewriter); // one last shot
|
|
if (!isAdmissible)
|
|
return failure(); // inadmissible expression, reject
|
|
|
|
// Recursively generates code if admissible.
|
|
env.startEmit(sparseOut, outerParNest);
|
|
genBuffers(env, rewriter);
|
|
genInitConstantDenseAddress(env, rewriter);
|
|
genStmt(env, rewriter, exp, 0);
|
|
genResult(env, rewriter);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
// Last resort cycle resolution.
|
|
LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
|
|
// Compute topological sort while leaving out every
|
|
// sparse input tensor in succession until an acylic
|
|
// iteration graph results.
|
|
for (OpOperand *t : env.op().getDpsInputOperands()) {
|
|
unsigned tensor = t->getOperandNumber();
|
|
Value tval = t->get();
|
|
auto srcEnc = getSparseTensorEncoding(tval.getType());
|
|
if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
|
|
continue;
|
|
// Found an input tensor that resolves the cycle by inserting a
|
|
// conversion into a sparse tensor that adheres to the iteration
|
|
// graph order. Also releases the temporary sparse tensor.
|
|
//
|
|
// TODO: investigate fusing the conversion with computation,
|
|
// especially if it is a direct yield!
|
|
//
|
|
auto srcTp = tval.getType().cast<RankedTensorType>();
|
|
auto dstEnc = SparseTensorEncodingAttr::get(
|
|
getContext(), srcEnc.getDimLevelType(),
|
|
permute(env, env.op().getMatchingIndexingMap(t)), // new order
|
|
srcEnc.getHigherOrdering(), srcEnc.getPointerBitWidth(),
|
|
srcEnc.getIndexBitWidth());
|
|
auto dstTp = RankedTensorType::get(srcTp.getShape(),
|
|
srcTp.getElementType(), dstEnc);
|
|
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
|
|
env.op()->setOperand(tensor, convert);
|
|
rewriter.setInsertionPointAfter(env.op());
|
|
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
|
|
return success();
|
|
}
|
|
// Cannot be resolved with a single conversion.
|
|
// TODO: convert more than one?
|
|
return failure();
|
|
}
|
|
|
|
/// Options to control sparse code generation.
|
|
SparsificationOptions options;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Populates the given patterns list with rewriting rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparsificationPatterns(
|
|
RewritePatternSet &patterns, const SparsificationOptions &options) {
|
|
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
|
|
}
|