The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
778 lines
32 KiB
C++
778 lines
32 KiB
C++
//===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert MLIR Func and builtin dialects
|
|
// into the LLVM IR dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
|
|
|
|
#include "mlir/Analysis/DataLayoutAnalysis.h"
|
|
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
|
|
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
|
|
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
|
|
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
|
|
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
|
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinAttributeInterfaces.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTFUNCTOLLVMPASS
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
#define PASS_NAME "convert-func-to-llvm"
|
|
|
|
static constexpr StringRef varargsAttrName = "func.varargs";
|
|
static constexpr StringRef linkageAttrName = "llvm.linkage";
|
|
static constexpr StringRef barePtrAttrName = "llvm.bareptr";
|
|
|
|
/// Return `true` if the `op` should use bare pointer calling convention.
|
|
static bool shouldUseBarePtrCallConv(Operation *op,
|
|
LLVMTypeConverter *typeConverter) {
|
|
return (op && op->hasAttr(barePtrAttrName)) ||
|
|
typeConverter->getOptions().useBarePtrCallConv;
|
|
}
|
|
|
|
/// Only retain those attributes that are not constructed by
|
|
/// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument
|
|
/// attributes.
|
|
static void filterFuncAttributes(func::FuncOp func, bool filterArgAndResAttrs,
|
|
SmallVectorImpl<NamedAttribute> &result) {
|
|
for (const NamedAttribute &attr : func->getAttrs()) {
|
|
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
|
|
attr.getName() == func.getFunctionTypeAttrName() ||
|
|
attr.getName() == linkageAttrName ||
|
|
attr.getName() == varargsAttrName ||
|
|
attr.getName() == LLVM::LLVMDialect::getReadnoneAttrName() ||
|
|
(filterArgAndResAttrs &&
|
|
(attr.getName() == func.getArgAttrsAttrName() ||
|
|
attr.getName() == func.getResAttrsAttrName())))
|
|
continue;
|
|
result.push_back(attr);
|
|
}
|
|
}
|
|
|
|
/// Adds a an empty set of argument attributes for the newly added argument in
|
|
/// front of the existing ones.
|
|
static void prependEmptyArgAttr(OpBuilder &builder,
|
|
SmallVectorImpl<NamedAttribute> &newFuncAttrs,
|
|
func::FuncOp func) {
|
|
auto argAttrs = func.getArgAttrs();
|
|
// Nothing to do when there were no arg attrs beforehand.
|
|
if (!argAttrs)
|
|
return;
|
|
|
|
size_t numArguments = func.getNumArguments();
|
|
SmallVector<Attribute> newArgAttrs;
|
|
newArgAttrs.reserve(numArguments + 1);
|
|
// Insert empty dictionary for the new argument.
|
|
newArgAttrs.push_back(builder.getDictionaryAttr({}));
|
|
|
|
llvm::append_range(newArgAttrs, *argAttrs);
|
|
auto newNamedAttr = builder.getNamedAttr(func.getArgAttrsAttrName(),
|
|
builder.getArrayAttr(newArgAttrs));
|
|
newFuncAttrs.push_back(newNamedAttr);
|
|
}
|
|
|
|
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
|
|
/// arguments instead of unpacked arguments. This function can be called from C
|
|
/// by passing a pointer to a C struct corresponding to a memref descriptor.
|
|
/// Similarly, returned memrefs are passed via pointers to a C struct that is
|
|
/// passed as additional argument.
|
|
/// Internally, the auxiliary function unpacks the descriptor into individual
|
|
/// components and forwards them to `newFuncOp` and forwards the results to
|
|
/// the extra arguments.
|
|
static void wrapForExternalCallers(OpBuilder &rewriter, Location loc,
|
|
LLVMTypeConverter &typeConverter,
|
|
func::FuncOp funcOp,
|
|
LLVM::LLVMFuncOp newFuncOp) {
|
|
auto type = funcOp.getFunctionType();
|
|
auto [wrapperFuncType, resultStructType] =
|
|
typeConverter.convertFunctionTypeCWrapper(type);
|
|
|
|
SmallVector<NamedAttribute, 4> attributes;
|
|
// Only modify the argument and result attributes when the result is now an
|
|
// argument.
|
|
if (resultStructType)
|
|
prependEmptyArgAttr(rewriter, attributes, funcOp);
|
|
filterFuncAttributes(
|
|
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
|
|
attributes);
|
|
auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
|
|
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
|
|
wrapperFuncType, LLVM::Linkage::External, /*dsoLocal*/ false,
|
|
/*cconv*/ LLVM::CConv::C, attributes);
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock());
|
|
|
|
SmallVector<Value, 8> args;
|
|
size_t argOffset = resultStructType ? 1 : 0;
|
|
for (auto [index, argType] : llvm::enumerate(type.getInputs())) {
|
|
Value arg = wrapperFuncOp.getArgument(index + argOffset);
|
|
if (auto memrefType = dyn_cast<MemRefType>(argType)) {
|
|
Value loaded = rewriter.create<LLVM::LoadOp>(
|
|
loc, typeConverter.convertType(memrefType), arg);
|
|
MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args);
|
|
continue;
|
|
}
|
|
if (isa<UnrankedMemRefType>(argType)) {
|
|
Value loaded = rewriter.create<LLVM::LoadOp>(
|
|
loc, typeConverter.convertType(argType), arg);
|
|
UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args);
|
|
continue;
|
|
}
|
|
|
|
args.push_back(arg);
|
|
}
|
|
|
|
auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args);
|
|
|
|
if (resultStructType) {
|
|
rewriter.create<LLVM::StoreOp>(loc, call.getResult(),
|
|
wrapperFuncOp.getArgument(0));
|
|
rewriter.create<LLVM::ReturnOp>(loc, ValueRange{});
|
|
} else {
|
|
rewriter.create<LLVM::ReturnOp>(loc, call.getResults());
|
|
}
|
|
}
|
|
|
|
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
|
|
/// arguments instead of unpacked arguments. Creates a body for the (external)
|
|
/// `newFuncOp` that allocates a memref descriptor on stack, packs the
|
|
/// individual arguments into this descriptor and passes a pointer to it into
|
|
/// the auxiliary function. If the result of the function cannot be directly
|
|
/// returned, we write it to a special first argument that provides a pointer
|
|
/// to a corresponding struct. This auxiliary external function is now
|
|
/// compatible with functions defined in C using pointers to C structs
|
|
/// corresponding to a memref descriptor.
|
|
static void wrapExternalFunction(OpBuilder &builder, Location loc,
|
|
LLVMTypeConverter &typeConverter,
|
|
func::FuncOp funcOp,
|
|
LLVM::LLVMFuncOp newFuncOp) {
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
|
|
auto [wrapperType, resultStructType] =
|
|
typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType());
|
|
// This conversion can only fail if it could not convert one of the argument
|
|
// types. But since it has been applied to a non-wrapper function before, it
|
|
// should have failed earlier and not reach this point at all.
|
|
assert(wrapperType && "unexpected type conversion failure");
|
|
|
|
SmallVector<NamedAttribute, 4> attributes;
|
|
// Only modify the argument and result attributes when the result is now an
|
|
// argument.
|
|
if (resultStructType)
|
|
prependEmptyArgAttr(builder, attributes, funcOp);
|
|
filterFuncAttributes(
|
|
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
|
|
attributes);
|
|
|
|
// Create the auxiliary function.
|
|
auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>(
|
|
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
|
|
wrapperType, LLVM::Linkage::External, /*dsoLocal*/ false,
|
|
/*cconv*/ LLVM::CConv::C, attributes);
|
|
|
|
builder.setInsertionPointToStart(newFuncOp.addEntryBlock());
|
|
|
|
// Get a ValueRange containing arguments.
|
|
FunctionType type = funcOp.getFunctionType();
|
|
SmallVector<Value, 8> args;
|
|
args.reserve(type.getNumInputs());
|
|
ValueRange wrapperArgsRange(newFuncOp.getArguments());
|
|
|
|
if (resultStructType) {
|
|
// Allocate the struct on the stack and pass the pointer.
|
|
Type resultType = cast<LLVM::LLVMFunctionType>(wrapperType).getParamType(0);
|
|
Value one = builder.create<LLVM::ConstantOp>(
|
|
loc, typeConverter.convertType(builder.getIndexType()),
|
|
builder.getIntegerAttr(builder.getIndexType(), 1));
|
|
Value result =
|
|
builder.create<LLVM::AllocaOp>(loc, resultType, resultStructType, one);
|
|
args.push_back(result);
|
|
}
|
|
|
|
// Iterate over the inputs of the original function and pack values into
|
|
// memref descriptors if the original type is a memref.
|
|
for (Type input : type.getInputs()) {
|
|
Value arg;
|
|
int numToDrop = 1;
|
|
auto memRefType = dyn_cast<MemRefType>(input);
|
|
auto unrankedMemRefType = dyn_cast<UnrankedMemRefType>(input);
|
|
if (memRefType || unrankedMemRefType) {
|
|
numToDrop = memRefType
|
|
? MemRefDescriptor::getNumUnpackedValues(memRefType)
|
|
: UnrankedMemRefDescriptor::getNumUnpackedValues();
|
|
Value packed =
|
|
memRefType
|
|
? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType,
|
|
wrapperArgsRange.take_front(numToDrop))
|
|
: UnrankedMemRefDescriptor::pack(
|
|
builder, loc, typeConverter, unrankedMemRefType,
|
|
wrapperArgsRange.take_front(numToDrop));
|
|
|
|
auto ptrTy = typeConverter.getPointerType(packed.getType());
|
|
Value one = builder.create<LLVM::ConstantOp>(
|
|
loc, typeConverter.convertType(builder.getIndexType()),
|
|
builder.getIntegerAttr(builder.getIndexType(), 1));
|
|
Value allocated = builder.create<LLVM::AllocaOp>(
|
|
loc, ptrTy, packed.getType(), one, /*alignment=*/0);
|
|
builder.create<LLVM::StoreOp>(loc, packed, allocated);
|
|
arg = allocated;
|
|
} else {
|
|
arg = wrapperArgsRange[0];
|
|
}
|
|
|
|
args.push_back(arg);
|
|
wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop);
|
|
}
|
|
assert(wrapperArgsRange.empty() && "did not map some of the arguments");
|
|
|
|
auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args);
|
|
|
|
if (resultStructType) {
|
|
Value result =
|
|
builder.create<LLVM::LoadOp>(loc, resultStructType, args.front());
|
|
builder.create<LLVM::ReturnOp>(loc, result);
|
|
} else {
|
|
builder.create<LLVM::ReturnOp>(loc, call.getResults());
|
|
}
|
|
}
|
|
|
|
/// Modifies the body of the function to construct the `MemRefDescriptor` from
|
|
/// the bare pointer calling convention lowering of `memref` types.
|
|
static void modifyFuncOpToUseBarePtrCallingConv(
|
|
ConversionPatternRewriter &rewriter, Location loc,
|
|
LLVMTypeConverter &typeConverter, LLVM::LLVMFuncOp funcOp,
|
|
TypeRange oldArgTypes) {
|
|
if (funcOp.getBody().empty())
|
|
return;
|
|
|
|
// Promote bare pointers from memref arguments to memref descriptors at the
|
|
// beginning of the function so that all the memrefs in the function have a
|
|
// uniform representation.
|
|
Block *entryBlock = &funcOp.getBody().front();
|
|
auto blockArgs = entryBlock->getArguments();
|
|
assert(blockArgs.size() == oldArgTypes.size() &&
|
|
"The number of arguments and types doesn't match");
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(entryBlock);
|
|
for (auto it : llvm::zip(blockArgs, oldArgTypes)) {
|
|
BlockArgument arg = std::get<0>(it);
|
|
Type argTy = std::get<1>(it);
|
|
|
|
// Unranked memrefs are not supported in the bare pointer calling
|
|
// convention. We should have bailed out before in the presence of
|
|
// unranked memrefs.
|
|
assert(!isa<UnrankedMemRefType>(argTy) &&
|
|
"Unranked memref is not supported");
|
|
auto memrefTy = dyn_cast<MemRefType>(argTy);
|
|
if (!memrefTy)
|
|
continue;
|
|
|
|
// Replace barePtr with a placeholder (undef), promote barePtr to a ranked
|
|
// or unranked memref descriptor and replace placeholder with the last
|
|
// instruction of the memref descriptor.
|
|
// TODO: The placeholder is needed to avoid replacing barePtr uses in the
|
|
// MemRef descriptor instructions. We may want to have a utility in the
|
|
// rewriter to properly handle this use case.
|
|
Location loc = funcOp.getLoc();
|
|
auto placeholder = rewriter.create<LLVM::UndefOp>(
|
|
loc, typeConverter.convertType(memrefTy));
|
|
rewriter.replaceUsesOfBlockArgument(arg, placeholder);
|
|
|
|
Value desc = MemRefDescriptor::fromStaticShape(rewriter, loc, typeConverter,
|
|
memrefTy, arg);
|
|
rewriter.replaceOp(placeholder, {desc});
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct FuncOpConversionBase : public ConvertOpToLLVMPattern<func::FuncOp> {
|
|
protected:
|
|
using ConvertOpToLLVMPattern<func::FuncOp>::ConvertOpToLLVMPattern;
|
|
|
|
// Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided
|
|
// to this legalization pattern.
|
|
LLVM::LLVMFuncOp
|
|
convertFuncOpToLLVMFuncOp(func::FuncOp funcOp,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// Convert the original function arguments. They are converted using the
|
|
// LLVMTypeConverter provided to this legalization pattern.
|
|
auto varargsAttr = funcOp->getAttrOfType<BoolAttr>(varargsAttrName);
|
|
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
|
|
auto llvmType = getTypeConverter()->convertFunctionSignature(
|
|
funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(),
|
|
shouldUseBarePtrCallConv(funcOp, getTypeConverter()), result);
|
|
if (!llvmType)
|
|
return nullptr;
|
|
|
|
// Propagate argument/result attributes to all converted arguments/result
|
|
// obtained after converting a given original argument/result.
|
|
SmallVector<NamedAttribute, 4> attributes;
|
|
filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/true, attributes);
|
|
if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) {
|
|
assert(!resAttrDicts.empty() && "expected array to be non-empty");
|
|
auto newResAttrDicts =
|
|
(funcOp.getNumResults() == 1)
|
|
? resAttrDicts
|
|
: rewriter.getArrayAttr(rewriter.getDictionaryAttr({}));
|
|
attributes.push_back(
|
|
rewriter.getNamedAttr(funcOp.getResAttrsAttrName(), newResAttrDicts));
|
|
}
|
|
if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) {
|
|
SmallVector<Attribute, 4> newArgAttrs(
|
|
cast<LLVM::LLVMFunctionType>(llvmType).getNumParams());
|
|
for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
|
|
// Some LLVM IR attribute have a type attached to them. During FuncOp ->
|
|
// LLVMFuncOp conversion these types may have changed. Account for that
|
|
// change by converting attributes' types as well.
|
|
SmallVector<NamedAttribute, 4> convertedAttrs;
|
|
auto attrsDict = cast<DictionaryAttr>(argAttrDicts[i]);
|
|
convertedAttrs.reserve(attrsDict.size());
|
|
for (const NamedAttribute &attr : attrsDict) {
|
|
const auto convert = [&](const NamedAttribute &attr) {
|
|
return TypeAttr::get(getTypeConverter()->convertType(
|
|
cast<TypeAttr>(attr.getValue()).getValue()));
|
|
};
|
|
if (attr.getName().getValue() ==
|
|
LLVM::LLVMDialect::getByValAttrName()) {
|
|
convertedAttrs.push_back(rewriter.getNamedAttr(
|
|
LLVM::LLVMDialect::getByValAttrName(), convert(attr)));
|
|
} else if (attr.getName().getValue() ==
|
|
LLVM::LLVMDialect::getByRefAttrName()) {
|
|
convertedAttrs.push_back(rewriter.getNamedAttr(
|
|
LLVM::LLVMDialect::getByRefAttrName(), convert(attr)));
|
|
} else if (attr.getName().getValue() ==
|
|
LLVM::LLVMDialect::getStructRetAttrName()) {
|
|
convertedAttrs.push_back(rewriter.getNamedAttr(
|
|
LLVM::LLVMDialect::getStructRetAttrName(), convert(attr)));
|
|
} else if (attr.getName().getValue() ==
|
|
LLVM::LLVMDialect::getInAllocaAttrName()) {
|
|
convertedAttrs.push_back(rewriter.getNamedAttr(
|
|
LLVM::LLVMDialect::getInAllocaAttrName(), convert(attr)));
|
|
} else {
|
|
convertedAttrs.push_back(attr);
|
|
}
|
|
}
|
|
auto mapping = result.getInputMapping(i);
|
|
assert(mapping && "unexpected deletion of function argument");
|
|
// Only attach the new argument attributes if there is a one-to-one
|
|
// mapping from old to new types. Otherwise, attributes might be
|
|
// attached to types that they do not support.
|
|
if (mapping->size == 1) {
|
|
newArgAttrs[mapping->inputNo] =
|
|
DictionaryAttr::get(rewriter.getContext(), convertedAttrs);
|
|
continue;
|
|
}
|
|
// TODO: Implement custom handling for types that expand to multiple
|
|
// function arguments.
|
|
for (size_t j = 0; j < mapping->size; ++j)
|
|
newArgAttrs[mapping->inputNo + j] =
|
|
DictionaryAttr::get(rewriter.getContext(), {});
|
|
}
|
|
attributes.push_back(rewriter.getNamedAttr(
|
|
funcOp.getArgAttrsAttrName(), rewriter.getArrayAttr(newArgAttrs)));
|
|
}
|
|
|
|
// Create an LLVM function, use external linkage by default until MLIR
|
|
// functions have linkage.
|
|
LLVM::Linkage linkage = LLVM::Linkage::External;
|
|
if (funcOp->hasAttr(linkageAttrName)) {
|
|
auto attr =
|
|
dyn_cast<mlir::LLVM::LinkageAttr>(funcOp->getAttr(linkageAttrName));
|
|
if (!attr) {
|
|
funcOp->emitError() << "Contains " << linkageAttrName
|
|
<< " attribute not of type LLVM::LinkageAttr";
|
|
return nullptr;
|
|
}
|
|
linkage = attr.getLinkage();
|
|
}
|
|
|
|
// Create a memory effect attribute corresponding to readnone.
|
|
StringRef readnoneAttrName = LLVM::LLVMDialect::getReadnoneAttrName();
|
|
LLVM::MemoryEffectsAttr memoryAttr = {};
|
|
if (funcOp->hasAttr(readnoneAttrName)) {
|
|
auto attr = funcOp->getAttrOfType<UnitAttr>(readnoneAttrName);
|
|
if (!attr) {
|
|
funcOp->emitError() << "Contains " << readnoneAttrName
|
|
<< " attribute not of type UnitAttr";
|
|
return nullptr;
|
|
}
|
|
memoryAttr = LLVM::MemoryEffectsAttr::get(rewriter.getContext(),
|
|
{LLVM::ModRefInfo::NoModRef,
|
|
LLVM::ModRefInfo::NoModRef,
|
|
LLVM::ModRefInfo::NoModRef});
|
|
}
|
|
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
|
|
funcOp.getLoc(), funcOp.getName(), llvmType, linkage,
|
|
/*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes);
|
|
// If the memory attribute was created, add it to the function.
|
|
if (memoryAttr)
|
|
newFuncOp.setMemoryAttr(memoryAttr);
|
|
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
|
|
newFuncOp.end());
|
|
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter,
|
|
&result)))
|
|
return nullptr;
|
|
|
|
return newFuncOp;
|
|
}
|
|
};
|
|
|
|
/// FuncOp legalization pattern that converts MemRef arguments to pointers to
|
|
/// MemRef descriptors (LLVM struct data types) containing all the MemRef type
|
|
/// information.
|
|
struct FuncOpConversion : public FuncOpConversionBase {
|
|
FuncOpConversion(LLVMTypeConverter &converter)
|
|
: FuncOpConversionBase(converter) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
|
|
if (!newFuncOp)
|
|
return failure();
|
|
|
|
if (!shouldUseBarePtrCallConv(funcOp, this->getTypeConverter())) {
|
|
if (funcOp->getAttrOfType<UnitAttr>(
|
|
LLVM::LLVMDialect::getEmitCWrapperAttrName())) {
|
|
if (newFuncOp.isVarArg())
|
|
return funcOp->emitError("C interface for variadic functions is not "
|
|
"supported yet.");
|
|
|
|
if (newFuncOp.isExternal())
|
|
wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(),
|
|
funcOp, newFuncOp);
|
|
else
|
|
wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(),
|
|
funcOp, newFuncOp);
|
|
}
|
|
} else {
|
|
modifyFuncOpToUseBarePtrCallingConv(rewriter, funcOp.getLoc(),
|
|
*getTypeConverter(), newFuncOp,
|
|
funcOp.getFunctionType().getInputs());
|
|
}
|
|
|
|
rewriter.eraseOp(funcOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> {
|
|
using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto type = typeConverter->convertType(op.getResult().getType());
|
|
if (!type || !LLVM::isCompatibleType(type))
|
|
return rewriter.notifyMatchFailure(op, "failed to convert result type");
|
|
|
|
auto newOp =
|
|
rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue());
|
|
for (const NamedAttribute &attr : op->getAttrs()) {
|
|
if (attr.getName().strref() == "value")
|
|
continue;
|
|
newOp->setAttr(attr.getName(), attr.getValue());
|
|
}
|
|
rewriter.replaceOp(op, newOp->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
|
|
// passes the pointer to the MemRef across function boundaries.
|
|
template <typename CallOpType>
|
|
struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> {
|
|
using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern;
|
|
using Super = CallOpInterfaceLowering<CallOpType>;
|
|
using Base = ConvertOpToLLVMPattern<CallOpType>;
|
|
|
|
LogicalResult matchAndRewriteImpl(CallOpType callOp,
|
|
typename CallOpType::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter,
|
|
bool useBarePtrCallConv = false) const {
|
|
// Pack the result types into a struct.
|
|
Type packedResult = nullptr;
|
|
unsigned numResults = callOp.getNumResults();
|
|
auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
|
|
|
|
if (numResults != 0) {
|
|
if (!(packedResult = this->getTypeConverter()->packFunctionResults(
|
|
resultTypes, useBarePtrCallConv)))
|
|
return failure();
|
|
}
|
|
|
|
if (useBarePtrCallConv) {
|
|
for (auto it : callOp->getOperands()) {
|
|
Type operandType = it.getType();
|
|
if (isa<UnrankedMemRefType>(operandType)) {
|
|
// Unranked memref is not supported in the bare pointer calling
|
|
// convention.
|
|
return failure();
|
|
}
|
|
}
|
|
}
|
|
auto promoted = this->getTypeConverter()->promoteOperands(
|
|
callOp.getLoc(), /*opOperands=*/callOp->getOperands(),
|
|
adaptor.getOperands(), rewriter, useBarePtrCallConv);
|
|
auto newOp = rewriter.create<LLVM::CallOp>(
|
|
callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(),
|
|
promoted, callOp->getAttrs());
|
|
|
|
SmallVector<Value, 4> results;
|
|
if (numResults < 2) {
|
|
// If < 2 results, packing did not do anything and we can just return.
|
|
results.append(newOp.result_begin(), newOp.result_end());
|
|
} else {
|
|
// Otherwise, it had been converted to an operation producing a structure.
|
|
// Extract individual results from the structure and return them as list.
|
|
results.reserve(numResults);
|
|
for (unsigned i = 0; i < numResults; ++i) {
|
|
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
|
|
callOp.getLoc(), newOp->getResult(0), i));
|
|
}
|
|
}
|
|
|
|
if (useBarePtrCallConv) {
|
|
// For the bare-ptr calling convention, promote memref results to
|
|
// descriptors.
|
|
assert(results.size() == resultTypes.size() &&
|
|
"The number of arguments and types doesn't match");
|
|
this->getTypeConverter()->promoteBarePtrsToDescriptors(
|
|
rewriter, callOp.getLoc(), resultTypes, results);
|
|
} else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(),
|
|
resultTypes, results,
|
|
/*toDynamic=*/false))) {
|
|
return failure();
|
|
}
|
|
|
|
rewriter.replaceOp(callOp, results);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct CallOpLowering : public CallOpInterfaceLowering<func::CallOp> {
|
|
using Super::Super;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(func::CallOp callOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
bool useBarePtrCallConv = false;
|
|
if (Operation *callee = SymbolTable::lookupNearestSymbolFrom(
|
|
callOp, callOp.getCalleeAttr())) {
|
|
useBarePtrCallConv = shouldUseBarePtrCallConv(callee, getTypeConverter());
|
|
}
|
|
return matchAndRewriteImpl(callOp, adaptor, rewriter, useBarePtrCallConv);
|
|
}
|
|
};
|
|
|
|
struct CallIndirectOpLowering
|
|
: public CallOpInterfaceLowering<func::CallIndirectOp> {
|
|
using Super::Super;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(func::CallIndirectOp callIndirectOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
return matchAndRewriteImpl(callIndirectOp, adaptor, rewriter);
|
|
}
|
|
};
|
|
|
|
struct UnrealizedConversionCastOpLowering
|
|
: public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> {
|
|
using ConvertOpToLLVMPattern<
|
|
UnrealizedConversionCastOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SmallVector<Type> convertedTypes;
|
|
if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(),
|
|
convertedTypes)) &&
|
|
convertedTypes == adaptor.getInputs().getTypes()) {
|
|
rewriter.replaceOp(op, adaptor.getInputs());
|
|
return success();
|
|
}
|
|
|
|
convertedTypes.clear();
|
|
if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(),
|
|
convertedTypes)) &&
|
|
convertedTypes == op.getOutputs().getType()) {
|
|
rewriter.replaceOp(op, adaptor.getInputs());
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
// Special lowering pattern for `ReturnOps`. Unlike all other operations,
|
|
// `ReturnOp` interacts with the function signature and must have as many
|
|
// operands as the function has return values. Because in LLVM IR, functions
|
|
// can only return 0 or 1 value, we pack multiple values into a structure type.
|
|
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
|
|
// necessary before returning it
|
|
struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> {
|
|
using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
unsigned numArguments = op.getNumOperands();
|
|
SmallVector<Value, 4> updatedOperands;
|
|
|
|
auto funcOp = op->getParentOfType<LLVM::LLVMFuncOp>();
|
|
bool useBarePtrCallConv =
|
|
shouldUseBarePtrCallConv(funcOp, this->getTypeConverter());
|
|
if (useBarePtrCallConv) {
|
|
// For the bare-ptr calling convention, extract the aligned pointer to
|
|
// be returned from the memref descriptor.
|
|
for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) {
|
|
Type oldTy = std::get<0>(it).getType();
|
|
Value newOperand = std::get<1>(it);
|
|
if (isa<MemRefType>(oldTy) && getTypeConverter()->canConvertToBarePtr(
|
|
cast<BaseMemRefType>(oldTy))) {
|
|
MemRefDescriptor memrefDesc(newOperand);
|
|
newOperand = memrefDesc.allocatedPtr(rewriter, loc);
|
|
} else if (isa<UnrankedMemRefType>(oldTy)) {
|
|
// Unranked memref is not supported in the bare pointer calling
|
|
// convention.
|
|
return failure();
|
|
}
|
|
updatedOperands.push_back(newOperand);
|
|
}
|
|
} else {
|
|
updatedOperands = llvm::to_vector<4>(adaptor.getOperands());
|
|
(void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(),
|
|
updatedOperands,
|
|
/*toDynamic=*/true);
|
|
}
|
|
|
|
// If ReturnOp has 0 or 1 operand, create it and return immediately.
|
|
if (numArguments <= 1) {
|
|
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
|
|
op, TypeRange(), updatedOperands, op->getAttrs());
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to pack the arguments into an LLVM struct type before
|
|
// returning.
|
|
auto packedType = getTypeConverter()->packFunctionResults(
|
|
op.getOperandTypes(), useBarePtrCallConv);
|
|
if (!packedType) {
|
|
return rewriter.notifyMatchFailure(op, "could not convert result types");
|
|
}
|
|
|
|
Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType);
|
|
for (auto [idx, operand] : llvm::enumerate(updatedOperands)) {
|
|
packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, operand, idx);
|
|
}
|
|
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed,
|
|
op->getAttrs());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::populateFuncToLLVMFuncOpConversionPattern(
|
|
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
|
|
patterns.add<FuncOpConversion>(converter);
|
|
}
|
|
|
|
void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter,
|
|
RewritePatternSet &patterns) {
|
|
populateFuncToLLVMFuncOpConversionPattern(converter, patterns);
|
|
// clang-format off
|
|
patterns.add<
|
|
CallIndirectOpLowering,
|
|
CallOpLowering,
|
|
ConstantOpLowering,
|
|
ReturnOpLowering>(converter);
|
|
// clang-format on
|
|
}
|
|
|
|
namespace {
|
|
/// A pass converting Func operations into the LLVM IR dialect.
|
|
struct ConvertFuncToLLVMPass
|
|
: public impl::ConvertFuncToLLVMPassBase<ConvertFuncToLLVMPass> {
|
|
using Base::Base;
|
|
|
|
/// Run the dialect converter on the module.
|
|
void runOnOperation() override {
|
|
if (failed(LLVM::LLVMDialect::verifyDataLayoutString(
|
|
this->dataLayout, [this](const Twine &message) {
|
|
getOperation().emitError() << message.str();
|
|
}))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
|
|
ModuleOp m = getOperation();
|
|
const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
|
|
|
|
LowerToLLVMOptions options(&getContext(),
|
|
dataLayoutAnalysis.getAtOrAbove(m));
|
|
options.useBarePtrCallConv = useBarePtrCallConv;
|
|
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
|
|
options.overrideIndexBitwidth(indexBitwidth);
|
|
options.dataLayout = llvm::DataLayout(this->dataLayout);
|
|
options.useOpaquePointers = useOpaquePointers;
|
|
|
|
LLVMTypeConverter typeConverter(&getContext(), options,
|
|
&dataLayoutAnalysis);
|
|
|
|
RewritePatternSet patterns(&getContext());
|
|
populateFuncToLLVMConversionPatterns(typeConverter, patterns);
|
|
|
|
// TODO: Remove these in favor of their dedicated conversion passes.
|
|
arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
|
|
cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns);
|
|
|
|
LLVMConversionTarget target(getContext());
|
|
if (failed(applyPartialConversion(m, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
|
|
m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(),
|
|
StringAttr::get(m.getContext(), this->dataLayout));
|
|
}
|
|
};
|
|
} // namespace
|