The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
1005 lines
41 KiB
C++
1005 lines
41 KiB
C++
//===- PredicateTree.cpp - Predicate tree merging -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PredicateTree.h"
|
|
#include "RootOrdering.h"
|
|
|
|
#include "mlir/Dialect/PDL/IR/PDL.h"
|
|
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
|
|
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <queue>
|
|
|
|
#define DEBUG_TYPE "pdl-predicate-tree"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::pdl_to_pdl_interp;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Predicate List Building
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
Position *pos);
|
|
|
|
/// Compares the depths of two positions.
|
|
static bool comparePosDepth(Position *lhs, Position *rhs) {
|
|
return lhs->getOperationDepth() < rhs->getOperationDepth();
|
|
}
|
|
|
|
/// Returns the number of non-range elements within `values`.
|
|
static unsigned getNumNonRangeValues(ValueRange values) {
|
|
return llvm::count_if(values.getTypes(),
|
|
[](Type type) { return !isa<pdl::RangeType>(type); });
|
|
}
|
|
|
|
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
AttributePosition *pos) {
|
|
assert(isa<pdl::AttributeType>(val.getType()) && "expected attribute type");
|
|
pdl::AttributeOp attr = cast<pdl::AttributeOp>(val.getDefiningOp());
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// If the attribute has a type or value, add a constraint.
|
|
if (Value type = attr.getValueType())
|
|
getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
|
|
else if (Attribute value = attr.getValueAttr())
|
|
predList.emplace_back(pos, builder.getAttributeConstraint(value));
|
|
}
|
|
|
|
/// Collect all of the predicates for the given operand position.
|
|
static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
Position *pos) {
|
|
Type valueType = val.getType();
|
|
bool isVariadic = isa<pdl::RangeType>(valueType);
|
|
|
|
// If this is a typed operand, add a type constraint.
|
|
TypeSwitch<Operation *>(val.getDefiningOp())
|
|
.Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) {
|
|
// Prevent traversal into a null value if the operand has a proper
|
|
// index.
|
|
if (std::is_same<pdl::OperandOp, decltype(op)>::value ||
|
|
cast<OperandGroupPosition>(pos)->getOperandGroupNumber())
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
if (Value type = op.getValueType())
|
|
getTreePredicates(predList, type, builder, inputs,
|
|
builder.getType(pos));
|
|
})
|
|
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) {
|
|
std::optional<unsigned> index = op.getIndex();
|
|
|
|
// Prevent traversal into a null value if the result has a proper index.
|
|
if (index)
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// Get the parent operation of this operand.
|
|
OperationPosition *parentPos = builder.getOperandDefiningOp(pos);
|
|
predList.emplace_back(parentPos, builder.getIsNotNull());
|
|
|
|
// Ensure that the operands match the corresponding results of the
|
|
// parent operation.
|
|
Position *resultPos = nullptr;
|
|
if (std::is_same<pdl::ResultOp, decltype(op)>::value)
|
|
resultPos = builder.getResult(parentPos, *index);
|
|
else
|
|
resultPos = builder.getResultGroup(parentPos, index, isVariadic);
|
|
predList.emplace_back(resultPos, builder.getEqualTo(pos));
|
|
|
|
// Collect the predicates of the parent operation.
|
|
getTreePredicates(predList, op.getParent(), builder, inputs,
|
|
(Position *)parentPos);
|
|
});
|
|
}
|
|
|
|
static void
|
|
getTreePredicates(std::vector<PositionalPredicate> &predList, Value val,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs, OperationPosition *pos,
|
|
std::optional<unsigned> ignoreOperand = std::nullopt) {
|
|
assert(isa<pdl::OperationType>(val.getType()) && "expected operation");
|
|
pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
|
|
OperationPosition *opPos = cast<OperationPosition>(pos);
|
|
|
|
// Ensure getDefiningOp returns a non-null operation.
|
|
if (!opPos->isRoot())
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// Check that this is the correct root operation.
|
|
if (std::optional<StringRef> opName = op.getOpName())
|
|
predList.emplace_back(pos, builder.getOperationName(*opName));
|
|
|
|
// Check that the operation has the proper number of operands. If there are
|
|
// any variable length operands, we check a minimum instead of an exact count.
|
|
OperandRange operands = op.getOperandValues();
|
|
unsigned minOperands = getNumNonRangeValues(operands);
|
|
if (minOperands != operands.size()) {
|
|
if (minOperands)
|
|
predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands));
|
|
} else {
|
|
predList.emplace_back(pos, builder.getOperandCount(minOperands));
|
|
}
|
|
|
|
// Check that the operation has the proper number of results. If there are
|
|
// any variable length results, we check a minimum instead of an exact count.
|
|
OperandRange types = op.getTypeValues();
|
|
unsigned minResults = getNumNonRangeValues(types);
|
|
if (minResults == types.size())
|
|
predList.emplace_back(pos, builder.getResultCount(types.size()));
|
|
else if (minResults)
|
|
predList.emplace_back(pos, builder.getResultCountAtLeast(minResults));
|
|
|
|
// Recurse into any attributes, operands, or results.
|
|
for (auto [attrName, attr] :
|
|
llvm::zip(op.getAttributeValueNames(), op.getAttributeValues())) {
|
|
getTreePredicates(
|
|
predList, attr, builder, inputs,
|
|
builder.getAttribute(opPos, cast<StringAttr>(attrName).getValue()));
|
|
}
|
|
|
|
// Process the operands and results of the operation. For all values up to
|
|
// the first variable length value, we use the concrete operand/result
|
|
// number. After that, we use the "group" given that we can't know the
|
|
// concrete indices until runtime. If there is only one variadic operand
|
|
// group, we treat it as all of the operands/results of the operation.
|
|
/// Operands.
|
|
if (operands.size() == 1 && isa<pdl::RangeType>(operands[0].getType())) {
|
|
// Ignore the operands if we are performing an upward traversal (in that
|
|
// case, they have already been visited).
|
|
if (opPos->isRoot() || opPos->isOperandDefiningOp())
|
|
getTreePredicates(predList, operands.front(), builder, inputs,
|
|
builder.getAllOperands(opPos));
|
|
} else {
|
|
bool foundVariableLength = false;
|
|
for (const auto &operandIt : llvm::enumerate(operands)) {
|
|
bool isVariadic = isa<pdl::RangeType>(operandIt.value().getType());
|
|
foundVariableLength |= isVariadic;
|
|
|
|
// Ignore the specified operand, usually because this position was
|
|
// visited in an upward traversal via an iterative choice.
|
|
if (ignoreOperand && *ignoreOperand == operandIt.index())
|
|
continue;
|
|
|
|
Position *pos =
|
|
foundVariableLength
|
|
? builder.getOperandGroup(opPos, operandIt.index(), isVariadic)
|
|
: builder.getOperand(opPos, operandIt.index());
|
|
getTreePredicates(predList, operandIt.value(), builder, inputs, pos);
|
|
}
|
|
}
|
|
/// Results.
|
|
if (types.size() == 1 && isa<pdl::RangeType>(types[0].getType())) {
|
|
getTreePredicates(predList, types.front(), builder, inputs,
|
|
builder.getType(builder.getAllResults(opPos)));
|
|
return;
|
|
}
|
|
|
|
bool foundVariableLength = false;
|
|
for (auto [idx, typeValue] : llvm::enumerate(types)) {
|
|
bool isVariadic = isa<pdl::RangeType>(typeValue.getType());
|
|
foundVariableLength |= isVariadic;
|
|
|
|
auto *resultPos = foundVariableLength
|
|
? builder.getResultGroup(pos, idx, isVariadic)
|
|
: builder.getResult(pos, idx);
|
|
predList.emplace_back(resultPos, builder.getIsNotNull());
|
|
getTreePredicates(predList, typeValue, builder, inputs,
|
|
builder.getType(resultPos));
|
|
}
|
|
}
|
|
|
|
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
TypePosition *pos) {
|
|
// Check for a constraint on a constant type.
|
|
if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) {
|
|
if (Attribute type = typeOp.getConstantTypeAttr())
|
|
predList.emplace_back(pos, builder.getTypeConstraint(type));
|
|
} else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) {
|
|
if (Attribute typeAttr = typeOp.getConstantTypesAttr())
|
|
predList.emplace_back(pos, builder.getTypeConstraint(typeAttr));
|
|
}
|
|
}
|
|
|
|
/// Collect the tree predicates anchored at the given value.
|
|
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
Position *pos) {
|
|
// Make sure this input value is accessible to the rewrite.
|
|
auto it = inputs.try_emplace(val, pos);
|
|
if (!it.second) {
|
|
// If this is an input value that has been visited in the tree, add a
|
|
// constraint to ensure that both instances refer to the same value.
|
|
if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp,
|
|
pdl::TypeOp>(val.getDefiningOp())) {
|
|
auto minMaxPositions =
|
|
std::minmax(pos, it.first->second, comparePosDepth);
|
|
predList.emplace_back(minMaxPositions.second,
|
|
builder.getEqualTo(minMaxPositions.first));
|
|
}
|
|
return;
|
|
}
|
|
|
|
TypeSwitch<Position *>(pos)
|
|
.Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) {
|
|
getTreePredicates(predList, val, builder, inputs, pos);
|
|
})
|
|
.Case<OperandPosition, OperandGroupPosition>([&](auto *pos) {
|
|
getOperandTreePredicates(predList, val, builder, inputs, pos);
|
|
})
|
|
.Default([](auto *) { llvm_unreachable("unexpected position kind"); });
|
|
}
|
|
|
|
static void getAttributePredicates(pdl::AttributeOp op,
|
|
std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
Position *&attrPos = inputs[op];
|
|
if (attrPos)
|
|
return;
|
|
Attribute value = op.getValueAttr();
|
|
assert(value && "expected non-tree `pdl.attribute` to contain a value");
|
|
attrPos = builder.getAttributeLiteral(value);
|
|
}
|
|
|
|
static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op,
|
|
std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
OperandRange arguments = op.getArgs();
|
|
|
|
std::vector<Position *> allPositions;
|
|
allPositions.reserve(arguments.size());
|
|
for (Value arg : arguments)
|
|
allPositions.push_back(inputs.lookup(arg));
|
|
|
|
// Push the constraint to the furthest position.
|
|
Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
|
|
comparePosDepth);
|
|
PredicateBuilder::Predicate pred =
|
|
builder.getConstraint(op.getName(), allPositions);
|
|
predList.emplace_back(pos, pred);
|
|
}
|
|
|
|
static void getResultPredicates(pdl::ResultOp op,
|
|
std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
Position *&resultPos = inputs[op];
|
|
if (resultPos)
|
|
return;
|
|
|
|
// Ensure that the result isn't null.
|
|
auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
|
|
resultPos = builder.getResult(parentPos, op.getIndex());
|
|
predList.emplace_back(resultPos, builder.getIsNotNull());
|
|
}
|
|
|
|
static void getResultPredicates(pdl::ResultsOp op,
|
|
std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
Position *&resultPos = inputs[op];
|
|
if (resultPos)
|
|
return;
|
|
|
|
// Ensure that the result isn't null if the result has an index.
|
|
auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
|
|
bool isVariadic = isa<pdl::RangeType>(op.getType());
|
|
std::optional<unsigned> index = op.getIndex();
|
|
resultPos = builder.getResultGroup(parentPos, index, isVariadic);
|
|
if (index)
|
|
predList.emplace_back(resultPos, builder.getIsNotNull());
|
|
}
|
|
|
|
static void getTypePredicates(Value typeValue,
|
|
function_ref<Attribute()> typeAttrFn,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
Position *&typePos = inputs[typeValue];
|
|
if (typePos)
|
|
return;
|
|
Attribute typeAttr = typeAttrFn();
|
|
assert(typeAttr &&
|
|
"expected non-tree `pdl.type`/`pdl.types` to contain a value");
|
|
typePos = builder.getTypeLiteral(typeAttr);
|
|
}
|
|
|
|
/// Collect all of the predicates that cannot be determined via walking the
|
|
/// tree.
|
|
static void getNonTreePredicates(pdl::PatternOp pattern,
|
|
std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs) {
|
|
for (Operation &op : pattern.getBodyRegion().getOps()) {
|
|
TypeSwitch<Operation *>(&op)
|
|
.Case([&](pdl::AttributeOp attrOp) {
|
|
getAttributePredicates(attrOp, predList, builder, inputs);
|
|
})
|
|
.Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) {
|
|
getConstraintPredicates(constraintOp, predList, builder, inputs);
|
|
})
|
|
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
|
|
getResultPredicates(resultOp, predList, builder, inputs);
|
|
})
|
|
.Case([&](pdl::TypeOp typeOp) {
|
|
getTypePredicates(
|
|
typeOp, [&] { return typeOp.getConstantTypeAttr(); }, builder,
|
|
inputs);
|
|
})
|
|
.Case([&](pdl::TypesOp typeOp) {
|
|
getTypePredicates(
|
|
typeOp, [&] { return typeOp.getConstantTypesAttr(); }, builder,
|
|
inputs);
|
|
});
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// An op accepting a value at an optional index.
|
|
struct OpIndex {
|
|
Value parent;
|
|
std::optional<unsigned> index;
|
|
};
|
|
|
|
/// The parent and operand index of each operation for each root, stored
|
|
/// as a nested map [root][operation].
|
|
using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>;
|
|
|
|
} // namespace
|
|
|
|
/// Given a pattern, determines the set of roots present in this pattern.
|
|
/// These are the operations whose results are not consumed by other operations.
|
|
static SmallVector<Value> detectRoots(pdl::PatternOp pattern) {
|
|
// First, collect all the operations that are used as operands
|
|
// to other operations. These are not roots by default.
|
|
DenseSet<Value> used;
|
|
for (auto operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>()) {
|
|
for (Value operand : operationOp.getOperandValues())
|
|
TypeSwitch<Operation *>(operand.getDefiningOp())
|
|
.Case<pdl::ResultOp, pdl::ResultsOp>(
|
|
[&used](auto resultOp) { used.insert(resultOp.getParent()); });
|
|
}
|
|
|
|
// Remove the specified root from the use set, so that we can
|
|
// always select it as a root, even if it is used by other operations.
|
|
if (Value root = pattern.getRewriter().getRoot())
|
|
used.erase(root);
|
|
|
|
// Finally, collect all the unused operations.
|
|
SmallVector<Value> roots;
|
|
for (Value operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>())
|
|
if (!used.contains(operationOp))
|
|
roots.push_back(operationOp);
|
|
|
|
return roots;
|
|
}
|
|
|
|
/// Given a list of candidate roots, builds the cost graph for connecting them.
|
|
/// The graph is formed by traversing the DAG of operations starting from each
|
|
/// root and marking the depth of each connector value (operand). Then we join
|
|
/// the candidate roots based on the common connector values, taking the one
|
|
/// with the minimum depth. Along the way, we compute, for each candidate root,
|
|
/// a mapping from each operation (in the DAG underneath this root) to its
|
|
/// parent operation and the corresponding operand index.
|
|
static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph,
|
|
ParentMaps &parentMaps) {
|
|
|
|
// The entry of a queue. The entry consists of the following items:
|
|
// * the value in the DAG underneath the root;
|
|
// * the parent of the value;
|
|
// * the operand index of the value in its parent;
|
|
// * the depth of the visited value.
|
|
struct Entry {
|
|
Entry(Value value, Value parent, std::optional<unsigned> index,
|
|
unsigned depth)
|
|
: value(value), parent(parent), index(index), depth(depth) {}
|
|
|
|
Value value;
|
|
Value parent;
|
|
std::optional<unsigned> index;
|
|
unsigned depth;
|
|
};
|
|
|
|
// A root of a value and its depth (distance from root to the value).
|
|
struct RootDepth {
|
|
Value root;
|
|
unsigned depth = 0;
|
|
};
|
|
|
|
// Map from candidate connector values to their roots and depths. Using a
|
|
// small vector with 1 entry because most values belong to a single root.
|
|
llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths;
|
|
|
|
// Perform a breadth-first traversal of the op DAG rooted at each root.
|
|
for (Value root : roots) {
|
|
// The queue of visited values. A value may be present multiple times in
|
|
// the queue, for multiple parents. We only accept the first occurrence,
|
|
// which is guaranteed to have the lowest depth.
|
|
std::queue<Entry> toVisit;
|
|
toVisit.emplace(root, Value(), 0, 0);
|
|
|
|
// The map from value to its parent for the current root.
|
|
DenseMap<Value, OpIndex> &parentMap = parentMaps[root];
|
|
|
|
while (!toVisit.empty()) {
|
|
Entry entry = toVisit.front();
|
|
toVisit.pop();
|
|
// Skip if already visited.
|
|
if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second)
|
|
continue;
|
|
|
|
// Mark the root and depth of the value.
|
|
connectorsRootsDepths[entry.value].push_back({root, entry.depth});
|
|
|
|
// Traverse the operands of an operation and result ops.
|
|
// We intentionally do not traverse attributes and types, because those
|
|
// are expensive to join on.
|
|
TypeSwitch<Operation *>(entry.value.getDefiningOp())
|
|
.Case<pdl::OperationOp>([&](auto operationOp) {
|
|
OperandRange operands = operationOp.getOperandValues();
|
|
// Special case when we pass all the operands in one range.
|
|
// For those, the index is empty.
|
|
if (operands.size() == 1 &&
|
|
isa<pdl::RangeType>(operands[0].getType())) {
|
|
toVisit.emplace(operands[0], entry.value, std::nullopt,
|
|
entry.depth + 1);
|
|
return;
|
|
}
|
|
|
|
// Default case: visit all the operands.
|
|
for (const auto &p :
|
|
llvm::enumerate(operationOp.getOperandValues()))
|
|
toVisit.emplace(p.value(), entry.value, p.index(),
|
|
entry.depth + 1);
|
|
})
|
|
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
|
|
toVisit.emplace(resultOp.getParent(), entry.value,
|
|
resultOp.getIndex(), entry.depth);
|
|
});
|
|
}
|
|
}
|
|
|
|
// Now build the cost graph.
|
|
// This is simply a minimum over all depths for the target root.
|
|
unsigned nextID = 0;
|
|
for (const auto &connectorRootsDepths : connectorsRootsDepths) {
|
|
Value value = connectorRootsDepths.first;
|
|
ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second;
|
|
// If there is only one root for this value, this will not trigger
|
|
// any edges in the cost graph (a perf optimization).
|
|
if (rootsDepths.size() == 1)
|
|
continue;
|
|
|
|
for (const RootDepth &p : rootsDepths) {
|
|
for (const RootDepth &q : rootsDepths) {
|
|
if (&p == &q)
|
|
continue;
|
|
// Insert or retrieve the property of edge from p to q.
|
|
RootOrderingEntry &entry = graph[q.root][p.root];
|
|
if (!entry.connector /* new edge */ || entry.cost.first > q.depth) {
|
|
if (!entry.connector)
|
|
entry.cost.second = nextID++;
|
|
entry.cost.first = q.depth;
|
|
entry.connector = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) &&
|
|
"the pattern contains a candidate root disconnected from the others");
|
|
}
|
|
|
|
/// Returns true if the operand at the given index needs to be queried using an
|
|
/// operand group, i.e., if it is variadic itself or follows a variadic operand.
|
|
static bool useOperandGroup(pdl::OperationOp op, unsigned index) {
|
|
OperandRange operands = op.getOperandValues();
|
|
assert(index < operands.size() && "operand index out of range");
|
|
for (unsigned i = 0; i <= index; ++i)
|
|
if (isa<pdl::RangeType>(operands[i].getType()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Visit a node during upward traversal.
|
|
static void visitUpward(std::vector<PositionalPredicate> &predList,
|
|
OpIndex opIndex, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &valueToPosition,
|
|
Position *&pos, unsigned rootID) {
|
|
Value value = opIndex.parent;
|
|
TypeSwitch<Operation *>(value.getDefiningOp())
|
|
.Case<pdl::OperationOp>([&](auto operationOp) {
|
|
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
|
|
|
|
// Get users and iterate over them.
|
|
Position *usersPos = builder.getUsers(pos, /*useRepresentative=*/true);
|
|
Position *foreachPos = builder.getForEach(usersPos, rootID);
|
|
OperationPosition *opPos = builder.getPassthroughOp(foreachPos);
|
|
|
|
// Compare the operand(s) of the user against the input value(s).
|
|
Position *operandPos;
|
|
if (!opIndex.index) {
|
|
// We are querying all the operands of the operation.
|
|
operandPos = builder.getAllOperands(opPos);
|
|
} else if (useOperandGroup(operationOp, *opIndex.index)) {
|
|
// We are querying an operand group.
|
|
Type type = operationOp.getOperandValues()[*opIndex.index].getType();
|
|
bool variadic = isa<pdl::RangeType>(type);
|
|
operandPos = builder.getOperandGroup(opPos, opIndex.index, variadic);
|
|
} else {
|
|
// We are querying an individual operand.
|
|
operandPos = builder.getOperand(opPos, *opIndex.index);
|
|
}
|
|
predList.emplace_back(operandPos, builder.getEqualTo(pos));
|
|
|
|
// Guard against duplicate upward visits. These are not possible,
|
|
// because if this value was already visited, it would have been
|
|
// cheaper to start the traversal at this value rather than at the
|
|
// `connector`, violating the optimality of our spanning tree.
|
|
bool inserted = valueToPosition.try_emplace(value, opPos).second;
|
|
(void)inserted;
|
|
assert(inserted && "duplicate upward visit");
|
|
|
|
// Obtain the tree predicates at the current value.
|
|
getTreePredicates(predList, value, builder, valueToPosition, opPos,
|
|
opIndex.index);
|
|
|
|
// Update the position
|
|
pos = opPos;
|
|
})
|
|
.Case<pdl::ResultOp>([&](auto resultOp) {
|
|
// Traverse up an individual result.
|
|
auto *opPos = dyn_cast<OperationPosition>(pos);
|
|
assert(opPos && "operations and results must be interleaved");
|
|
pos = builder.getResult(opPos, *opIndex.index);
|
|
|
|
// Insert the result position in case we have not visited it yet.
|
|
valueToPosition.try_emplace(value, pos);
|
|
})
|
|
.Case<pdl::ResultsOp>([&](auto resultOp) {
|
|
// Traverse up a group of results.
|
|
auto *opPos = dyn_cast<OperationPosition>(pos);
|
|
assert(opPos && "operations and results must be interleaved");
|
|
bool isVariadic = isa<pdl::RangeType>(value.getType());
|
|
if (opIndex.index)
|
|
pos = builder.getResultGroup(opPos, opIndex.index, isVariadic);
|
|
else
|
|
pos = builder.getAllResults(opPos);
|
|
|
|
// Insert the result position in case we have not visited it yet.
|
|
valueToPosition.try_emplace(value, pos);
|
|
});
|
|
}
|
|
|
|
/// Given a pattern operation, build the set of matcher predicates necessary to
|
|
/// match this pattern.
|
|
static Value buildPredicateList(pdl::PatternOp pattern,
|
|
PredicateBuilder &builder,
|
|
std::vector<PositionalPredicate> &predList,
|
|
DenseMap<Value, Position *> &valueToPosition) {
|
|
SmallVector<Value> roots = detectRoots(pattern);
|
|
|
|
// Build the root ordering graph and compute the parent maps.
|
|
RootOrderingGraph graph;
|
|
ParentMaps parentMaps;
|
|
buildCostGraph(roots, graph, parentMaps);
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Graph:\n";
|
|
for (auto &target : graph) {
|
|
llvm::dbgs() << " * " << target.first.getLoc() << " " << target.first
|
|
<< "\n";
|
|
for (auto &source : target.second) {
|
|
RootOrderingEntry &entry = source.second;
|
|
llvm::dbgs() << " <- " << source.first << ": " << entry.cost.first
|
|
<< ":" << entry.cost.second << " via "
|
|
<< entry.connector.getLoc() << "\n";
|
|
}
|
|
}
|
|
});
|
|
|
|
// Solve the optimal branching problem for each candidate root, or use the
|
|
// provided one.
|
|
Value bestRoot = pattern.getRewriter().getRoot();
|
|
OptimalBranching::EdgeList bestEdges;
|
|
if (!bestRoot) {
|
|
unsigned bestCost = 0;
|
|
LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n");
|
|
for (Value root : roots) {
|
|
OptimalBranching solver(graph, root);
|
|
unsigned cost = solver.solve();
|
|
LLVM_DEBUG(llvm::dbgs() << " * " << root << ": " << cost << "\n");
|
|
if (!bestRoot || bestCost > cost) {
|
|
bestCost = cost;
|
|
bestRoot = root;
|
|
bestEdges = solver.preOrderTraversal(roots);
|
|
}
|
|
}
|
|
} else {
|
|
OptimalBranching solver(graph, bestRoot);
|
|
solver.solve();
|
|
bestEdges = solver.preOrderTraversal(roots);
|
|
}
|
|
|
|
// Print the best solution.
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Best tree:\n";
|
|
for (const std::pair<Value, Value> &edge : bestEdges) {
|
|
llvm::dbgs() << " * " << edge.first;
|
|
if (edge.second)
|
|
llvm::dbgs() << " <- " << edge.second;
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
});
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n");
|
|
LLVM_DEBUG(llvm::dbgs() << " * Value: " << bestRoot << "\n");
|
|
|
|
// The best root is the starting point for the traversal. Get the tree
|
|
// predicates for the DAG rooted at bestRoot.
|
|
getTreePredicates(predList, bestRoot, builder, valueToPosition,
|
|
builder.getRoot());
|
|
|
|
// Traverse the selected optimal branching. For all edges in order, traverse
|
|
// up starting from the connector, until the candidate root is reached, and
|
|
// call getTreePredicates at every node along the way.
|
|
for (const auto &it : llvm::enumerate(bestEdges)) {
|
|
Value target = it.value().first;
|
|
Value source = it.value().second;
|
|
|
|
// Check if we already visited the target root. This happens in two cases:
|
|
// 1) the initial root (bestRoot);
|
|
// 2) a root that is dominated by (contained in the subtree rooted at) an
|
|
// already visited root.
|
|
if (valueToPosition.count(target))
|
|
continue;
|
|
|
|
// Determine the connector.
|
|
Value connector = graph[target][source].connector;
|
|
assert(connector && "invalid edge");
|
|
LLVM_DEBUG(llvm::dbgs() << " * Connector: " << connector.getLoc() << "\n");
|
|
DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target);
|
|
Position *pos = valueToPosition.lookup(connector);
|
|
assert(pos && "connector has not been traversed yet");
|
|
|
|
// Traverse from the connector upwards towards the target root.
|
|
for (Value value = connector; value != target;) {
|
|
OpIndex opIndex = parentMap.lookup(value);
|
|
assert(opIndex.parent && "missing parent");
|
|
visitUpward(predList, opIndex, builder, valueToPosition, pos, it.index());
|
|
value = opIndex.parent;
|
|
}
|
|
}
|
|
|
|
getNonTreePredicates(pattern, predList, builder, valueToPosition);
|
|
|
|
return bestRoot;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Predicate Tree Merging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// This class represents a specific predicate applied to a position, and
|
|
/// provides hashing and ordering operators. This class allows for computing a
|
|
/// frequence sum and ordering predicates based on a cost model.
|
|
struct OrderedPredicate {
|
|
OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
|
|
: position(ip.first), question(ip.second) {}
|
|
OrderedPredicate(const PositionalPredicate &ip)
|
|
: position(ip.position), question(ip.question) {}
|
|
|
|
/// The position this predicate is applied to.
|
|
Position *position;
|
|
|
|
/// The question that is applied by this predicate onto the position.
|
|
Qualifier *question;
|
|
|
|
/// The first and second order benefit sums.
|
|
/// The primary sum is the number of occurrences of this predicate among all
|
|
/// of the patterns.
|
|
unsigned primary = 0;
|
|
/// The secondary sum is a squared summation of the primary sum of all of the
|
|
/// predicates within each pattern that contains this predicate. This allows
|
|
/// for favoring predicates that are more commonly shared within a pattern, as
|
|
/// opposed to those shared across patterns.
|
|
unsigned secondary = 0;
|
|
|
|
/// The tie breaking ID, used to preserve a deterministic (insertion) order
|
|
/// among all the predicates with the same priority, depth, and position /
|
|
/// predicate dependency.
|
|
unsigned id = 0;
|
|
|
|
/// A map between a pattern operation and the answer to the predicate question
|
|
/// within that pattern.
|
|
DenseMap<Operation *, Qualifier *> patternToAnswer;
|
|
|
|
/// Returns true if this predicate is ordered before `rhs`, based on the cost
|
|
/// model.
|
|
bool operator<(const OrderedPredicate &rhs) const {
|
|
// Sort by:
|
|
// * higher first and secondary order sums
|
|
// * lower depth
|
|
// * lower position dependency
|
|
// * lower predicate dependency
|
|
// * lower tie breaking ID
|
|
auto *rhsPos = rhs.position;
|
|
return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(),
|
|
rhsPos->getKind(), rhs.question->getKind(), rhs.id) >
|
|
std::make_tuple(rhs.primary, rhs.secondary,
|
|
position->getOperationDepth(), position->getKind(),
|
|
question->getKind(), id);
|
|
}
|
|
};
|
|
|
|
/// A DenseMapInfo for OrderedPredicate based solely on the position and
|
|
/// question.
|
|
struct OrderedPredicateDenseInfo {
|
|
using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
|
|
|
|
static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
|
|
static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
|
|
static bool isEqual(const OrderedPredicate &lhs,
|
|
const OrderedPredicate &rhs) {
|
|
return lhs.position == rhs.position && lhs.question == rhs.question;
|
|
}
|
|
static unsigned getHashValue(const OrderedPredicate &p) {
|
|
return llvm::hash_combine(p.position, p.question);
|
|
}
|
|
};
|
|
|
|
/// This class wraps a set of ordered predicates that are used within a specific
|
|
/// pattern operation.
|
|
struct OrderedPredicateList {
|
|
OrderedPredicateList(pdl::PatternOp pattern, Value root)
|
|
: pattern(pattern), root(root) {}
|
|
|
|
pdl::PatternOp pattern;
|
|
Value root;
|
|
DenseSet<OrderedPredicate *> predicates;
|
|
};
|
|
} // namespace
|
|
|
|
/// Returns true if the given matcher refers to the same predicate as the given
|
|
/// ordered predicate. This means that the position and questions of the two
|
|
/// match.
|
|
static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
|
|
return node->getPosition() == predicate->position &&
|
|
node->getQuestion() == predicate->question;
|
|
}
|
|
|
|
/// Get or insert a child matcher for the given parent switch node, given a
|
|
/// predicate and parent pattern.
|
|
std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
|
|
OrderedPredicate *predicate,
|
|
pdl::PatternOp pattern) {
|
|
assert(isSamePredicate(node, predicate) &&
|
|
"expected matcher to equal the given predicate");
|
|
|
|
auto it = predicate->patternToAnswer.find(pattern);
|
|
assert(it != predicate->patternToAnswer.end() &&
|
|
"expected pattern to exist in predicate");
|
|
return node->getChildren().insert({it->second, nullptr}).first->second;
|
|
}
|
|
|
|
/// Build the matcher CFG by "pushing" patterns through by sorted predicate
|
|
/// order. A pattern will traverse as far as possible using common predicates
|
|
/// and then either diverge from the CFG or reach the end of a branch and start
|
|
/// creating new nodes.
|
|
static void propagatePattern(std::unique_ptr<MatcherNode> &node,
|
|
OrderedPredicateList &list,
|
|
std::vector<OrderedPredicate *>::iterator current,
|
|
std::vector<OrderedPredicate *>::iterator end) {
|
|
if (current == end) {
|
|
// We've hit the end of a pattern, so create a successful result node.
|
|
node =
|
|
std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node));
|
|
|
|
// If the pattern doesn't contain this predicate, ignore it.
|
|
} else if (!list.predicates.contains(*current)) {
|
|
propagatePattern(node, list, std::next(current), end);
|
|
|
|
// If the current matcher node is invalid, create a new one for this
|
|
// position and continue propagation.
|
|
} else if (!node) {
|
|
// Create a new node at this position and continue
|
|
node = std::make_unique<SwitchNode>((*current)->position,
|
|
(*current)->question);
|
|
propagatePattern(
|
|
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
|
|
list, std::next(current), end);
|
|
|
|
// If the matcher has already been created, and it is for this predicate we
|
|
// continue propagation to the child.
|
|
} else if (isSamePredicate(node.get(), *current)) {
|
|
propagatePattern(
|
|
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
|
|
list, std::next(current), end);
|
|
|
|
// If the matcher doesn't match the current predicate, insert a branch as
|
|
// the common set of matchers has diverged.
|
|
} else {
|
|
propagatePattern(node->getFailureNode(), list, current, end);
|
|
}
|
|
}
|
|
|
|
/// Fold any switch nodes nested under `node` to boolean nodes when possible.
|
|
/// `node` is updated in-place if it is a switch.
|
|
static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
|
|
if (!node)
|
|
return;
|
|
|
|
if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
|
|
SwitchNode::ChildMapT &children = switchNode->getChildren();
|
|
for (auto &it : children)
|
|
foldSwitchToBool(it.second);
|
|
|
|
// If the node only contains one child, collapse it into a boolean predicate
|
|
// node.
|
|
if (children.size() == 1) {
|
|
auto childIt = children.begin();
|
|
node = std::make_unique<BoolNode>(
|
|
node->getPosition(), node->getQuestion(), childIt->first,
|
|
std::move(childIt->second), std::move(node->getFailureNode()));
|
|
}
|
|
} else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
|
|
foldSwitchToBool(boolNode->getSuccessNode());
|
|
}
|
|
|
|
foldSwitchToBool(node->getFailureNode());
|
|
}
|
|
|
|
/// Insert an exit node at the end of the failure path of the `root`.
|
|
static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
|
|
while (*root)
|
|
root = &(*root)->getFailureNode();
|
|
*root = std::make_unique<ExitNode>();
|
|
}
|
|
|
|
/// Given a module containing PDL pattern operations, generate a matcher tree
|
|
/// using the patterns within the given module and return the root matcher node.
|
|
std::unique_ptr<MatcherNode>
|
|
MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &valueToPosition) {
|
|
// The set of predicates contained within the pattern operations of the
|
|
// module.
|
|
struct PatternPredicates {
|
|
PatternPredicates(pdl::PatternOp pattern, Value root,
|
|
std::vector<PositionalPredicate> predicates)
|
|
: pattern(pattern), root(root), predicates(std::move(predicates)) {}
|
|
|
|
/// A pattern.
|
|
pdl::PatternOp pattern;
|
|
|
|
/// A root of the pattern chosen among the candidate roots in pdl.rewrite.
|
|
Value root;
|
|
|
|
/// The extracted predicates for this pattern and root.
|
|
std::vector<PositionalPredicate> predicates;
|
|
};
|
|
|
|
SmallVector<PatternPredicates, 16> patternsAndPredicates;
|
|
for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
|
|
std::vector<PositionalPredicate> predicateList;
|
|
Value root =
|
|
buildPredicateList(pattern, builder, predicateList, valueToPosition);
|
|
patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList));
|
|
}
|
|
|
|
// Associate a pattern result with each unique predicate.
|
|
DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
|
|
for (auto &patternAndPredList : patternsAndPredicates) {
|
|
for (auto &predicate : patternAndPredList.predicates) {
|
|
auto it = uniqued.insert(predicate);
|
|
it.first->patternToAnswer.try_emplace(patternAndPredList.pattern,
|
|
predicate.answer);
|
|
// Mark the insertion order (0-based indexing).
|
|
if (it.second)
|
|
it.first->id = uniqued.size() - 1;
|
|
}
|
|
}
|
|
|
|
// Associate each pattern to a set of its ordered predicates for later lookup.
|
|
std::vector<OrderedPredicateList> lists;
|
|
lists.reserve(patternsAndPredicates.size());
|
|
for (auto &patternAndPredList : patternsAndPredicates) {
|
|
OrderedPredicateList list(patternAndPredList.pattern,
|
|
patternAndPredList.root);
|
|
for (auto &predicate : patternAndPredList.predicates) {
|
|
OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
|
|
list.predicates.insert(orderedPredicate);
|
|
|
|
// Increment the primary sum for each reference to a particular predicate.
|
|
++orderedPredicate->primary;
|
|
}
|
|
lists.push_back(std::move(list));
|
|
}
|
|
|
|
// For a particular pattern, get the total primary sum and add it to the
|
|
// secondary sum of each predicate. Square the primary sums to emphasize
|
|
// shared predicates within rather than across patterns.
|
|
for (auto &list : lists) {
|
|
unsigned total = 0;
|
|
for (auto *predicate : list.predicates)
|
|
total += predicate->primary * predicate->primary;
|
|
for (auto *predicate : list.predicates)
|
|
predicate->secondary += total;
|
|
}
|
|
|
|
// Sort the set of predicates now that the cost primary and secondary sums
|
|
// have been computed.
|
|
std::vector<OrderedPredicate *> ordered;
|
|
ordered.reserve(uniqued.size());
|
|
for (auto &ip : uniqued)
|
|
ordered.push_back(&ip);
|
|
llvm::sort(ordered, [](OrderedPredicate *lhs, OrderedPredicate *rhs) {
|
|
return *lhs < *rhs;
|
|
});
|
|
|
|
// Build the matchers for each of the pattern predicate lists.
|
|
std::unique_ptr<MatcherNode> root;
|
|
for (OrderedPredicateList &list : lists)
|
|
propagatePattern(root, list, ordered.begin(), ordered.end());
|
|
|
|
// Collapse the graph and insert the exit node.
|
|
foldSwitchToBool(root);
|
|
insertExitNode(&root);
|
|
return root;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MatcherNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: position(p), question(q), failureNode(std::move(failureNode)),
|
|
matcherTypeID(matcherTypeID) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
|
|
std::unique_ptr<MatcherNode> successNode,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: MatcherNode(TypeID::get<BoolNode>(), position, question,
|
|
std::move(failureNode)),
|
|
answer(answer), successNode(std::move(successNode)) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SuccessNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
|
|
/*question=*/nullptr, std::move(failureNode)),
|
|
pattern(pattern), root(root) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SwitchNode::SwitchNode(Position *position, Qualifier *question)
|
|
: MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
|