Files
clang-p2996/mlir/lib/Interfaces/ValueBoundsOpInterface.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

512 lines
18 KiB
C++

//===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "value-bounds-op-interface"
using namespace mlir;
using presburger::BoundType;
using presburger::VarKind;
namespace mlir {
#include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc"
} // namespace mlir
/// If ofr is a constant integer or an IntegerAttr, return the integer.
static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) {
// Case 1: Check for Constant integer.
if (auto val = ofr.dyn_cast<Value>()) {
APSInt intVal;
if (matchPattern(val, m_ConstantInt(&intVal)))
return intVal.getSExtValue();
return std::nullopt;
}
// Case 2: Check for IntegerAttr.
Attribute attr = ofr.dyn_cast<Attribute>();
if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr))
return intAttr.getValue().getSExtValue();
return std::nullopt;
}
ValueBoundsConstraintSet::ValueBoundsConstraintSet(Value value,
std::optional<int64_t> dim)
: builder(value.getContext()) {
insert(value, dim, /*isSymbol=*/false);
}
#ifndef NDEBUG
static void assertValidValueDim(Value value, std::optional<int64_t> dim) {
if (value.getType().isIndex()) {
assert(!dim.has_value() && "invalid dim value");
} else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) {
assert(*dim >= 0 && "invalid dim value");
if (shapedType.hasRank())
assert(*dim < shapedType.getRank() && "invalid dim value");
} else {
llvm_unreachable("unsupported type");
}
}
#endif // NDEBUG
void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos,
AffineExpr expr) {
LogicalResult status = cstr.addBound(
type, pos,
AffineMap::get(cstr.getNumDimVars(), cstr.getNumSymbolVars(), expr));
if (failed(status)) {
// Non-pure (e.g., semi-affine) expressions are not yet supported by
// FlatLinearConstraints. However, we can just ignore such failures here.
// Even without this bound, there may be enough information in the
// constraint system to compute the requested bound. In case this bound is
// actually needed, `computeBound` will return `failure`.
LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: " << expr << "\n");
}
}
AffineExpr ValueBoundsConstraintSet::getExpr(Value value,
std::optional<int64_t> dim) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
auto shapedType = dyn_cast<ShapedType>(value.getType());
if (shapedType) {
// Static dimension: return constant directly.
if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim))
return builder.getAffineConstantExpr(shapedType.getDimSize(*dim));
} else {
// Constant index value: return directly.
if (auto constInt = getConstantIntValue(value))
return builder.getAffineConstantExpr(*constInt);
}
// Dynamic value: add to constraint set.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
if (!valueDimToPosition.contains(valueDim))
(void)insert(value, dim);
int64_t pos = getPos(value, dim);
return pos < cstr.getNumDimVars()
? builder.getAffineDimExpr(pos)
: builder.getAffineSymbolExpr(pos - cstr.getNumDimVars());
}
AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) {
if (Value value = ofr.dyn_cast<Value>())
return getExpr(value, /*dim=*/std::nullopt);
auto constInt = getConstantIntValue(ofr);
assert(constInt.has_value() && "expected Integer constant");
return builder.getAffineConstantExpr(*constInt);
}
AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) {
return builder.getAffineConstantExpr(constant);
}
int64_t ValueBoundsConstraintSet::insert(Value value,
std::optional<int64_t> dim,
bool isSymbol) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
assert(!valueDimToPosition.contains(valueDim) && "already mapped");
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
positionToValueDim.insert(positionToValueDim.begin() + pos, valueDim);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
valueDimToPosition[positionToValueDim[i]] = i;
worklist.push(pos);
return pos;
}
int64_t ValueBoundsConstraintSet::getPos(Value value,
std::optional<int64_t> dim) const {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert((isa<OpResult>(value) ||
cast<BlockArgument>(value).getOwner()->isEntryBlock()) &&
"unstructured control flow is not supported");
#endif // NDEBUG
auto it =
valueDimToPosition.find(std::make_pair(value, dim.value_or(kIndexValue)));
assert(it != valueDimToPosition.end() && "expected mapped entry");
return it->second;
}
static Operation *getOwnerOfValue(Value value) {
if (auto bbArg = dyn_cast<BlockArgument>(value))
return bbArg.getOwner()->getParentOp();
return value.getDefiningOp();
}
void ValueBoundsConstraintSet::processWorklist(StopConditionFn stopCondition) {
while (!worklist.empty()) {
int64_t pos = worklist.front();
worklist.pop();
ValueDim valueDim = positionToValueDim[pos];
Value value = valueDim.first;
int64_t dim = valueDim.second;
// Check for static dim size.
if (dim != kIndexValue) {
auto shapedType = cast<ShapedType>(value.getType());
if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) {
bound(value)[dim] == getExpr(shapedType.getDimSize(dim));
continue;
}
}
// Do not process any further if the stop condition is met.
auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(dim);
if (stopCondition(value, maybeDim))
continue;
// Query `ValueBoundsOpInterface` for constraints. New items may be added to
// the worklist.
auto valueBoundsOp =
dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value));
if (!valueBoundsOp)
continue;
if (dim == kIndexValue) {
valueBoundsOp.populateBoundsForIndexValue(value, *this);
} else {
valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this);
}
}
}
void ValueBoundsConstraintSet::projectOut(int64_t pos) {
assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) &&
"invalid position");
cstr.projectOut(pos);
bool erased = valueDimToPosition.erase(positionToValueDim[pos]);
(void)erased;
assert(erased && "inconsistent reverse mapping");
positionToValueDim.erase(positionToValueDim.begin() + pos);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
valueDimToPosition[positionToValueDim[i]] = i;
}
void ValueBoundsConstraintSet::projectOut(
function_ref<bool(ValueDim)> condition) {
int64_t nextPos = 0;
while (nextPos < static_cast<int64_t>(positionToValueDim.size())) {
if (condition(positionToValueDim[nextPos])) {
projectOut(nextPos);
// The column was projected out so another column is now at that position.
// Do not increase the counter.
} else {
++nextPos;
}
}
}
LogicalResult ValueBoundsConstraintSet::computeBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, StopConditionFn stopCondition,
bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert(!stopCondition(value, dim) &&
"stop condition should not be satisfied for starting point");
#endif // NDEBUG
int64_t ubAdjustment = closedUB ? 0 : 1;
Builder b(value.getContext());
mapOperands.clear();
if (stopCondition(value, dim)) {
// Special case: If the stop condition is satisfied for the input
// value/dimension, directly return it.
mapOperands.push_back(std::make_pair(value, dim));
AffineExpr bound = b.getAffineDimExpr(0);
if (type == BoundType::UB)
bound = bound + ubAdjustment;
resultMap = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
b.getAffineDimExpr(0));
return success();
}
// Process the backward slice of `value` (i.e., reverse use-def chain) until
// `stopCondition` is met.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
ValueBoundsConstraintSet cstr(value, dim);
cstr.processWorklist(stopCondition);
// Project out all variables (apart from `valueDim`) that do not match the
// stop condition.
cstr.projectOut([&](ValueDim p) {
// Do not project out `valueDim`.
if (valueDim == p)
return false;
auto maybeDim =
p.second == kIndexValue ? std::nullopt : std::make_optional(p.second);
return !stopCondition(p.first, maybeDim);
});
// Compute lower and upper bounds for `valueDim`.
int64_t pos = cstr.getPos(value, dim);
SmallVector<AffineMap> lb(1), ub(1);
cstr.cstr.getSliceBounds(pos, 1, value.getContext(), &lb, &ub,
/*getClosedUB=*/true);
// Note: There are TODOs in the implementation of `getSliceBounds`. In such a
// case, no lower/upper bound can be computed at the moment.
// EQ, UB bounds: upper bound is needed.
if ((type != BoundType::LB) &&
(ub.empty() || !ub[0] || ub[0].getNumResults() == 0))
return failure();
// EQ, LB bounds: lower bound is needed.
if ((type != BoundType::UB) &&
(lb.empty() || !lb[0] || lb[0].getNumResults() == 0))
return failure();
// TODO: Generate an affine map with multiple results.
if (type != BoundType::LB)
assert(ub.size() == 1 && ub[0].getNumResults() == 1 &&
"multiple bounds not supported");
if (type != BoundType::UB)
assert(lb.size() == 1 && lb[0].getNumResults() == 1 &&
"multiple bounds not supported");
// EQ bound: lower and upper bound must match.
if (type == BoundType::EQ && ub[0] != lb[0])
return failure();
AffineMap bound;
if (type == BoundType::EQ || type == BoundType::LB) {
bound = lb[0];
} else {
// Computed UB is a closed bound.
bound = AffineMap::get(ub[0].getNumDims(), ub[0].getNumSymbols(),
ub[0].getResult(0) + ubAdjustment);
}
// Gather all SSA values that are used in the computed bound.
assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() &&
"inconsistent mapping state");
SmallVector<AffineExpr> replacementDims, replacementSymbols;
int64_t numDims = 0, numSymbols = 0;
for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) {
// Skip `value`.
if (i == pos)
continue;
// Check if the position `i` is used in the generated bound. If so, it must
// be included in the generated affine.apply op.
bool used = false;
bool isDim = i < cstr.cstr.getNumDimVars();
if (isDim) {
if (bound.isFunctionOfDim(i))
used = true;
} else {
if (bound.isFunctionOfSymbol(i - cstr.cstr.getNumDimVars()))
used = true;
}
if (!used) {
// Not used: Remove dim/symbol from the result.
if (isDim) {
replacementDims.push_back(b.getAffineConstantExpr(0));
} else {
replacementSymbols.push_back(b.getAffineConstantExpr(0));
}
continue;
}
if (isDim) {
replacementDims.push_back(b.getAffineDimExpr(numDims++));
} else {
replacementSymbols.push_back(b.getAffineSymbolExpr(numSymbols++));
}
ValueBoundsConstraintSet::ValueDim valueDim = cstr.positionToValueDim[i];
Value value = valueDim.first;
int64_t dim = valueDim.second;
if (dim == ValueBoundsConstraintSet::kIndexValue) {
// An index-type value is used: can be used directly in the affine.apply
// op.
assert(value.getType().isIndex() && "expected index type");
mapOperands.push_back(std::make_pair(value, std::nullopt));
continue;
}
assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) &&
"expected dynamic dim");
mapOperands.push_back(std::make_pair(value, dim));
}
resultMap = bound.replaceDimsAndSymbols(replacementDims, replacementSymbols,
numDims, numSymbols);
return success();
}
LogicalResult ValueBoundsConstraintSet::computeDependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueDimList dependencies,
bool closedUB) {
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) {
return llvm::is_contained(dependencies, std::make_pair(v, d));
},
closedUB);
}
LogicalResult ValueBoundsConstraintSet::computeIndependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueRange independencies,
bool closedUB) {
// Return "true" if the given value is independent of all values in
// `independencies`. I.e., neither the value itself nor any value in the
// backward slice (reverse use-def chain) is contained in `independencies`.
auto isIndependent = [&](Value v) {
SmallVector<Value> worklist;
DenseSet<Value> visited;
worklist.push_back(v);
while (!worklist.empty()) {
Value next = worklist.pop_back_val();
if (visited.contains(next))
continue;
visited.insert(next);
if (llvm::is_contained(independencies, next))
return false;
// TODO: DominanceInfo could be used to stop the traversal early.
Operation *op = next.getDefiningOp();
if (!op)
continue;
worklist.append(op->getOperands().begin(), op->getOperands().end());
}
return true;
};
// Reify bounds in terms of any independent values.
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) { return isIndependent(v); },
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, Value value, std::optional<int64_t> dim,
StopConditionFn stopCondition, bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
// Process the backward slice of `value` (i.e., reverse use-def chain) until
// `stopCondition` is met.
ValueBoundsConstraintSet cstr(value, dim);
int64_t pos = cstr.getPos(value, dim);
if (stopCondition) {
cstr.processWorklist(stopCondition);
} else {
// No stop condition specified: Keep adding constraints until a bound could
// be computed.
cstr.processWorklist(
/*stopCondition=*/[&](Value v, std::optional<int64_t> dim) {
return cstr.cstr.getConstantBound64(type, pos).has_value();
});
}
// Compute constant bound for `valueDim`.
int64_t ubAdjustment = closedUB ? 0 : 1;
if (auto bound = cstr.cstr.getConstantBound64(type, pos))
return type == BoundType::UB ? *bound + ubAdjustment : *bound;
return failure();
}
ValueBoundsConstraintSet::BoundBuilder &
ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) {
assert(!this->dim.has_value() && "dim was already set");
this->dim = dim;
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
return *this;
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::UB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) {
operator<(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) {
operator>=(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::LB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::EQ, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) {
operator<(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) {
operator<=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) {
operator>(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) {
operator>=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) {
operator==(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) {
operator<(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) {
operator<=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) {
operator>(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) {
operator>=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) {
operator==(cstr.getExpr(i));
}