@jeanPerier explained the importance of converting box loads and stores into `memcpy`s instead of aggregate loads and stores, and I'll do my best to explain it here. * [(godbolt link) Example comparing opt transformations on memcpys vs aggregate load/stores](https://godbolt.org/z/be7xM83cG) * LLVM can more effectively reason about memcpys compared to aggregate load/stores. * This came up when others were discussing array descriptors for assumed-rank arrays passed to `bind(c)` subroutines, with the implication that the array descriptors are known to have lower bounds of 1 and that they are not pointer/allocatable types. * [(godbolt link) Clang also uses memcpys so we should probably follow them, assuming the clang developers are generatign what they know Opt will handle more effectively.](https://godbolt.org/z/YT4x7387W) * This currently may not help much without the `nocapture` attribute being propagated to function calls, but [it looks like someone may do this soon (discourse link)](https://discourse.llvm.org/t/applying-the-nocapture-attribute-to-reference-passed-arguments-in-fortran-subroutines/81401/23) or I can do this in a follow-up patch. Note on test `flang/test/Fir/embox-char.fir`: it looks like the original test was auto-generated. I wasn't too sure which parts were especially important to test, so I regenerated the test. If we want the updated version to look more like the old version, I'll make those changes.
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.