Asher Mancinelli 0c9a02355a [flang][fir] always use memcpy for fir.box (#113949)
@jeanPerier explained the importance of converting box loads and stores
into `memcpy`s instead of aggregate loads and stores, and I'll do my
best to explain it here.

* [(godbolt link) Example comparing opt transformations on memcpys vs
aggregate load/stores](https://godbolt.org/z/be7xM83cG)
* LLVM can more effectively reason about memcpys compared to aggregate
load/stores.
* This came up when others were discussing array descriptors for
assumed-rank arrays passed to `bind(c)` subroutines, with the
implication that the array descriptors are known to have lower bounds of
1 and that they are not pointer/allocatable types.
* [(godbolt link) Clang also uses memcpys so we should probably follow
them, assuming the clang developers are generatign what they know Opt
will handle more effectively.](https://godbolt.org/z/YT4x7387W)
* This currently may not help much without the `nocapture` attribute
being propagated to function calls, but [it looks like someone may do
this soon (discourse
link)](https://discourse.llvm.org/t/applying-the-nocapture-attribute-to-reference-passed-arguments-in-fortran-subroutines/81401/23)
or I can do this in a follow-up patch.

Note on test `flang/test/Fir/embox-char.fir`: it looks like the original
test was auto-generated. I wasn't too sure which parts were especially
important to test, so I regenerated the test. If we want the updated
version to look more like the old version, I'll make those changes.
2024-10-30 09:50:27 -07:00
2024-10-29 13:52:22 -07:00
2024-08-25 02:17:15 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 2.4 GiB
Languages
LLVM 42%
C++ 31%
C 13%
Assembly 9.3%
MLIR 1.4%
Other 2.8%