Files
clang-p2996/lldb/source/Plugins/UnwindAssembly/x86/x86AssemblyInspectionEngine.cpp
Jason Molenda f62080451c The x86 instruction unwinder can be asked to disassemble non-instruction
blocks of memory, and if the final bytes of that block look like a long
x86 instruction, it can cause the llvm disassembler to read past the end
of the buffer.  Use the maximum allowed instruction length that we pass
to the llvm disassembler as a way to limit this to the size of the buffer.

An example of how to trigger this is when lldb does a function call, it
puts a breakpoint on the beginning of main() and uses that as the return
address from the function call.  When we stop at that location, lldb may
try to find the first frame up the stack.  Because this is on the first
instruction of a function, it will get the word-size value at the stack
pointer and assume that this was the caller's pc value.  But this is random
stack memory and could point to anything - an object in memory, something
in the data section, whatever.  And if we have a symbol for that thing,
we'll try to disassemble it.

This was leading to infrequent crashes in customer scenarios; figured out
what was happening with address sanitizer.

<rdar://problem/30463256> 

llvm-svn: 307454
2017-07-08 00:12:15 +00:00

1242 lines
38 KiB
C++

//===-- x86AssemblyInspectionEngine.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "x86AssemblyInspectionEngine.h"
#include "llvm-c/Disassembler.h"
#include "lldb/Core/Address.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/UnwindAssembly.h"
using namespace lldb_private;
using namespace lldb;
x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
: m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
m_register_map_initialized(false), m_disasm_context() {
m_disasm_context =
::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
/*TagType=*/1, nullptr, nullptr);
}
x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
::LLVMDisasmDispose(m_disasm_context);
}
void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (reg_ctx.get() == nullptr)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
if (ri)
it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
void x86AssemblyInspectionEngine::Initialize(
std::vector<lldb_reg_info> &reg_info) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
for (size_t i = 0; i < reg_info.size(); ++i) {
if (::strcmp(reg_info[i].name, it->second.name) == 0) {
it->second.lldb_regnum = reg_info[i].lldb_regnum;
break;
}
}
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
// This function expects an x86 native register number (i.e. the bits stripped
// out of the
// actual instruction), not an lldb register number.
//
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
if (m_cpu == k_i386) {
switch (machine_regno) {
case k_machine_ebx:
case k_machine_ebp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_esi:
case k_machine_edi:
case k_machine_esp:
return true;
default:
return false;
}
}
if (m_cpu == k_x86_64) {
switch (machine_regno) {
case k_machine_rbx:
case k_machine_rsp:
case k_machine_rbp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_r12:
case k_machine_r13:
case k_machine_r14:
case k_machine_r15:
return true;
default:
return false;
}
}
return false;
}
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
// pushq %rbp [0x55]
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
if (*p == 0x55)
return true;
return false;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
uint8_t *p = m_cur_insn;
if (*p == 0x6a && *(p + 1) == 0x0)
return true;
return false;
}
// pushq $0
// pushl $0
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
uint8_t *p = m_cur_insn;
if (*p == 0x68 || *p == 0x6a)
return true;
return false;
}
// pushl imm8(%esp)
//
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)'
// (same byte pattern for 'pushq 0x20(%rsp)' in an x86_64 program)
//
// 0xff (with opcode bits '6' in next byte, PUSH r/m32)
// 0x74 (ModR/M byte with three bits used to specify the opcode)
// mod == b01, opcode == b110, R/M == b100
// "+disp8"
// 0x24 (SIB byte - scaled index = 0, r32 == esp)
// 0x20 imm8 value
bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
if (*m_cur_insn == 0xff) {
// Get the 3 opcode bits from the ModR/M byte
uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
if (opcode == 6) {
// I'm only looking for 0xff /6 here - I
// don't really care what value is being pushed,
// just that we're pushing a 32/64 bit value on
// to the stack is enough.
return true;
}
}
return false;
}
// instructions only valid in 32-bit mode:
// 0x0e - push cs
// 0x16 - push ss
// 0x1e - push ds
// 0x06 - push es
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
return true;
}
return false;
}
// pushq %rbx
// pushl %ebx
bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && *p == 0x41) {
regno_prefix_bit = 1 << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
regno = (*p - 0x50) | regno_prefix_bit;
return true;
}
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// subq $0x20, %rsp
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// addq $0x20, %rsp
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xc4) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xc4) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
// 8 bit displacement
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int8_t) * (p + 3);
return true;
}
// 32 bit displacement
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int32_t)extract_4(p + 3);
return true;
}
return false;
}
// lea -0x28(%ebp), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x65) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa5) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// popq %rbx
// popl %ebx
bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && *p == 0x41) {
regno_prefix_bit = 1 << 3;
p++;
}
if (*p >= 0x58 && *p <= 0x5f) {
regno = (*p - 0x58) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0x5d);
}
// instructions valid only in 32-bit mode:
// 0x1f - pop ds
// 0x07 - pop es
// 0x17 - pop ss
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x1f || p == 0x07 || p == 0x17)
return true;
}
return false;
}
// leave [0xc9]
bool x86AssemblyInspectionEngine::leave_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xc9);
}
// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}
// Look for an instruction sequence storing a nonvolatile register
// on to the stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
// The offset value returned in rbp_offset will be positive --
// but it must be subtraced from the frame base register to get
// the actual location. The positive value returned for the offset
// is a convention used elsewhere for CFA offsets et al.
bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
int &regno, int &rbp_offset) {
uint8_t *p = m_cur_insn;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the
// reg we care about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) * (p + 2);
if (immsize == 4)
offset = (uint32_t)extract_4(p + 2);
if (offset > 0)
return false;
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
rbp_offset = offset > 0 ? offset : -offset;
return true;
}
return false;
}
// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
bool x86AssemblyInspectionEngine::ret_pattern_p() {
uint8_t *p = m_cur_insn;
if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
return true;
return false;
}
uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
int &length,
uint32_t buffer_remaining_bytes) {
uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
llvm::SmallVector<uint8_t, 32> opcode_data;
opcode_data.resize(max_op_byte_size);
char out_string[512];
const size_t inst_size =
::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
out_string, sizeof(out_string));
length = inst_size;
return true;
}
bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
int machine_regno, uint32_t &lldb_regno) {
MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
if (it != m_reg_map.end()) {
lldb_regno = it->second.lldb_regnum;
return true;
}
return false;
return false;
}
bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan) {
unwind_plan.Clear();
if (data == nullptr || size == 0)
return false;
if (m_register_map_initialized == false)
return false;
addr_t current_func_text_offset = 0;
int current_sp_bytes_offset_from_cfa = 0;
UnwindPlan::Row::RegisterLocation initial_regloc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
unwind_plan.SetPlanValidAddressRange(func_range);
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
// At the start of the function, find the CFA by adding wordsize to the SP
// register
row->SetOffset(current_func_text_offset);
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
// caller's stack pointer value before the call insn is the CFA address
initial_regloc.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
// saved instruction pointer can be found at CFA - wordsize.
current_sp_bytes_offset_from_cfa = m_wordsize;
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// Track which registers have been saved so far in the prologue.
// If we see another push of that register, it's not part of the prologue.
// The register numbers used here are the machine register #'s
// (i386_register_numbers, x86_64_register_numbers).
std::vector<bool> saved_registers(32, false);
// Once the prologue has completed we'll save a copy of the unwind
// instructions
// If there is an epilogue in the middle of the function, after that epilogue
// we'll reinstate
// the unwind setup -- we assume that some code path jumps over the
// mid-function epilogue
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
// epilogue started executed
std::vector<bool> prologue_completed_saved_registers;
while (current_func_text_offset < size) {
int stack_offset, insn_len;
int machine_regno; // register numbers masked directly out of instructions
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
// numbering scheme
bool in_epilogue = false; // we're in the middle of an epilogue sequence
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
m_cur_insn = data + current_func_text_offset;
if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
|| insn_len == 0
|| insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction
break;
}
if (push_rbp_pattern_p()) {
current_sp_bytes_offset_from_cfa += m_wordsize;
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
UnwindPlan::Row::RegisterLocation regloc;
regloc.SetAtCFAPlusOffset(-row->GetCFAValue().GetOffset());
row->SetRegisterInfo(m_lldb_fp_regnum, regloc);
saved_registers[m_machine_fp_regnum] = true;
row_updated = true;
}
else if (mov_rsp_rbp_pattern_p()) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_fp_regnum, row->GetCFAValue().GetOffset());
row_updated = true;
}
// This is the start() function (or a pthread equivalent), it starts with a
// pushl $0x0 which puts the
// saved pc value of 0 on the stack. In this case we want to pretend we
// didn't see a stack movement at all --
// normally the saved pc value is already on the stack by the time the
// function starts executing.
else if (push_0_pattern_p()) {
}
else if (push_reg_p(machine_regno)) {
current_sp_bytes_offset_from_cfa += m_wordsize;
// the PUSH instruction has moved the stack pointer - if the CFA is set in
// terms of the stack pointer,
// we need to add a new row of instructions.
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
// record where non-volatile (callee-saved, spilled) registers are saved
// on the stack
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == false) {
UnwindPlan::Row::RegisterLocation regloc;
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
row->SetRegisterInfo(lldb_regno, regloc);
saved_registers[machine_regno] = true;
row_updated = true;
}
}
else if (pop_reg_p(machine_regno)) {
current_sp_bytes_offset_from_cfa -= m_wordsize;
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == true) {
saved_registers[machine_regno] = false;
row->RemoveRegisterInfo(lldb_regno);
if (machine_regno == (int)m_machine_fp_regnum) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
}
in_epilogue = true;
row_updated = true;
}
// the POP instruction has moved the stack pointer - if the CFA is set in
// terms of the stack pointer,
// we need to add a new row of instructions.
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
else if (pop_misc_reg_p()) {
current_sp_bytes_offset_from_cfa -= m_wordsize;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
// The LEAVE instruction moves the value from rbp into rsp and pops
// a value off the stack into rbp (restoring the caller's rbp value).
// It is the opposite of ENTER, or 'push rbp, mov rsp rbp'.
else if (leave_pattern_p()) {
// We're going to copy the value in rbp into rsp, so re-set the sp offset
// based on the CFAValue. Also, adjust it to recognize that we're popping
// the saved rbp value off the stack.
current_sp_bytes_offset_from_cfa = row->GetCFAValue().GetOffset();
current_sp_bytes_offset_from_cfa -= m_wordsize;
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
// rbp is restored to the caller's value
saved_registers[m_machine_fp_regnum] = false;
row->RemoveRegisterInfo(m_lldb_fp_regnum);
// cfa is now in terms of rsp again.
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
in_epilogue = true;
row_updated = true;
}
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == false) {
saved_registers[machine_regno] = true;
UnwindPlan::Row::RegisterLocation regloc;
// stack_offset for 'movq %r15, -80(%rbp)' will be 80.
// In the Row, we want to express this as the offset from the CFA. If the
// frame base
// is rbp (like the above instruction), the CFA offset for rbp is probably
// 16. So we
// want to say that the value is stored at the CFA address - 96.
regloc.SetAtCFAPlusOffset(
-(stack_offset + row->GetCFAValue().GetOffset()));
row->SetRegisterInfo(lldb_regno, regloc);
row_updated = true;
}
else if (sub_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa += stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
else if (add_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa -= stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
in_epilogue = true;
}
else if (push_extended_pattern_p() || push_imm_pattern_p() ||
push_misc_reg_p()) {
current_sp_bytes_offset_from_cfa += m_wordsize;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
else if (lea_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa -= stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
if (stack_offset > 0)
in_epilogue = true;
}
else if (lea_rbp_rsp_pattern_p(stack_offset) &&
row->GetCFAValue().GetRegisterNumber() == m_lldb_fp_regnum) {
current_sp_bytes_offset_from_cfa =
row->GetCFAValue().GetOffset() - stack_offset;
}
else if (ret_pattern_p() && prologue_completed_row.get()) {
// Reinstate the saved prologue setup for any instructions
// that come after the ret instruction
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *prologue_completed_row.get();
row.reset(newrow);
current_sp_bytes_offset_from_cfa =
prologue_completed_sp_bytes_offset_from_cfa;
saved_registers.clear();
saved_registers.resize(prologue_completed_saved_registers.size(), false);
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
saved_registers[i] = prologue_completed_saved_registers[i];
}
in_epilogue = true;
row_updated = true;
}
// call next instruction
// call 0
// => pop %ebx
// This is used in i386 programs to get the PIC base address for finding
// global data
else if (call_next_insn_pattern_p()) {
current_sp_bytes_offset_from_cfa += m_wordsize;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
if (row_updated) {
if (current_func_text_offset + insn_len < size) {
row->SetOffset(current_func_text_offset + insn_len);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
}
}
if (in_epilogue == false && row_updated) {
// If we're not in an epilogue sequence, save the updated Row
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
prologue_completed_row.reset(newrow);
prologue_completed_saved_registers.clear();
prologue_completed_saved_registers.resize(saved_registers.size(), false);
for (size_t i = 0; i < saved_registers.size(); ++i) {
prologue_completed_saved_registers[i] = saved_registers[i];
}
}
// We may change the sp value without adding a new Row necessarily -- keep
// track of it either way.
if (in_epilogue == false) {
prologue_completed_sp_bytes_offset_from_cfa =
current_sp_bytes_offset_from_cfa;
}
m_cur_insn = m_cur_insn + insn_len;
current_func_text_offset += insn_len;
}
unwind_plan.SetSourceName("assembly insn profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
return true;
}
bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
Address addr_start = func_range.GetBaseAddress();
if (!addr_start.IsValid())
return false;
// We either need a live RegisterContext, or we need the UnwindPlan to already
// be in the lldb register numbering scheme.
if (reg_ctx.get() == nullptr &&
unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
return false;
// Is original unwind_plan valid?
// unwind_plan should have at least one row which is ABI-default (CFA register
// is sp),
// and another row in mid-function.
if (unwind_plan.GetRowCount() < 2)
return false;
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
if (first_row->GetOffset() != 0)
return false;
uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg != m_lldb_sp_regnum ||
first_row->GetCFAValue().GetOffset() != m_wordsize)
return false;
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
size_t offset = 0;
int row_id = 1;
bool unwind_plan_updated = false;
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
m_cur_insn = data + offset;
// After a mid-function epilogue we will need to re-insert the original unwind
// rules
// so unwinds work for the remainder of the function. These aren't common
// with clang/gcc
// on x86 but it is possible.
bool reinstate_unwind_state = false;
while (offset < size) {
m_cur_insn = data + offset;
int insn_len;
if (!instruction_length(m_cur_insn, insn_len, size - offset)
|| insn_len == 0
|| insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction.
break;
}
// Advance offsets.
offset += insn_len;
m_cur_insn = data + offset;
// offset is pointing beyond the bounds of the
// function; stop looping.
if (offset >= size)
continue;
if (reinstate_unwind_state) {
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
*new_row = *original_last_row;
new_row->SetOffset(offset);
unwind_plan.AppendRow(new_row);
row.reset(new UnwindPlan::Row());
*row = *new_row;
reinstate_unwind_state = false;
unwind_plan_updated = true;
continue;
}
// If we already have one row for this instruction, we can continue.
while (row_id < unwind_plan.GetRowCount() &&
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
row_id++;
}
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
if (original_row->GetOffset() == offset) {
*row = *original_row;
continue;
}
if (row_id == 0) {
// If we are here, compiler didn't generate CFI for prologue.
// This won't happen to GCC or clang.
// In this case, bail out directly.
return false;
}
// Inspect the instruction to check if we need a new row for it.
cfa_reg = row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg == m_lldb_sp_regnum) {
// CFA register is sp.
// call next instruction
// call 0
// => pop %ebx
if (call_next_insn_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push/pop register
int regno;
if (push_reg_p(regno)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_reg_p(regno)) {
// Technically, this might be a nonvolatile register recover in
// epilogue.
// We should reset RegisterInfo for the register.
// But in practice, previous rule for the register is still valid...
// So we ignore this case.
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push imm
if (push_imm_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push extended
if (push_extended_pattern_p() || push_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// add/sub %rsp/%esp
int amount;
if (add_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (sub_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// lea %rsp, [%rsp + $offset]
if (lea_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (ret_pattern_p()) {
reinstate_unwind_state = true;
continue;
}
} else if (cfa_reg == m_lldb_fp_regnum) {
// CFA register is fp.
// The only case we care about is epilogue:
// [0x5d] pop %rbp/%ebp
// => [0xc3] ret
if (pop_rbp_pattern_p() || leave_pattern_p()) {
offset += 1;
row->SetOffset(offset);
row->GetCFAValue().SetIsRegisterPlusOffset(
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
reinstate_unwind_state = true;
continue;
}
} else {
// CFA register is not sp or fp.
// This must be hand-written assembly.
// Just trust eh_frame and assume we have finished.
break;
}
}
unwind_plan.SetPlanValidAddressRange(func_range);
if (unwind_plan_updated) {
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
unwind_plan_source += " plus augmentation from assembly parsing";
unwind_plan.SetSourceName(unwind_plan_source.c_str());
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
}
return true;
}
bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
uint8_t *data, size_t size, size_t &offset) {
offset = 0;
if (m_register_map_initialized == false)
return false;
while (offset < size) {
int regno;
int insn_len;
int scratch;
m_cur_insn = data + offset;
if (!instruction_length(m_cur_insn, insn_len, size - offset)
|| insn_len > kMaxInstructionByteSize
|| insn_len == 0) {
// An error parsing the instruction, i.e. probably data/garbage - stop
// scanning
break;
}
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
mov_reg_to_local_stack_frame_p(regno, scratch) ||
(lea_rsp_pattern_p(scratch) && offset == 0)) {
offset += insn_len;
continue;
}
//
// Unknown non-prologue instruction - stop scanning
break;
}
return true;
}