This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup. Differential Revision: https://reviews.llvm.org/D110293
812 lines
32 KiB
C++
812 lines
32 KiB
C++
//===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements lowering from high level async operations to async.coro
|
|
// and async.runtime operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
|
|
#include "mlir/Dialect/Async/IR/Async.h"
|
|
#include "mlir/Dialect/Async/Passes.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::async;
|
|
|
|
#define DEBUG_TYPE "async-to-async-runtime"
|
|
// Prefix for functions outlined from `async.execute` op regions.
|
|
static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";
|
|
|
|
namespace {
|
|
|
|
class AsyncToAsyncRuntimePass
|
|
: public AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
|
|
public:
|
|
AsyncToAsyncRuntimePass() = default;
|
|
void runOnOperation() override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// async.execute op outlining to the coroutine functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Function targeted for coroutine transformation has two additional blocks at
|
|
/// the end: coroutine cleanup and coroutine suspension.
|
|
///
|
|
/// async.await op lowering additionaly creates a resume block for each
|
|
/// operation to enable non-blocking waiting via coroutine suspension.
|
|
namespace {
|
|
struct CoroMachinery {
|
|
FuncOp func;
|
|
|
|
// Async execute region returns a completion token, and an async value for
|
|
// each yielded value.
|
|
//
|
|
// %token, %result = async.execute -> !async.value<T> {
|
|
// %0 = constant ... : T
|
|
// async.yield %0 : T
|
|
// }
|
|
Value asyncToken; // token representing completion of the async region
|
|
llvm::SmallVector<Value, 4> returnValues; // returned async values
|
|
|
|
Value coroHandle; // coroutine handle (!async.coro.handle value)
|
|
Block *entry; // coroutine entry block
|
|
Block *setError; // switch completion token and all values to error state
|
|
Block *cleanup; // coroutine cleanup block
|
|
Block *suspend; // coroutine suspension block
|
|
};
|
|
} // namespace
|
|
|
|
/// Utility to partially update the regular function CFG to the coroutine CFG
|
|
/// compatible with LLVM coroutines switched-resume lowering using
|
|
/// `async.runtime.*` and `async.coro.*` operations. Adds a new entry block
|
|
/// that branches into preexisting entry block. Also inserts trailing blocks.
|
|
///
|
|
/// The result types of the passed `func` must start with an `async.token`
|
|
/// and be continued with some number of `async.value`s.
|
|
///
|
|
/// The func given to this function needs to have been preprocessed to have
|
|
/// either branch or yield ops as terminators. Branches to the cleanup block are
|
|
/// inserted after each yield.
|
|
///
|
|
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
|
|
///
|
|
/// - `entry` block sets up the coroutine.
|
|
/// - `set_error` block sets completion token and async values state to error.
|
|
/// - `cleanup` block cleans up the coroutine state.
|
|
/// - `suspend block after the @llvm.coro.end() defines what value will be
|
|
/// returned to the initial caller of a coroutine. Everything before the
|
|
/// @llvm.coro.end() will be executed at every suspension point.
|
|
///
|
|
/// Coroutine structure (only the important bits):
|
|
///
|
|
/// func @some_fn(<function-arguments>) -> (!async.token, !async.value<T>)
|
|
/// {
|
|
/// ^entry(<function-arguments>):
|
|
/// %token = <async token> : !async.token // create async runtime token
|
|
/// %value = <async value> : !async.value<T> // create async value
|
|
/// %id = async.coro.id // create a coroutine id
|
|
/// %hdl = async.coro.begin %id // create a coroutine handle
|
|
/// br ^preexisting_entry_block
|
|
///
|
|
/// /* preexisting blocks modified to branch to the cleanup block */
|
|
///
|
|
/// ^set_error: // this block created lazily only if needed (see code below)
|
|
/// async.runtime.set_error %token : !async.token
|
|
/// async.runtime.set_error %value : !async.value<T>
|
|
/// br ^cleanup
|
|
///
|
|
/// ^cleanup:
|
|
/// async.coro.free %hdl // delete the coroutine state
|
|
/// br ^suspend
|
|
///
|
|
/// ^suspend:
|
|
/// async.coro.end %hdl // marks the end of a coroutine
|
|
/// return %token, %value : !async.token, !async.value<T>
|
|
/// }
|
|
///
|
|
static CoroMachinery setupCoroMachinery(FuncOp func) {
|
|
assert(!func.getBlocks().empty() && "Function must have an entry block");
|
|
|
|
MLIRContext *ctx = func.getContext();
|
|
Block *entryBlock = &func.getBlocks().front();
|
|
Block *originalEntryBlock =
|
|
entryBlock->splitBlock(entryBlock->getOperations().begin());
|
|
auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Allocate async token/values that we will return from a ramp function.
|
|
// ------------------------------------------------------------------------ //
|
|
auto retToken = builder.create<RuntimeCreateOp>(TokenType::get(ctx)).result();
|
|
|
|
llvm::SmallVector<Value, 4> retValues;
|
|
for (auto resType : func.getCallableResults().drop_front())
|
|
retValues.emplace_back(builder.create<RuntimeCreateOp>(resType).result());
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Initialize coroutine: get coroutine id and coroutine handle.
|
|
// ------------------------------------------------------------------------ //
|
|
auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
|
|
auto coroHdlOp =
|
|
builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.id());
|
|
builder.create<BranchOp>(originalEntryBlock);
|
|
|
|
Block *cleanupBlock = func.addBlock();
|
|
Block *suspendBlock = func.addBlock();
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Coroutine cleanup block: deallocate coroutine frame, free the memory.
|
|
// ------------------------------------------------------------------------ //
|
|
builder.setInsertionPointToStart(cleanupBlock);
|
|
builder.create<CoroFreeOp>(coroIdOp.id(), coroHdlOp.handle());
|
|
|
|
// Branch into the suspend block.
|
|
builder.create<BranchOp>(suspendBlock);
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Coroutine suspend block: mark the end of a coroutine and return allocated
|
|
// async token.
|
|
// ------------------------------------------------------------------------ //
|
|
builder.setInsertionPointToStart(suspendBlock);
|
|
|
|
// Mark the end of a coroutine: async.coro.end
|
|
builder.create<CoroEndOp>(coroHdlOp.handle());
|
|
|
|
// Return created `async.token` and `async.values` from the suspend block.
|
|
// This will be the return value of a coroutine ramp function.
|
|
SmallVector<Value, 4> ret{retToken};
|
|
ret.insert(ret.end(), retValues.begin(), retValues.end());
|
|
builder.create<ReturnOp>(ret);
|
|
|
|
// `async.await` op lowering will create resume blocks for async
|
|
// continuations, and will conditionally branch to cleanup or suspend blocks.
|
|
|
|
for (Block &block : func.body().getBlocks()) {
|
|
if (&block == entryBlock || &block == cleanupBlock ||
|
|
&block == suspendBlock)
|
|
continue;
|
|
Operation *terminator = block.getTerminator();
|
|
if (auto yield = dyn_cast<YieldOp>(terminator)) {
|
|
builder.setInsertionPointToEnd(&block);
|
|
builder.create<BranchOp>(cleanupBlock);
|
|
}
|
|
}
|
|
|
|
CoroMachinery machinery;
|
|
machinery.func = func;
|
|
machinery.asyncToken = retToken;
|
|
machinery.returnValues = retValues;
|
|
machinery.coroHandle = coroHdlOp.handle();
|
|
machinery.entry = entryBlock;
|
|
machinery.setError = nullptr; // created lazily only if needed
|
|
machinery.cleanup = cleanupBlock;
|
|
machinery.suspend = suspendBlock;
|
|
return machinery;
|
|
}
|
|
|
|
// Lazily creates `set_error` block only if it is required for lowering to the
|
|
// runtime operations (see for example lowering of assert operation).
|
|
static Block *setupSetErrorBlock(CoroMachinery &coro) {
|
|
if (coro.setError)
|
|
return coro.setError;
|
|
|
|
coro.setError = coro.func.addBlock();
|
|
coro.setError->moveBefore(coro.cleanup);
|
|
|
|
auto builder =
|
|
ImplicitLocOpBuilder::atBlockBegin(coro.func->getLoc(), coro.setError);
|
|
|
|
// Coroutine set_error block: set error on token and all returned values.
|
|
builder.create<RuntimeSetErrorOp>(coro.asyncToken);
|
|
for (Value retValue : coro.returnValues)
|
|
builder.create<RuntimeSetErrorOp>(retValue);
|
|
|
|
// Branch into the cleanup block.
|
|
builder.create<BranchOp>(coro.cleanup);
|
|
|
|
return coro.setError;
|
|
}
|
|
|
|
/// Outline the body region attached to the `async.execute` op into a standalone
|
|
/// function.
|
|
///
|
|
/// Note that this is not reversible transformation.
|
|
static std::pair<FuncOp, CoroMachinery>
|
|
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
|
|
ModuleOp module = execute->getParentOfType<ModuleOp>();
|
|
|
|
MLIRContext *ctx = module.getContext();
|
|
Location loc = execute.getLoc();
|
|
|
|
// Make sure that all constants will be inside the outlined async function to
|
|
// reduce the number of function arguments.
|
|
cloneConstantsIntoTheRegion(execute.body());
|
|
|
|
// Collect all outlined function inputs.
|
|
SetVector<mlir::Value> functionInputs(execute.dependencies().begin(),
|
|
execute.dependencies().end());
|
|
functionInputs.insert(execute.operands().begin(), execute.operands().end());
|
|
getUsedValuesDefinedAbove(execute.body(), functionInputs);
|
|
|
|
// Collect types for the outlined function inputs and outputs.
|
|
auto typesRange = llvm::map_range(
|
|
functionInputs, [](Value value) { return value.getType(); });
|
|
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
|
|
auto outputTypes = execute.getResultTypes();
|
|
|
|
auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
|
|
auto funcAttrs = ArrayRef<NamedAttribute>();
|
|
|
|
// TODO: Derive outlined function name from the parent FuncOp (support
|
|
// multiple nested async.execute operations).
|
|
FuncOp func = FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
|
|
symbolTable.insert(func);
|
|
|
|
SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
|
|
auto builder = ImplicitLocOpBuilder::atBlockBegin(loc, func.addEntryBlock());
|
|
|
|
// Prepare for coroutine conversion by creating the body of the function.
|
|
{
|
|
size_t numDependencies = execute.dependencies().size();
|
|
size_t numOperands = execute.operands().size();
|
|
|
|
// Await on all dependencies before starting to execute the body region.
|
|
for (size_t i = 0; i < numDependencies; ++i)
|
|
builder.create<AwaitOp>(func.getArgument(i));
|
|
|
|
// Await on all async value operands and unwrap the payload.
|
|
SmallVector<Value, 4> unwrappedOperands(numOperands);
|
|
for (size_t i = 0; i < numOperands; ++i) {
|
|
Value operand = func.getArgument(numDependencies + i);
|
|
unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).result();
|
|
}
|
|
|
|
// Map from function inputs defined above the execute op to the function
|
|
// arguments.
|
|
BlockAndValueMapping valueMapping;
|
|
valueMapping.map(functionInputs, func.getArguments());
|
|
valueMapping.map(execute.body().getArguments(), unwrappedOperands);
|
|
|
|
// Clone all operations from the execute operation body into the outlined
|
|
// function body.
|
|
for (Operation &op : execute.body().getOps())
|
|
builder.clone(op, valueMapping);
|
|
}
|
|
|
|
// Adding entry/cleanup/suspend blocks.
|
|
CoroMachinery coro = setupCoroMachinery(func);
|
|
|
|
// Suspend async function at the end of an entry block, and resume it using
|
|
// Async resume operation (execution will be resumed in a thread managed by
|
|
// the async runtime).
|
|
{
|
|
BranchOp branch = cast<BranchOp>(coro.entry->getTerminator());
|
|
builder.setInsertionPointToEnd(coro.entry);
|
|
|
|
// Save the coroutine state: async.coro.save
|
|
auto coroSaveOp =
|
|
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
|
|
|
// Pass coroutine to the runtime to be resumed on a runtime managed
|
|
// thread.
|
|
builder.create<RuntimeResumeOp>(coro.coroHandle);
|
|
|
|
// Add async.coro.suspend as a suspended block terminator.
|
|
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend,
|
|
branch.getDest(), coro.cleanup);
|
|
|
|
branch.erase();
|
|
}
|
|
|
|
// Replace the original `async.execute` with a call to outlined function.
|
|
{
|
|
ImplicitLocOpBuilder callBuilder(loc, execute);
|
|
auto callOutlinedFunc = callBuilder.create<CallOp>(
|
|
func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
|
|
execute.replaceAllUsesWith(callOutlinedFunc.getResults());
|
|
execute.erase();
|
|
}
|
|
|
|
return {func, coro};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.create_group operation to async.runtime.create_group
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(CreateGroupOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<RuntimeCreateGroupOp>(
|
|
op, GroupType::get(op->getContext()), adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.add_to_group operation to async.runtime.add_to_group.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AddToGroupOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
|
|
op, rewriter.getIndexType(), adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.await and async.await_all operations to the async.runtime.await
|
|
// or async.runtime.await_and_resume operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
template <typename AwaitType, typename AwaitableType>
|
|
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
|
|
using AwaitAdaptor = typename AwaitType::Adaptor;
|
|
|
|
public:
|
|
AwaitOpLoweringBase(MLIRContext *ctx,
|
|
llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
|
: OpConversionPattern<AwaitType>(ctx),
|
|
outlinedFunctions(outlinedFunctions) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AwaitType op, typename AwaitType::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// We can only await on one the `AwaitableType` (for `await` it can be
|
|
// a `token` or a `value`, for `await_all` it must be a `group`).
|
|
if (!op.operand().getType().template isa<AwaitableType>())
|
|
return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
|
|
|
|
// Check if await operation is inside the outlined coroutine function.
|
|
auto func = op->template getParentOfType<FuncOp>();
|
|
auto outlined = outlinedFunctions.find(func);
|
|
const bool isInCoroutine = outlined != outlinedFunctions.end();
|
|
|
|
Location loc = op->getLoc();
|
|
Value operand = adaptor.operand();
|
|
|
|
Type i1 = rewriter.getI1Type();
|
|
|
|
// Inside regular functions we use the blocking wait operation to wait for
|
|
// the async object (token, value or group) to become available.
|
|
if (!isInCoroutine) {
|
|
ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
|
|
builder.create<RuntimeAwaitOp>(loc, operand);
|
|
|
|
// Assert that the awaited operands is not in the error state.
|
|
Value isError = builder.create<RuntimeIsErrorOp>(i1, operand);
|
|
Value notError = builder.create<XOrOp>(
|
|
isError,
|
|
builder.create<ConstantOp>(loc, i1, builder.getIntegerAttr(i1, 1)));
|
|
|
|
builder.create<AssertOp>(notError,
|
|
"Awaited async operand is in error state");
|
|
}
|
|
|
|
// Inside the coroutine we convert await operation into coroutine suspension
|
|
// point, and resume execution asynchronously.
|
|
if (isInCoroutine) {
|
|
CoroMachinery &coro = outlined->getSecond();
|
|
Block *suspended = op->getBlock();
|
|
|
|
ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
|
|
MLIRContext *ctx = op->getContext();
|
|
|
|
// Save the coroutine state and resume on a runtime managed thread when
|
|
// the operand becomes available.
|
|
auto coroSaveOp =
|
|
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
|
builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
|
|
|
|
// Split the entry block before the await operation.
|
|
Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
|
|
|
|
// Add async.coro.suspend as a suspended block terminator.
|
|
builder.setInsertionPointToEnd(suspended);
|
|
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
|
|
coro.cleanup);
|
|
|
|
// Split the resume block into error checking and continuation.
|
|
Block *continuation = rewriter.splitBlock(resume, Block::iterator(op));
|
|
|
|
// Check if the awaited value is in the error state.
|
|
builder.setInsertionPointToStart(resume);
|
|
auto isError = builder.create<RuntimeIsErrorOp>(loc, i1, operand);
|
|
builder.create<CondBranchOp>(isError,
|
|
/*trueDest=*/setupSetErrorBlock(coro),
|
|
/*trueArgs=*/ArrayRef<Value>(),
|
|
/*falseDest=*/continuation,
|
|
/*falseArgs=*/ArrayRef<Value>());
|
|
|
|
// Make sure that replacement value will be constructed in the
|
|
// continuation block.
|
|
rewriter.setInsertionPointToStart(continuation);
|
|
}
|
|
|
|
// Erase or replace the await operation with the new value.
|
|
if (Value replaceWith = getReplacementValue(op, operand, rewriter))
|
|
rewriter.replaceOp(op, replaceWith);
|
|
else
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
virtual Value getReplacementValue(AwaitType op, Value operand,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
return Value();
|
|
}
|
|
|
|
private:
|
|
llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
|
};
|
|
|
|
/// Lowering for `async.await` with a token operand.
|
|
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
|
|
using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
};
|
|
|
|
/// Lowering for `async.await` with a value operand.
|
|
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
|
|
using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
|
|
Value
|
|
getReplacementValue(AwaitOp op, Value operand,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Load from the async value storage.
|
|
auto valueType = operand.getType().cast<ValueType>().getValueType();
|
|
return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
|
|
}
|
|
};
|
|
|
|
/// Lowering for `async.await_all` operation.
|
|
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
|
|
using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.yield operation to async.runtime operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
|
|
public:
|
|
YieldOpLowering(
|
|
MLIRContext *ctx,
|
|
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
|
: OpConversionPattern<async::YieldOp>(ctx),
|
|
outlinedFunctions(outlinedFunctions) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(async::YieldOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Check if yield operation is inside the async coroutine function.
|
|
auto func = op->template getParentOfType<FuncOp>();
|
|
auto outlined = outlinedFunctions.find(func);
|
|
if (outlined == outlinedFunctions.end())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "operation is not inside the async coroutine function");
|
|
|
|
Location loc = op->getLoc();
|
|
const CoroMachinery &coro = outlined->getSecond();
|
|
|
|
// Store yielded values into the async values storage and switch async
|
|
// values state to available.
|
|
for (auto tuple : llvm::zip(adaptor.getOperands(), coro.returnValues)) {
|
|
Value yieldValue = std::get<0>(tuple);
|
|
Value asyncValue = std::get<1>(tuple);
|
|
rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
|
|
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
|
|
}
|
|
|
|
// Switch the coroutine completion token to available state.
|
|
rewriter.replaceOpWithNewOp<RuntimeSetAvailableOp>(op, coro.asyncToken);
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert std.assert operation to cond_br into `set_error` block.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class AssertOpLowering : public OpConversionPattern<AssertOp> {
|
|
public:
|
|
AssertOpLowering(MLIRContext *ctx,
|
|
llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
|
: OpConversionPattern<AssertOp>(ctx),
|
|
outlinedFunctions(outlinedFunctions) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AssertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Check if assert operation is inside the async coroutine function.
|
|
auto func = op->template getParentOfType<FuncOp>();
|
|
auto outlined = outlinedFunctions.find(func);
|
|
if (outlined == outlinedFunctions.end())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "operation is not inside the async coroutine function");
|
|
|
|
Location loc = op->getLoc();
|
|
CoroMachinery &coro = outlined->getSecond();
|
|
|
|
Block *cont = rewriter.splitBlock(op->getBlock(), Block::iterator(op));
|
|
rewriter.setInsertionPointToEnd(cont->getPrevNode());
|
|
rewriter.create<CondBranchOp>(loc, adaptor.arg(),
|
|
/*trueDest=*/cont,
|
|
/*trueArgs=*/ArrayRef<Value>(),
|
|
/*falseDest=*/setupSetErrorBlock(coro),
|
|
/*falseArgs=*/ArrayRef<Value>());
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Rewrite a func as a coroutine by:
|
|
/// 1) Wrapping the results into `async.value`.
|
|
/// 2) Prepending the results with `async.token`.
|
|
/// 3) Setting up coroutine blocks.
|
|
/// 4) Rewriting return ops as yield op and branch op into the suspend block.
|
|
static CoroMachinery rewriteFuncAsCoroutine(FuncOp func) {
|
|
auto *ctx = func->getContext();
|
|
auto loc = func.getLoc();
|
|
SmallVector<Type> resultTypes;
|
|
resultTypes.reserve(func.getCallableResults().size());
|
|
llvm::transform(func.getCallableResults(), std::back_inserter(resultTypes),
|
|
[](Type type) { return ValueType::get(type); });
|
|
func.setType(FunctionType::get(ctx, func.getType().getInputs(), resultTypes));
|
|
func.insertResult(0, TokenType::get(ctx), {});
|
|
for (Block &block : func.getBlocks()) {
|
|
Operation *terminator = block.getTerminator();
|
|
if (auto returnOp = dyn_cast<ReturnOp>(*terminator)) {
|
|
ImplicitLocOpBuilder builder(loc, returnOp);
|
|
builder.create<YieldOp>(returnOp.getOperands());
|
|
returnOp.erase();
|
|
}
|
|
}
|
|
return setupCoroMachinery(func);
|
|
}
|
|
|
|
/// Rewrites a call into a function that has been rewritten as a coroutine.
|
|
///
|
|
/// The invocation of this function is safe only when call ops are traversed in
|
|
/// reverse order of how they appear in a single block. See `funcsToCoroutines`.
|
|
static void rewriteCallsiteForCoroutine(CallOp oldCall, FuncOp func) {
|
|
auto loc = func.getLoc();
|
|
ImplicitLocOpBuilder callBuilder(loc, oldCall);
|
|
auto newCall = callBuilder.create<CallOp>(
|
|
func.getName(), func.getCallableResults(), oldCall.getArgOperands());
|
|
|
|
// Await on the async token and all the value results and unwrap the latter.
|
|
callBuilder.create<AwaitOp>(loc, newCall.getResults().front());
|
|
SmallVector<Value> unwrappedResults;
|
|
unwrappedResults.reserve(newCall->getResults().size() - 1);
|
|
for (Value result : newCall.getResults().drop_front())
|
|
unwrappedResults.push_back(
|
|
callBuilder.create<AwaitOp>(loc, result).result());
|
|
// Careful, when result of a call is piped into another call this could lead
|
|
// to a dangling pointer.
|
|
oldCall.replaceAllUsesWith(unwrappedResults);
|
|
oldCall.erase();
|
|
}
|
|
|
|
static bool isAllowedToBlock(FuncOp func) {
|
|
return !!func->getAttrOfType<UnitAttr>(AsyncDialect::kAllowedToBlockAttrName);
|
|
}
|
|
|
|
static LogicalResult
|
|
funcsToCoroutines(ModuleOp module,
|
|
llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions) {
|
|
// The following code supports the general case when 2 functions mutually
|
|
// recurse into each other. Because of this and that we are relying on
|
|
// SymbolUserMap to find pointers to calling FuncOps, we cannot simply erase
|
|
// a FuncOp while inserting an equivalent coroutine, because that could lead
|
|
// to dangling pointers.
|
|
|
|
SmallVector<FuncOp> funcWorklist;
|
|
|
|
// Careful, it's okay to add a func to the worklist multiple times if and only
|
|
// if the loop processing the worklist will skip the functions that have
|
|
// already been converted to coroutines.
|
|
auto addToWorklist = [&](FuncOp func) {
|
|
if (isAllowedToBlock(func))
|
|
return;
|
|
// N.B. To refactor this code into a separate pass the lookup in
|
|
// outlinedFunctions is the most obvious obstacle. Looking at an arbitrary
|
|
// func and recognizing if it has a coroutine structure is messy. Passing
|
|
// this dict between the passes is ugly.
|
|
if (isAllowedToBlock(func) ||
|
|
outlinedFunctions.find(func) == outlinedFunctions.end()) {
|
|
for (Operation &op : func.body().getOps()) {
|
|
if (dyn_cast<AwaitOp>(op) || dyn_cast<AwaitAllOp>(op)) {
|
|
funcWorklist.push_back(func);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Traverse in post-order collecting for each func op the await ops it has.
|
|
for (FuncOp func : module.getOps<FuncOp>())
|
|
addToWorklist(func);
|
|
|
|
SymbolTableCollection symbolTable;
|
|
SymbolUserMap symbolUserMap(symbolTable, module);
|
|
|
|
// Rewrite funcs, while updating call sites and adding them to the worklist.
|
|
while (!funcWorklist.empty()) {
|
|
auto func = funcWorklist.pop_back_val();
|
|
auto insertion = outlinedFunctions.insert({func, CoroMachinery{}});
|
|
if (!insertion.second)
|
|
// This function has already been processed because this is either
|
|
// the corecursive case, or a caller with multiple calls to a newly
|
|
// created corouting. Either way, skip updating the call sites.
|
|
continue;
|
|
insertion.first->second = rewriteFuncAsCoroutine(func);
|
|
SmallVector<Operation *> users(symbolUserMap.getUsers(func).begin(),
|
|
symbolUserMap.getUsers(func).end());
|
|
// If there are multiple calls from the same block they need to be traversed
|
|
// in reverse order so that symbolUserMap references are not invalidated
|
|
// when updating the users of the call op which is earlier in the block.
|
|
llvm::sort(users, [](Operation *a, Operation *b) {
|
|
Block *blockA = a->getBlock();
|
|
Block *blockB = b->getBlock();
|
|
// Impose arbitrary order on blocks so that there is a well-defined order.
|
|
return blockA > blockB || (blockA == blockB && !a->isBeforeInBlock(b));
|
|
});
|
|
// Rewrite the callsites to await on results of the newly created coroutine.
|
|
for (Operation *op : users) {
|
|
if (CallOp call = dyn_cast<mlir::CallOp>(*op)) {
|
|
FuncOp caller = call->getParentOfType<FuncOp>();
|
|
rewriteCallsiteForCoroutine(call, func); // Careful, erases the call op.
|
|
addToWorklist(caller);
|
|
} else {
|
|
op->emitError("Unexpected reference to func referenced by symbol");
|
|
return failure();
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
void AsyncToAsyncRuntimePass::runOnOperation() {
|
|
ModuleOp module = getOperation();
|
|
SymbolTable symbolTable(module);
|
|
|
|
// Outline all `async.execute` body regions into async functions (coroutines).
|
|
llvm::DenseMap<FuncOp, CoroMachinery> outlinedFunctions;
|
|
|
|
module.walk([&](ExecuteOp execute) {
|
|
outlinedFunctions.insert(outlineExecuteOp(symbolTable, execute));
|
|
});
|
|
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Outlined " << outlinedFunctions.size()
|
|
<< " functions built from async.execute operations\n";
|
|
});
|
|
|
|
// Returns true if operation is inside the coroutine.
|
|
auto isInCoroutine = [&](Operation *op) -> bool {
|
|
auto parentFunc = op->getParentOfType<FuncOp>();
|
|
return outlinedFunctions.find(parentFunc) != outlinedFunctions.end();
|
|
};
|
|
|
|
if (eliminateBlockingAwaitOps &&
|
|
failed(funcsToCoroutines(module, outlinedFunctions))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
|
|
// Lower async operations to async.runtime operations.
|
|
MLIRContext *ctx = module->getContext();
|
|
RewritePatternSet asyncPatterns(ctx);
|
|
|
|
// Conversion to async runtime augments original CFG with the coroutine CFG,
|
|
// and we have to make sure that structured control flow operations with async
|
|
// operations in nested regions will be converted to branch-based control flow
|
|
// before we add the coroutine basic blocks.
|
|
populateLoopToStdConversionPatterns(asyncPatterns);
|
|
|
|
// Async lowering does not use type converter because it must preserve all
|
|
// types for async.runtime operations.
|
|
asyncPatterns.add<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
|
|
asyncPatterns.add<AwaitTokenOpLowering, AwaitValueOpLowering,
|
|
AwaitAllOpLowering, YieldOpLowering>(ctx,
|
|
outlinedFunctions);
|
|
|
|
// Lower assertions to conditional branches into error blocks.
|
|
asyncPatterns.add<AssertOpLowering>(ctx, outlinedFunctions);
|
|
|
|
// All high level async operations must be lowered to the runtime operations.
|
|
ConversionTarget runtimeTarget(*ctx);
|
|
runtimeTarget.addLegalDialect<AsyncDialect>();
|
|
runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
|
|
runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
|
|
|
|
// Decide if structured control flow has to be lowered to branch-based CFG.
|
|
runtimeTarget.addDynamicallyLegalDialect<scf::SCFDialect>([&](Operation *op) {
|
|
auto walkResult = op->walk([&](Operation *nested) {
|
|
bool isAsync = isa<async::AsyncDialect>(nested->getDialect());
|
|
return isAsync && isInCoroutine(nested) ? WalkResult::interrupt()
|
|
: WalkResult::advance();
|
|
});
|
|
return !walkResult.wasInterrupted();
|
|
});
|
|
runtimeTarget
|
|
.addLegalOp<AssertOp, XOrOp, ConstantOp, BranchOp, CondBranchOp>();
|
|
|
|
// Assertions must be converted to runtime errors inside async functions.
|
|
runtimeTarget.addDynamicallyLegalOp<AssertOp>([&](AssertOp op) -> bool {
|
|
auto func = op->getParentOfType<FuncOp>();
|
|
return outlinedFunctions.find(func) == outlinedFunctions.end();
|
|
});
|
|
|
|
if (eliminateBlockingAwaitOps)
|
|
runtimeTarget.addDynamicallyLegalOp<RuntimeAwaitOp>(
|
|
[&](RuntimeAwaitOp op) -> bool {
|
|
return isAllowedToBlock(op->getParentOfType<FuncOp>());
|
|
});
|
|
|
|
if (failed(applyPartialConversion(module, runtimeTarget,
|
|
std::move(asyncPatterns)))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
|
|
return std::make_unique<AsyncToAsyncRuntimePass>();
|
|
}
|