Files
clang-p2996/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
Zequan Wu ab3430f891 [Profile] Add binary profile correlation for code coverage. (#69493)
## Motivation
Since we don't need the metadata sections at runtime, we can somehow
offload them from memory at runtime. Initially, I explored [debug info
correlation](https://discourse.llvm.org/t/instrprofiling-lightweight-instrumentation/59113),
which is used for PGO with value profiling disabled. However, it
currently only works with DWARF and it's be hard to add such artificial
debug info for every function in to CodeView which is used on Windows.
So, offloading profile metadata sections at runtime seems to be a
platform independent option.

## Design
The idea is to use new section names for profile name and data sections
and mark them as metadata sections. Under this mode, the new sections
are non-SHF_ALLOC in ELF. So, they are not loaded into memory at runtime
and can be stripped away as a post-linking step. After the process
exits, the generated raw profiles will contains only headers + counters.
llvm-profdata can be used correlate raw profiles with the unstripped
binary to generate indexed profile.

## Data
For chromium base_unittests with code coverage on linux, the binary size
overhead due to instrumentation reduced from 64M to 38.8M (39.4%) and
the raw profile files size reduce from 128M to 68M (46.9%)
```
$ bloaty out/cov/base_unittests.stripped -- out/no-cov/base_unittests.stripped
    FILE SIZE        VM SIZE
 --------------  --------------
  +121% +30.4Mi  +121% +30.4Mi    .text
  [NEW] +14.6Mi  [NEW] +14.6Mi    __llvm_prf_data
  [NEW] +10.6Mi  [NEW] +10.6Mi    __llvm_prf_names
  [NEW] +5.86Mi  [NEW] +5.86Mi    __llvm_prf_cnts
   +95% +1.75Mi   +95% +1.75Mi    .eh_frame
  +108%  +400Ki  +108%  +400Ki    .eh_frame_hdr
  +9.5%  +211Ki  +9.5%  +211Ki    .rela.dyn
  +9.2% +95.0Ki  +9.2% +95.0Ki    .data.rel.ro
  +5.0% +87.3Ki  +5.0% +87.3Ki    .rodata
  [ = ]       0   +13% +47.0Ki    .bss
   +40% +1.78Ki   +40% +1.78Ki    .got
   +12% +1.49Ki   +12% +1.49Ki    .gcc_except_table
  [ = ]       0   +65% +1.23Ki    .relro_padding
   +62% +1.20Ki  [ = ]       0    [Unmapped]
   +13%    +448   +19%    +448    .init_array
  +8.8%    +192  [ = ]       0    [ELF Section Headers]
  +0.0%    +136  +0.0%     +80    [7 Others]
  +0.1%     +96  +0.1%     +96    .dynsym
  +1.2%     +96  +1.2%     +96    .rela.plt
  +1.5%     +80  +1.2%     +64    .plt
  [ = ]       0 -99.2% -3.68Ki    [LOAD #5 [RW]]
  +195% +64.0Mi  +194% +64.0Mi    TOTAL
$ bloaty out/cov-cor/base_unittests.stripped -- out/no-cov/base_unittests.stripped
    FILE SIZE        VM SIZE
 --------------  --------------
  +121% +30.4Mi  +121% +30.4Mi    .text
  [NEW] +5.86Mi  [NEW] +5.86Mi    __llvm_prf_cnts
   +95% +1.75Mi   +95% +1.75Mi    .eh_frame
  +108%  +400Ki  +108%  +400Ki    .eh_frame_hdr
  +9.5%  +211Ki  +9.5%  +211Ki    .rela.dyn
  +9.2% +95.0Ki  +9.2% +95.0Ki    .data.rel.ro
  +5.0% +87.3Ki  +5.0% +87.3Ki    .rodata
  [ = ]       0   +13% +47.0Ki    .bss
   +40% +1.78Ki   +40% +1.78Ki    .got
   +12% +1.49Ki   +12% +1.49Ki    .gcc_except_table
   +13%    +448   +19%    +448    .init_array
  +0.1%     +96  +0.1%     +96    .dynsym
  +1.2%     +96  +1.2%     +96    .rela.plt
  +1.2%     +64  +1.2%     +64    .plt
  +2.9%     +64  [ = ]       0    [ELF Section Headers]
  +0.0%     +40  +0.0%     +40    .data
  +1.2%     +32  +1.2%     +32    .got.plt
  +0.0%     +24  +0.0%      +8    [5 Others]
  [ = ]       0 -22.9%    -872    [LOAD #5 [RW]]
 -74.5% -1.44Ki  [ = ]       0    [Unmapped]
  [ = ]       0 -76.5% -1.45Ki    .relro_padding
  +118% +38.8Mi  +117% +38.8Mi    TOTAL
```

A few things to note:
1. llvm-profdata doesn't support filter raw profiles by binary id yet,
so when a raw profile doesn't belongs to the binary being digested by
llvm-profdata, merging will fail. Once this is implemented,
llvm-profdata should be able to only merge raw profiles with the same
binary id as the binary and discard the rest (with mismatched/missing
binary id). The workflow I have in mind is to have scripts invoke
llvm-profdata to get all binary ids for all raw profiles, and
selectively choose the raw pnrofiles with matching binary id and the
binary to llvm-profdata for merging.
2. Note: In COFF, currently they are still loaded into memory but not
used. I didn't do it in this patch because I noticed that `.lcovmap` and
`.lcovfunc` are loaded into memory. A separate patch will address it.
3. This should works with PGO when value profiling is disabled as debug
info correlation currently doing, though I haven't tested this yet.
2023-12-14 14:16:38 -05:00

1307 lines
52 KiB
C++

//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
#include <vector>
using namespace llvm;
using namespace coverage;
using namespace object;
#define DEBUG_TYPE "coverage-mapping"
STATISTIC(CovMapNumRecords, "The # of coverage function records");
STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records");
void CoverageMappingIterator::increment() {
if (ReadErr != coveragemap_error::success)
return;
// Check if all the records were read or if an error occurred while reading
// the next record.
if (auto E = Reader->readNextRecord(Record))
handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::eof)
*this = CoverageMappingIterator();
else
ReadErr = CME.get();
});
}
Error RawCoverageReader::readULEB128(uint64_t &Result) {
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
Result = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of ULEB128 is too big");
Data = Data.substr(N);
return Error::success();
}
Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
if (auto Err = readULEB128(Result))
return Err;
if (Result >= MaxPlus1)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"the value of ULEB128 is greater than or equal to MaxPlus1");
return Error::success();
}
Error RawCoverageReader::readSize(uint64_t &Result) {
if (auto Err = readULEB128(Result))
return Err;
if (Result > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the value of ULEB128 is too big");
return Error::success();
}
Error RawCoverageReader::readString(StringRef &Result) {
uint64_t Length;
if (auto Err = readSize(Length))
return Err;
Result = Data.substr(0, Length);
Data = Data.substr(Length);
return Error::success();
}
Error RawCoverageFilenamesReader::read(CovMapVersion Version) {
uint64_t NumFilenames;
if (auto Err = readSize(NumFilenames))
return Err;
if (!NumFilenames)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"number of filenames is zero");
if (Version < CovMapVersion::Version4)
return readUncompressed(Version, NumFilenames);
// The uncompressed length may exceed the size of the encoded filenames.
// Skip size validation.
uint64_t UncompressedLen;
if (auto Err = readULEB128(UncompressedLen))
return Err;
uint64_t CompressedLen;
if (auto Err = readSize(CompressedLen))
return Err;
if (CompressedLen > 0) {
if (!compression::zlib::isAvailable())
return make_error<CoverageMapError>(
coveragemap_error::decompression_failed);
// Allocate memory for the decompressed filenames.
SmallVector<uint8_t, 0> StorageBuf;
// Read compressed filenames.
StringRef CompressedFilenames = Data.substr(0, CompressedLen);
Data = Data.substr(CompressedLen);
auto Err = compression::zlib::decompress(
arrayRefFromStringRef(CompressedFilenames), StorageBuf,
UncompressedLen);
if (Err) {
consumeError(std::move(Err));
return make_error<CoverageMapError>(
coveragemap_error::decompression_failed);
}
RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames,
CompilationDir);
return Delegate.readUncompressed(Version, NumFilenames);
}
return readUncompressed(Version, NumFilenames);
}
Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version,
uint64_t NumFilenames) {
// Read uncompressed filenames.
if (Version < CovMapVersion::Version6) {
for (size_t I = 0; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
Filenames.push_back(Filename.str());
}
} else {
StringRef CWD;
if (auto Err = readString(CWD))
return Err;
Filenames.push_back(CWD.str());
for (size_t I = 1; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
if (sys::path::is_absolute(Filename)) {
Filenames.push_back(Filename.str());
} else {
SmallString<256> P;
if (!CompilationDir.empty())
P.assign(CompilationDir);
else
P.assign(CWD);
llvm::sys::path::append(P, Filename);
sys::path::remove_dots(P, /*remove_dot_dot=*/true);
Filenames.push_back(static_cast<std::string>(P.str()));
}
}
}
return Error::success();
}
Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
auto Tag = Value & Counter::EncodingTagMask;
switch (Tag) {
case Counter::Zero:
C = Counter::getZero();
return Error::success();
case Counter::CounterValueReference:
C = Counter::getCounter(Value >> Counter::EncodingTagBits);
return Error::success();
default:
break;
}
Tag -= Counter::Expression;
switch (Tag) {
case CounterExpression::Subtract:
case CounterExpression::Add: {
auto ID = Value >> Counter::EncodingTagBits;
if (ID >= Expressions.size())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"counter expression is invalid");
Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
C = Counter::getExpression(ID);
break;
}
default:
return make_error<CoverageMapError>(coveragemap_error::malformed,
"counter expression kind is invalid");
}
return Error::success();
}
Error RawCoverageMappingReader::readCounter(Counter &C) {
uint64_t EncodedCounter;
if (auto Err =
readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = decodeCounter(EncodedCounter, C))
return Err;
return Error::success();
}
static const unsigned EncodingExpansionRegionBit = 1
<< Counter::EncodingTagBits;
/// Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
Error RawCoverageMappingReader::readMappingRegionsSubArray(
std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
size_t NumFileIDs) {
uint64_t NumRegions;
if (auto Err = readSize(NumRegions))
return Err;
unsigned LineStart = 0;
for (size_t I = 0; I < NumRegions; ++I) {
Counter C, C2;
uint64_t BIDX = 0, NC = 0, ID = 0, TID = 0, FID = 0;
CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
// Read the combined counter + region kind.
uint64_t EncodedCounterAndRegion;
if (auto Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return Err;
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
uint64_t ExpandedFileID = 0;
// If Tag does not represent a ZeroCounter, then it is understood to refer
// to a counter or counter expression with region kind assumed to be
// "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the
// referenced counter or counter expression (and nothing else).
//
// If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set,
// then EncodedCounterAndRegion is interpreted to represent an
// ExpansionRegion. In all other cases, EncodedCounterAndRegion is
// interpreted to refer to a specific region kind, after which additional
// fields may be read (e.g. BranchRegions have two encoded counters that
// follow an encoded region kind value).
if (Tag != Counter::Zero) {
if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
return Err;
} else {
// Is it an expansion region?
if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
Kind = CounterMappingRegion::ExpansionRegion;
ExpandedFileID = EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits;
if (ExpandedFileID >= NumFileIDs)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"ExpandedFileID is invalid");
} else {
switch (EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits) {
case CounterMappingRegion::CodeRegion:
// Don't do anything when we have a code region with a zero counter.
break;
case CounterMappingRegion::SkippedRegion:
Kind = CounterMappingRegion::SkippedRegion;
break;
case CounterMappingRegion::BranchRegion:
// For a Branch Region, read two successive counters.
Kind = CounterMappingRegion::BranchRegion;
if (auto Err = readCounter(C))
return Err;
if (auto Err = readCounter(C2))
return Err;
break;
case CounterMappingRegion::MCDCBranchRegion:
// For a MCDC Branch Region, read two successive counters and 3 IDs.
Kind = CounterMappingRegion::MCDCBranchRegion;
if (auto Err = readCounter(C))
return Err;
if (auto Err = readCounter(C2))
return Err;
if (auto Err = readIntMax(ID, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(TID, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(FID, std::numeric_limits<unsigned>::max()))
return Err;
break;
case CounterMappingRegion::MCDCDecisionRegion:
Kind = CounterMappingRegion::MCDCDecisionRegion;
if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(NC, std::numeric_limits<unsigned>::max()))
return Err;
break;
default:
return make_error<CoverageMapError>(coveragemap_error::malformed,
"region kind is incorrect");
}
}
}
// Read the source range.
uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
if (auto Err =
readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readULEB128(ColumnStart))
return Err;
if (ColumnStart > std::numeric_limits<unsigned>::max())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"start column is too big");
if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
return Err;
LineStart += LineStartDelta;
// If the high bit of ColumnEnd is set, this is a gap region.
if (ColumnEnd & (1U << 31)) {
Kind = CounterMappingRegion::GapRegion;
ColumnEnd &= ~(1U << 31);
}
// Adjust the column locations for the empty regions that are supposed to
// cover whole lines. Those regions should be encoded with the
// column range (1 -> std::numeric_limits<unsigned>::max()), but because
// the encoded std::numeric_limits<unsigned>::max() is several bytes long,
// we set the column range to (0 -> 0) to ensure that the column start and
// column end take up one byte each.
// The std::numeric_limits<unsigned>::max() is used to represent a column
// position at the end of the line without knowing the length of that line.
if (ColumnStart == 0 && ColumnEnd == 0) {
ColumnStart = 1;
ColumnEnd = std::numeric_limits<unsigned>::max();
}
LLVM_DEBUG({
dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
<< ColumnStart << " -> " << (LineStart + NumLines) << ":"
<< ColumnEnd << ", ";
if (Kind == CounterMappingRegion::ExpansionRegion)
dbgs() << "Expands to file " << ExpandedFileID;
else
CounterMappingContext(Expressions).dump(C, dbgs());
dbgs() << "\n";
});
auto CMR = CounterMappingRegion(
C, C2,
CounterMappingRegion::MCDCParameters{
static_cast<unsigned>(BIDX), static_cast<unsigned>(NC),
static_cast<unsigned>(ID), static_cast<unsigned>(TID),
static_cast<unsigned>(FID)},
InferredFileID, ExpandedFileID, LineStart, ColumnStart,
LineStart + NumLines, ColumnEnd, Kind);
if (CMR.startLoc() > CMR.endLoc())
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"counter mapping region locations are incorrect");
MappingRegions.push_back(CMR);
}
return Error::success();
}
Error RawCoverageMappingReader::read() {
// Read the virtual file mapping.
SmallVector<unsigned, 8> VirtualFileMapping;
uint64_t NumFileMappings;
if (auto Err = readSize(NumFileMappings))
return Err;
for (size_t I = 0; I < NumFileMappings; ++I) {
uint64_t FilenameIndex;
if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
return Err;
VirtualFileMapping.push_back(FilenameIndex);
}
// Construct the files using unique filenames and virtual file mapping.
for (auto I : VirtualFileMapping) {
Filenames.push_back(TranslationUnitFilenames[I]);
}
// Read the expressions.
uint64_t NumExpressions;
if (auto Err = readSize(NumExpressions))
return Err;
// Create an array of dummy expressions that get the proper counters
// when the expressions are read, and the proper kinds when the counters
// are decoded.
Expressions.resize(
NumExpressions,
CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
for (size_t I = 0; I < NumExpressions; ++I) {
if (auto Err = readCounter(Expressions[I].LHS))
return Err;
if (auto Err = readCounter(Expressions[I].RHS))
return Err;
}
// Read the mapping regions sub-arrays.
for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
InferredFileID < S; ++InferredFileID) {
if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
VirtualFileMapping.size()))
return Err;
}
// Set the counters for the expansion regions.
// i.e. Counter of expansion region = counter of the first region
// from the expanded file.
// Perform multiple passes to correctly propagate the counters through
// all the nested expansion regions.
SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
for (auto &R : MappingRegions) {
if (R.Kind != CounterMappingRegion::ExpansionRegion)
continue;
assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
}
for (auto &R : MappingRegions) {
if (FileIDExpansionRegionMapping[R.FileID]) {
FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
FileIDExpansionRegionMapping[R.FileID] = nullptr;
}
}
}
return Error::success();
}
Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
// A dummy coverage mapping data consists of just one region with zero count.
uint64_t NumFileMappings;
if (Error Err = readSize(NumFileMappings))
return std::move(Err);
if (NumFileMappings != 1)
return false;
// We don't expect any specific value for the filename index, just skip it.
uint64_t FilenameIndex;
if (Error Err =
readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
return std::move(Err);
uint64_t NumExpressions;
if (Error Err = readSize(NumExpressions))
return std::move(Err);
if (NumExpressions != 0)
return false;
uint64_t NumRegions;
if (Error Err = readSize(NumRegions))
return std::move(Err);
if (NumRegions != 1)
return false;
uint64_t EncodedCounterAndRegion;
if (Error Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return std::move(Err);
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
return Tag == Counter::Zero;
}
Error InstrProfSymtab::create(SectionRef &Section) {
Expected<StringRef> DataOrErr = Section.getContents();
if (!DataOrErr)
return DataOrErr.takeError();
Data = *DataOrErr;
Address = Section.getAddress();
// If this is a linked PE/COFF file, then we have to skip over the null byte
// that is allocated in the .lprfn$A section in the LLVM profiling runtime.
// If the name section is .lprfcovnames, it doesn't have the null byte at the
// beginning.
const ObjectFile *Obj = Section.getObject();
if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
if (Expected<StringRef> NameOrErr = Section.getName())
if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF))
Data = Data.drop_front(1);
return Error::success();
}
StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
if (Pointer < Address)
return StringRef();
auto Offset = Pointer - Address;
if (Offset + Size > Data.size())
return StringRef();
return Data.substr(Pointer - Address, Size);
}
// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
// The hash value of dummy mapping records is always zero.
if (Hash)
return false;
return RawCoverageMappingDummyChecker(Mapping).isDummy();
}
/// A range of filename indices. Used to specify the location of a batch of
/// filenames in a vector-like container.
struct FilenameRange {
unsigned StartingIndex;
unsigned Length;
FilenameRange(unsigned StartingIndex, unsigned Length)
: StartingIndex(StartingIndex), Length(Length) {}
void markInvalid() { Length = 0; }
bool isInvalid() const { return Length == 0; }
};
namespace {
/// The interface to read coverage mapping function records for a module.
struct CovMapFuncRecordReader {
virtual ~CovMapFuncRecordReader() = default;
// Read a coverage header.
//
// \p CovBuf points to the buffer containing the \c CovHeader of the coverage
// mapping data associated with the module.
//
// Returns a pointer to the next \c CovHeader if it exists, or to an address
// greater than \p CovEnd if not.
virtual Expected<const char *> readCoverageHeader(const char *CovBuf,
const char *CovBufEnd) = 0;
// Read function records.
//
// \p FuncRecBuf points to the buffer containing a batch of function records.
// \p FuncRecBufEnd points past the end of the batch of records.
//
// Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames
// associated with the function records. It is unused in Version4.
//
// Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage
// mappings associated with the function records. It is unused in Version4.
virtual Error
readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
std::optional<FilenameRange> OutOfLineFileRange,
const char *OutOfLineMappingBuf,
const char *OutOfLineMappingBufEnd) = 0;
template <class IntPtrT, llvm::endianness Endian>
static Expected<std::unique_ptr<CovMapFuncRecordReader>>
get(CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
std::vector<std::string> &F);
};
// A class for reading coverage mapping function records for a module.
template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian>
class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
using FuncRecordType =
typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
// Maps function's name references to the indexes of their records
// in \c Records.
DenseMap<NameRefType, size_t> FunctionRecords;
InstrProfSymtab &ProfileNames;
StringRef CompilationDir;
std::vector<std::string> &Filenames;
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
// Maps a hash of the filenames in a TU to a \c FileRange. The range
// specifies the location of the hashed filenames in \c Filenames.
DenseMap<uint64_t, FilenameRange> FileRangeMap;
// Add the record to the collection if we don't already have a record that
// points to the same function name. This is useful to ignore the redundant
// records for the functions with ODR linkage.
// In addition, prefer records with real coverage mapping data to dummy
// records, which were emitted for inline functions which were seen but
// not used in the corresponding translation unit.
Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
StringRef Mapping,
FilenameRange FileRange) {
++CovMapNumRecords;
uint64_t FuncHash = CFR->template getFuncHash<Endian>();
NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
auto InsertResult =
FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
if (InsertResult.second) {
StringRef FuncName;
if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
return Err;
if (FuncName.empty())
return make_error<InstrProfError>(instrprof_error::malformed,
"function name is empty");
++CovMapNumUsedRecords;
Records.emplace_back(Version, FuncName, FuncHash, Mapping,
FileRange.StartingIndex, FileRange.Length);
return Error::success();
}
// Update the existing record if it's a dummy and the new record is real.
size_t OldRecordIndex = InsertResult.first->second;
BinaryCoverageReader::ProfileMappingRecord &OldRecord =
Records[OldRecordIndex];
Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
OldRecord.FunctionHash, OldRecord.CoverageMapping);
if (Error Err = OldIsDummyExpected.takeError())
return Err;
if (!*OldIsDummyExpected)
return Error::success();
Expected<bool> NewIsDummyExpected =
isCoverageMappingDummy(FuncHash, Mapping);
if (Error Err = NewIsDummyExpected.takeError())
return Err;
if (*NewIsDummyExpected)
return Error::success();
++CovMapNumUsedRecords;
OldRecord.FunctionHash = FuncHash;
OldRecord.CoverageMapping = Mapping;
OldRecord.FilenamesBegin = FileRange.StartingIndex;
OldRecord.FilenamesSize = FileRange.Length;
return Error::success();
}
public:
VersionedCovMapFuncRecordReader(
InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
std::vector<std::string> &F)
: ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {}
~VersionedCovMapFuncRecordReader() override = default;
Expected<const char *> readCoverageHeader(const char *CovBuf,
const char *CovBufEnd) override {
using namespace support;
if (CovBuf + sizeof(CovMapHeader) > CovBufEnd)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"coverage mapping header section is larger than buffer size");
auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf);
uint32_t NRecords = CovHeader->getNRecords<Endian>();
uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
CovBuf = reinterpret_cast<const char *>(CovHeader + 1);
// Skip past the function records, saving the start and end for later.
// This is a no-op in Version4 (function records are read after all headers
// are read).
const char *FuncRecBuf = nullptr;
const char *FuncRecBufEnd = nullptr;
if (Version < CovMapVersion::Version4)
FuncRecBuf = CovBuf;
CovBuf += NRecords * sizeof(FuncRecordType);
if (Version < CovMapVersion::Version4)
FuncRecBufEnd = CovBuf;
// Get the filenames.
if (CovBuf + FilenamesSize > CovBufEnd)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"filenames section is larger than buffer size");
size_t FilenamesBegin = Filenames.size();
StringRef FilenameRegion(CovBuf, FilenamesSize);
RawCoverageFilenamesReader Reader(FilenameRegion, Filenames,
CompilationDir);
if (auto Err = Reader.read(Version))
return std::move(Err);
CovBuf += FilenamesSize;
FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin);
if (Version >= CovMapVersion::Version4) {
// Map a hash of the filenames region to the filename range associated
// with this coverage header.
int64_t FilenamesRef =
llvm::IndexedInstrProf::ComputeHash(FilenameRegion);
auto Insert =
FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange));
if (!Insert.second) {
// The same filenames ref was encountered twice. It's possible that
// the associated filenames are the same.
auto It = Filenames.begin();
FilenameRange &OrigRange = Insert.first->getSecond();
if (std::equal(It + OrigRange.StartingIndex,
It + OrigRange.StartingIndex + OrigRange.Length,
It + FileRange.StartingIndex,
It + FileRange.StartingIndex + FileRange.Length))
// Map the new range to the original one.
FileRange = OrigRange;
else
// This is a hash collision. Mark the filenames ref invalid.
OrigRange.markInvalid();
}
}
// We'll read the coverage mapping records in the loop below.
// This is a no-op in Version4 (coverage mappings are not affixed to the
// coverage header).
const char *MappingBuf = CovBuf;
if (Version >= CovMapVersion::Version4 && CoverageSize != 0)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"coverage mapping size is not zero");
CovBuf += CoverageSize;
const char *MappingEnd = CovBuf;
if (CovBuf > CovBufEnd)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"function records section is larger than buffer size");
if (Version < CovMapVersion::Version4) {
// Read each function record.
if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange,
MappingBuf, MappingEnd))
return std::move(E);
}
// Each coverage map has an alignment of 8, so we need to adjust alignment
// before reading the next map.
CovBuf += offsetToAlignedAddr(CovBuf, Align(8));
return CovBuf;
}
Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
std::optional<FilenameRange> OutOfLineFileRange,
const char *OutOfLineMappingBuf,
const char *OutOfLineMappingBufEnd) override {
auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf);
while ((const char *)CFR < FuncRecBufEnd) {
// Validate the length of the coverage mapping for this function.
const char *NextMappingBuf;
const FuncRecordType *NextCFR;
std::tie(NextMappingBuf, NextCFR) =
CFR->template advanceByOne<Endian>(OutOfLineMappingBuf);
if (Version < CovMapVersion::Version4)
if (NextMappingBuf > OutOfLineMappingBufEnd)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"next mapping buffer is larger than buffer size");
// Look up the set of filenames associated with this function record.
std::optional<FilenameRange> FileRange;
if (Version < CovMapVersion::Version4) {
FileRange = OutOfLineFileRange;
} else {
uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>();
auto It = FileRangeMap.find(FilenamesRef);
if (It == FileRangeMap.end())
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"no filename found for function with hash=0x" +
Twine::utohexstr(FilenamesRef));
else
FileRange = It->getSecond();
}
// Now, read the coverage data.
if (FileRange && !FileRange->isInvalid()) {
StringRef Mapping =
CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf);
if (Version >= CovMapVersion::Version4 &&
Mapping.data() + Mapping.size() > FuncRecBufEnd)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"coverage mapping data is larger than buffer size");
if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange))
return Err;
}
std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR);
}
return Error::success();
}
};
} // end anonymous namespace
template <class IntPtrT, llvm::endianness Endian>
Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
std::vector<std::string> &F) {
using namespace coverage;
switch (Version) {
case CovMapVersion::Version1:
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F);
case CovMapVersion::Version2:
case CovMapVersion::Version3:
case CovMapVersion::Version4:
case CovMapVersion::Version5:
case CovMapVersion::Version6:
case CovMapVersion::Version7:
// Decompress the name data.
if (Error E = P.create(P.getNameData()))
return std::move(E);
if (Version == CovMapVersion::Version2)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F);
else if (Version == CovMapVersion::Version3)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F);
else if (Version == CovMapVersion::Version4)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F);
else if (Version == CovMapVersion::Version5)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F);
else if (Version == CovMapVersion::Version6)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F);
else if (Version == CovMapVersion::Version7)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F);
}
llvm_unreachable("Unsupported version");
}
template <typename T, llvm::endianness Endian>
static Error readCoverageMappingData(
InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
StringRef CompilationDir, std::vector<std::string> &Filenames) {
using namespace coverage;
// Read the records in the coverage data section.
auto CovHeader =
reinterpret_cast<const CovMapHeader *>(CovMap.data());
CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
if (Version > CovMapVersion::CurrentVersion)
return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
CompilationDir, Filenames);
if (Error E = ReaderExpected.takeError())
return E;
auto Reader = std::move(ReaderExpected.get());
const char *CovBuf = CovMap.data();
const char *CovBufEnd = CovBuf + CovMap.size();
const char *FuncRecBuf = FuncRecords.data();
const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size();
while (CovBuf < CovBufEnd) {
// Read the current coverage header & filename data.
//
// Prior to Version4, this also reads all function records affixed to the
// header.
//
// Return a pointer to the next coverage header.
auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd);
if (auto E = NextOrErr.takeError())
return E;
CovBuf = NextOrErr.get();
}
// In Version4, function records are not affixed to coverage headers. Read
// the records from their dedicated section.
if (Version >= CovMapVersion::Version4)
return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt,
nullptr, nullptr);
return Error::success();
}
Expected<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::createCoverageReaderFromBuffer(
StringRef Coverage, FuncRecordsStorage &&FuncRecords,
InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress,
llvm::endianness Endian, StringRef CompilationDir) {
std::unique_ptr<BinaryCoverageReader> Reader(
new BinaryCoverageReader(std::move(FuncRecords)));
Reader->ProfileNames = std::move(ProfileNames);
StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer();
if (BytesInAddress == 4 && Endian == llvm::endianness::little) {
if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, CompilationDir, Reader->Filenames))
return std::move(E);
} else if (BytesInAddress == 4 && Endian == llvm::endianness::big) {
if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, CompilationDir, Reader->Filenames))
return std::move(E);
} else if (BytesInAddress == 8 && Endian == llvm::endianness::little) {
if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, CompilationDir, Reader->Filenames))
return std::move(E);
} else if (BytesInAddress == 8 && Endian == llvm::endianness::big) {
if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, CompilationDir, Reader->Filenames))
return std::move(E);
} else
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"not supported endianness or bytes in address");
return std::move(Reader);
}
static Expected<std::unique_ptr<BinaryCoverageReader>>
loadTestingFormat(StringRef Data, StringRef CompilationDir) {
uint8_t BytesInAddress = 8;
llvm::endianness Endian = llvm::endianness::little;
// Read the magic and version.
Data = Data.substr(sizeof(TestingFormatMagic));
if (Data.size() < sizeof(uint64_t))
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of data is too small");
auto TestingVersion =
support::endian::byte_swap<uint64_t, llvm::endianness::little>(
*reinterpret_cast<const uint64_t *>(Data.data()));
Data = Data.substr(sizeof(uint64_t));
// Read the ProfileNames data.
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"the size of TestingFormatMagic is too big");
Data = Data.substr(N);
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
N = 0;
uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of ULEB128 is too big");
Data = Data.substr(N);
if (Data.size() < ProfileNamesSize)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of ProfileNames is too big");
InstrProfSymtab ProfileNames;
if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
return std::move(E);
Data = Data.substr(ProfileNamesSize);
// In Version2, the size of CoverageMapping is stored directly.
uint64_t CoverageMappingSize;
if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) {
N = 0;
CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of ULEB128 is too big");
Data = Data.substr(N);
if (CoverageMappingSize < sizeof(CovMapHeader))
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"the size of CoverageMapping is teoo small");
} else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) {
return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
}
// Skip the padding bytes because coverage map data has an alignment of 8.
auto Pad = offsetToAlignedAddr(Data.data(), Align(8));
if (Data.size() < Pad)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"insufficient padding");
Data = Data.substr(Pad);
if (Data.size() < sizeof(CovMapHeader))
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"coverage mapping header section is larger than data size");
auto const *CovHeader = reinterpret_cast<const CovMapHeader *>(
Data.substr(0, sizeof(CovMapHeader)).data());
auto Version =
CovMapVersion(CovHeader->getVersion<llvm::endianness::little>());
// In Version1, the size of CoverageMapping is calculated.
if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) {
if (Version < CovMapVersion::Version4) {
CoverageMappingSize = Data.size();
} else {
auto FilenamesSize =
CovHeader->getFilenamesSize<llvm::endianness::little>();
CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize;
}
}
auto CoverageMapping = Data.substr(0, CoverageMappingSize);
Data = Data.substr(CoverageMappingSize);
// Read the CoverageRecords data.
if (Version < CovMapVersion::Version4) {
if (!Data.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"data is not empty");
} else {
// Skip the padding bytes because coverage records data has an alignment
// of 8.
Pad = offsetToAlignedAddr(Data.data(), Align(8));
if (Data.size() < Pad)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"insufficient padding");
Data = Data.substr(Pad);
}
BinaryCoverageReader::FuncRecordsStorage CoverageRecords =
MemoryBuffer::getMemBuffer(Data);
return BinaryCoverageReader::createCoverageReaderFromBuffer(
CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames),
BytesInAddress, Endian, CompilationDir);
}
/// Find all sections that match \p IPSK name. There may be more than one if
/// comdats are in use, e.g. for the __llvm_covfun section on ELF.
static Expected<std::vector<SectionRef>>
lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) {
auto ObjFormat = OF.getTripleObjectFormat();
auto Name =
getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false);
// On COFF, the object file section name may end in "$M". This tells the
// linker to sort these sections between "$A" and "$Z". The linker removes the
// dollar and everything after it in the final binary. Do the same to match.
bool IsCOFF = isa<COFFObjectFile>(OF);
auto stripSuffix = [IsCOFF](StringRef N) {
return IsCOFF ? N.split('$').first : N;
};
Name = stripSuffix(Name);
std::vector<SectionRef> Sections;
for (const auto &Section : OF.sections()) {
Expected<StringRef> NameOrErr = Section.getName();
if (!NameOrErr)
return NameOrErr.takeError();
if (stripSuffix(*NameOrErr) == Name) {
// COFF profile name section contains two null bytes indicating the
// start/end of the section. If its size is 2 bytes, it's empty.
if (IsCOFF && IPSK == IPSK_name && Section.getSize() == 2)
continue;
Sections.push_back(Section);
}
}
if (Sections.empty())
return make_error<CoverageMapError>(coveragemap_error::no_data_found);
return Sections;
}
static Expected<std::unique_ptr<BinaryCoverageReader>>
loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch,
StringRef CompilationDir = "",
object::BuildIDRef *BinaryID = nullptr) {
std::unique_ptr<ObjectFile> OF;
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
// If we have a universal binary, try to look up the object for the
// appropriate architecture.
auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
if (!ObjectFileOrErr)
return ObjectFileOrErr.takeError();
OF = std::move(ObjectFileOrErr.get());
} else if (isa<ObjectFile>(Bin.get())) {
// For any other object file, upcast and take ownership.
OF.reset(cast<ObjectFile>(Bin.release()));
// If we've asked for a particular arch, make sure they match.
if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
return errorCodeToError(object_error::arch_not_found);
} else
// We can only handle object files.
return make_error<CoverageMapError>(coveragemap_error::malformed,
"binary is not an object file");
// The coverage uses native pointer sizes for the object it's written in.
uint8_t BytesInAddress = OF->getBytesInAddress();
llvm::endianness Endian =
OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
// Look for the sections that we are interested in.
InstrProfSymtab ProfileNames;
std::vector<SectionRef> NamesSectionRefs;
// If IPSK_name is not found, fallback to search for IPK_covname, which is
// used when binary correlation is enabled.
auto NamesSection = lookupSections(*OF, IPSK_name);
if (auto E = NamesSection.takeError()) {
consumeError(std::move(E));
NamesSection = lookupSections(*OF, IPSK_covname);
if (auto E = NamesSection.takeError())
return std::move(E);
}
NamesSectionRefs = *NamesSection;
if (NamesSectionRefs.size() != 1)
return make_error<CoverageMapError>(
coveragemap_error::malformed,
"the size of coverage mapping section is not one");
if (Error E = ProfileNames.create(NamesSectionRefs.back()))
return std::move(E);
auto CoverageSection = lookupSections(*OF, IPSK_covmap);
if (auto E = CoverageSection.takeError())
return std::move(E);
std::vector<SectionRef> CoverageSectionRefs = *CoverageSection;
if (CoverageSectionRefs.size() != 1)
return make_error<CoverageMapError>(coveragemap_error::malformed,
"the size of name section is not one");
auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents();
if (!CoverageMappingOrErr)
return CoverageMappingOrErr.takeError();
StringRef CoverageMapping = CoverageMappingOrErr.get();
// Look for the coverage records section (Version4 only).
auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun);
BinaryCoverageReader::FuncRecordsStorage FuncRecords;
if (auto E = CoverageRecordsSections.takeError()) {
consumeError(std::move(E));
FuncRecords = MemoryBuffer::getMemBuffer("");
} else {
// Compute the FuncRecordsBuffer of the buffer, taking into account the
// padding between each record, and making sure the first block is aligned
// in memory to maintain consistency between buffer address and size
// alignment.
const Align RecordAlignment(8);
uint64_t FuncRecordsSize = 0;
for (SectionRef Section : *CoverageRecordsSections) {
auto CoverageRecordsOrErr = Section.getContents();
if (!CoverageRecordsOrErr)
return CoverageRecordsOrErr.takeError();
FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment);
}
auto WritableBuffer =
WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize);
char *FuncRecordsBuffer = WritableBuffer->getBufferStart();
assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) &&
"Allocated memory is correctly aligned");
for (SectionRef Section : *CoverageRecordsSections) {
auto CoverageRecordsOrErr = Section.getContents();
if (!CoverageRecordsOrErr)
return CoverageRecordsOrErr.takeError();
const auto &CoverageRecords = CoverageRecordsOrErr.get();
FuncRecordsBuffer = std::copy(CoverageRecords.begin(),
CoverageRecords.end(), FuncRecordsBuffer);
FuncRecordsBuffer =
std::fill_n(FuncRecordsBuffer,
alignAddr(FuncRecordsBuffer, RecordAlignment) -
(uintptr_t)FuncRecordsBuffer,
'\0');
}
assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() &&
"consistent init");
FuncRecords = std::move(WritableBuffer);
}
if (BinaryID)
*BinaryID = getBuildID(OF.get());
return BinaryCoverageReader::createCoverageReaderFromBuffer(
CoverageMapping, std::move(FuncRecords), std::move(ProfileNames),
BytesInAddress, Endian, CompilationDir);
}
/// Determine whether \p Arch is invalid or empty, given \p Bin.
static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) {
// If we have a universal binary and Arch doesn't identify any of its slices,
// it's user error.
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) {
for (auto &ObjForArch : Universal->objects())
if (Arch == ObjForArch.getArchFlagName())
return false;
return true;
}
return false;
}
Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
BinaryCoverageReader::create(
MemoryBufferRef ObjectBuffer, StringRef Arch,
SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers,
StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) {
std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;
if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) {
uint64_t Magic =
support::endian::byte_swap<uint64_t, llvm::endianness::little>(
*reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart()));
if (Magic == TestingFormatMagic) {
// This is a special format used for testing.
auto ReaderOrErr =
loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir);
if (!ReaderOrErr)
return ReaderOrErr.takeError();
Readers.push_back(std::move(ReaderOrErr.get()));
return std::move(Readers);
}
}
auto BinOrErr = createBinary(ObjectBuffer);
if (!BinOrErr)
return BinOrErr.takeError();
std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());
if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch))
return make_error<CoverageMapError>(
coveragemap_error::invalid_or_missing_arch_specifier);
// MachO universal binaries which contain archives need to be treated as
// archives, not as regular binaries.
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
for (auto &ObjForArch : Universal->objects()) {
// Skip slices within the universal binary which target the wrong arch.
std::string ObjArch = ObjForArch.getArchFlagName();
if (Arch != ObjArch)
continue;
auto ArchiveOrErr = ObjForArch.getAsArchive();
if (!ArchiveOrErr) {
// If this is not an archive, try treating it as a regular object.
consumeError(ArchiveOrErr.takeError());
break;
}
return BinaryCoverageReader::create(
ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers,
CompilationDir, BinaryIDs);
}
}
// Load coverage out of archive members.
if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
Error Err = Error::success();
for (auto &Child : Ar->children(Err)) {
Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
if (!ChildBufOrErr)
return ChildBufOrErr.takeError();
auto ChildReadersOrErr = BinaryCoverageReader::create(
ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir,
BinaryIDs);
if (!ChildReadersOrErr)
return ChildReadersOrErr.takeError();
for (auto &Reader : ChildReadersOrErr.get())
Readers.push_back(std::move(Reader));
}
if (Err)
return std::move(Err);
// Thin archives reference object files outside of the archive file, i.e.
// files which reside in memory not owned by the caller. Transfer ownership
// to the caller.
if (Ar->isThin())
for (auto &Buffer : Ar->takeThinBuffers())
ObjectFileBuffers.push_back(std::move(Buffer));
return std::move(Readers);
}
object::BuildIDRef BinaryID;
auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir,
BinaryIDs ? &BinaryID : nullptr);
if (!ReaderOrErr)
return ReaderOrErr.takeError();
Readers.push_back(std::move(ReaderOrErr.get()));
if (!BinaryID.empty())
BinaryIDs->push_back(BinaryID);
return std::move(Readers);
}
Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
if (CurrentRecord >= MappingRecords.size())
return make_error<CoverageMapError>(coveragemap_error::eof);
FunctionsFilenames.clear();
Expressions.clear();
MappingRegions.clear();
auto &R = MappingRecords[CurrentRecord];
auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize);
RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames,
Expressions, MappingRegions);
if (auto Err = Reader.read())
return Err;
Record.FunctionName = R.FunctionName;
Record.FunctionHash = R.FunctionHash;
Record.Filenames = FunctionsFilenames;
Record.Expressions = Expressions;
Record.MappingRegions = MappingRegions;
++CurrentRecord;
return Error::success();
}