Files
clang-p2996/llvm/test/CodeGen/AMDGPU/fold-fabs.ll
Jay Foad f2c164c815 [AMDGPU] Do not wait for vscnt on function entry and return
SIInsertWaitcnts inserts waitcnt instructions to resolve data
dependencies. The GFX10+ vscnt (VMEM store count) counter is never used
in this way. It is only used to resolve memory dependencies, and that is
handled by SIMemoryLegalizer. Hence there is no need to conservatively
wait for vscnt to be 0 on function entry and before returns.

Differential Revision: https://reviews.llvm.org/D153537
2023-07-04 12:22:38 +01:00

239 lines
8.9 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 2
; RUN: llc -march=amdgcn -mcpu=gfx1030 -verify-machineinstrs -disable-machine-sink=1 - < %s | FileCheck -check-prefix=GFX10 %s
define float @fold_abs_in_branch(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: s_mov_b32 s4, exec_lo
; GFX10-NEXT: v_add_f32_e32 v1, v0, v1
; GFX10-NEXT: v_add_f32_e64 v0, |v1|, |v1|
; GFX10-NEXT: v_cmpx_nlt_f32_e32 1.0, v0
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_mul_f32_e64 v0, 0x3e4ccccd, |v1|
; GFX10-NEXT: ; %bb.2: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %1)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %if, label %exit
if:
%if.3 = fmul reassoc nnan nsz arcp contract afn float %2, 0x3FC99999A0000000
br label %exit
exit:
%ret = phi float [ %3, %entry ], [ %if.3, %if ]
ret float %ret
}
define float @fold_abs_in_branch_multiple_users(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch_multiple_users:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: s_mov_b32 s4, exec_lo
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: v_add_f32_e64 v1, |v0|, |v0|
; GFX10-NEXT: v_cmpx_nlt_f32_e32 1.0, v1
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_mul_f32_e64 v1, 0x3e4ccccd, |v0|
; GFX10-NEXT: ; %bb.2: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: v_add_f32_e64 v0, |v0|, 2.0
; GFX10-NEXT: v_mul_f32_e32 v0, v0, v1
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %1)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %if, label %exit
if:
%if.3 = fmul reassoc nnan nsz arcp contract afn float %2, 0x3FC99999A0000000
br label %exit
exit:
%exit.phi = phi float [ %3, %entry ], [ %if.3, %if ]
%ret.0 = fadd reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%ret.1 = fmul float %ret.0, %exit.phi
ret float %ret.1
}
define float @fold_abs_in_branch_undef(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch_undef:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e64 v0, |s4|, |s4|
; GFX10-NEXT: v_cmp_lt_f32_e32 vcc_lo, 1.0, v0
; GFX10-NEXT: s_cbranch_vccnz .LBB2_2
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_mul_f32_e64 v0, 0x3e4ccccd, |s4|
; GFX10-NEXT: .LBB2_2: ; %exit
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float undef)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %if, label %exit
if:
%if.3 = fmul reassoc nnan nsz arcp contract afn float %2, 0x3FC99999A0000000
br label %exit
exit:
%ret = phi float [ %3, %entry ], [ %if.3, %if ]
ret float %ret
}
define float @fold_abs_in_branch_poison(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch_poison:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e64 v0, |s4|, |s4|
; GFX10-NEXT: v_cmp_lt_f32_e32 vcc_lo, 1.0, v0
; GFX10-NEXT: s_cbranch_vccnz .LBB3_2
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_mul_f32_e64 v0, 0x3e4ccccd, |s4|
; GFX10-NEXT: .LBB3_2: ; %exit
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float poison)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %if, label %exit
if:
%if.3 = fmul reassoc nnan nsz arcp contract afn float %2, 0x3FC99999A0000000
br label %exit
exit:
%ret = phi float [ %3, %entry ], [ %if.3, %if ]
ret float %ret
}
define float @fold_abs_in_branch_fabs(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch_fabs:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: s_mov_b32 s4, exec_lo
; GFX10-NEXT: v_add_f32_e32 v1, v0, v1
; GFX10-NEXT: v_add_f32_e64 v0, |v1|, |v1|
; GFX10-NEXT: v_cmpx_nlt_f32_e32 1.0, v0
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_mul_f32_e64 v0, 0x3e4ccccd, |v1|
; GFX10-NEXT: ; %bb.2: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %1)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %if, label %exit
if:
%if.fabs = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %2)
%if.3 = fmul reassoc nnan nsz arcp contract afn float %if.fabs, 0x3FC99999A0000000
br label %exit
exit:
%ret = phi float [ %3, %entry ], [ %if.3, %if ]
ret float %ret
}
define float @fold_abs_in_branch_phi(float %arg1, float %arg2) {
; GFX10-LABEL: fold_abs_in_branch_phi:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: s_mov_b32 s4, exec_lo
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: v_add_f32_e64 v0, |v0|, |v0|
; GFX10-NEXT: v_cmpx_nlt_f32_e32 1.0, v0
; GFX10-NEXT: s_cbranch_execz .LBB5_3
; GFX10-NEXT: ; %bb.1: ; %header.preheader
; GFX10-NEXT: ; implicit-def: $vgpr0
; GFX10-NEXT: .LBB5_2: ; %header
; GFX10-NEXT: ; =>This Inner Loop Header: Depth=1
; GFX10-NEXT: v_mul_f32_e32 v0, 0x40400000, v0
; GFX10-NEXT: v_cmp_lt_f32_e32 vcc_lo, -1.0, v0
; GFX10-NEXT: v_and_b32_e32 v0, 0x7fffffff, v0
; GFX10-NEXT: s_cbranch_vccnz .LBB5_2
; GFX10-NEXT: .LBB5_3: ; %Flow1
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %1)
%3 = fmul reassoc nnan nsz arcp contract afn float %2, 2.000000e+00
%4 = fcmp ule float %3, 1.000000e+00
br i1 %4, label %header, label %exit
header:
%h.fabs.phi = phi float [ undef, %entry ], [ %l.fabs, %l ]
%h.fmul = fmul reassoc nnan nsz arcp contract afn float %h.fabs.phi, 2.000000e+00
%l.1 = fmul reassoc nnan nsz arcp contract afn float %h.fabs.phi, 3.000000e+00
br label %l
l:
%l.e = fcmp ule float %l.1, -1.000000e+00
%l.fabs = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %l.1)
br i1 %l.e, label %exit, label %header
exit:
%ret = phi float [ %3, %entry ], [ %l.fabs, %l ]
ret float %ret
}
define float @fold_neg_in_branch(float %arg1, float %arg2) {
; GFX10-LABEL: fold_neg_in_branch:
; GFX10: ; %bb.0: ; %entry
; GFX10-NEXT: s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: s_mov_b32 s4, exec_lo
; GFX10-NEXT: v_add_f32_e32 v0, v0, v1
; GFX10-NEXT: v_mov_b32_e32 v1, v0
; GFX10-NEXT: v_cmpx_nlt_f32_e32 1.0, v0
; GFX10-NEXT: ; %bb.1: ; %if
; GFX10-NEXT: v_rcp_f32_e64 v1, -v0
; GFX10-NEXT: v_mul_f32_e64 v1, |v0|, v1
; GFX10-NEXT: ; %bb.2: ; %exit
; GFX10-NEXT: s_or_b32 exec_lo, exec_lo, s4
; GFX10-NEXT: v_mul_f32_e64 v0, -v0, v1
; GFX10-NEXT: s_setpc_b64 s[30:31]
entry:
%0 = fadd reassoc nnan nsz arcp contract afn float %arg1, %arg2
%1 = fadd reassoc nnan nsz arcp contract afn float %0, %arg2
%2 = fneg reassoc nnan nsz arcp contract afn float %1
%3 = fcmp ule float %1, 1.000000e+00
br i1 %3, label %if, label %exit
if:
%if.fabs = call reassoc nnan nsz arcp contract afn float @llvm.fabs.f32(float %1)
%if.3 = fdiv reassoc nnan nsz arcp contract afn float %if.fabs, %2
br label %exit
exit:
%ret = phi float [ %1, %entry ], [ %if.3, %if ]
%ret.2 = fmul reassoc nnan nsz arcp contract afn float %2, %ret
ret float %ret.2
}
declare float @llvm.fabs.f32(float)
declare float @llvm.fmuladd.f32(float, float, float) #0