When generating character assignment operations, the generic code generates some code to handle truncation and padding when the length differ at runtime. A bypass already exists when the length are compile time constant and match, but it was not used for the trivial case where the RHS and LHS length is the same SSA value. In such case, even though, the length is not know at compile time, it is known to be the same. This will simplify the code creating character temporaries from a variable in HLFIR that will use this assignment code. Note that this probably has little impact on performance (llvm may be clever enough to later catch that for us). But it makes the generated IR a lot more readable at little cost. Differential Revision: https://reviews.llvm.org/D139330
749 lines
31 KiB
C++
749 lines
31 KiB
C++
//===-- Character.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/DoLoopHelper.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "flang-lower-character"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CharacterExprHelper implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Unwrap all the ref and box types and return the inner element type.
|
|
static mlir::Type unwrapBoxAndRef(mlir::Type type) {
|
|
if (auto boxType = type.dyn_cast<fir::BoxCharType>())
|
|
return boxType.getEleTy();
|
|
while (true) {
|
|
type = fir::unwrapRefType(type);
|
|
if (auto boxTy = type.dyn_cast<fir::BoxType>())
|
|
type = boxTy.getEleTy();
|
|
else
|
|
break;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/// Unwrap base fir.char<kind,len> type.
|
|
static fir::CharacterType recoverCharacterType(mlir::Type type) {
|
|
type = fir::unwrapSequenceType(unwrapBoxAndRef(type));
|
|
if (auto charTy = type.dyn_cast<fir::CharacterType>())
|
|
return charTy;
|
|
llvm::report_fatal_error("expected a character type");
|
|
}
|
|
|
|
bool fir::factory::CharacterExprHelper::isCharacterScalar(mlir::Type type) {
|
|
type = unwrapBoxAndRef(type);
|
|
return !type.isa<fir::SequenceType>() && fir::isa_char(type);
|
|
}
|
|
|
|
bool fir::factory::CharacterExprHelper::isArray(mlir::Type type) {
|
|
type = unwrapBoxAndRef(type);
|
|
if (auto seqTy = type.dyn_cast<fir::SequenceType>())
|
|
return fir::isa_char(seqTy.getEleTy());
|
|
return false;
|
|
}
|
|
|
|
fir::CharacterType
|
|
fir::factory::CharacterExprHelper::getCharacterType(mlir::Type type) {
|
|
assert(isCharacterScalar(type) && "expected scalar character");
|
|
return recoverCharacterType(type);
|
|
}
|
|
|
|
fir::CharacterType
|
|
fir::factory::CharacterExprHelper::getCharType(mlir::Type type) {
|
|
return recoverCharacterType(type);
|
|
}
|
|
|
|
fir::CharacterType fir::factory::CharacterExprHelper::getCharacterType(
|
|
const fir::CharBoxValue &box) {
|
|
return getCharacterType(box.getBuffer().getType());
|
|
}
|
|
|
|
fir::CharacterType
|
|
fir::factory::CharacterExprHelper::getCharacterType(mlir::Value str) {
|
|
return getCharacterType(str.getType());
|
|
}
|
|
|
|
/// Determine the static size of the character. Returns the computed size, not
|
|
/// an IR Value.
|
|
static std::optional<fir::CharacterType::LenType>
|
|
getCompileTimeLength(const fir::CharBoxValue &box) {
|
|
auto len = recoverCharacterType(box.getBuffer().getType()).getLen();
|
|
if (len == fir::CharacterType::unknownLen())
|
|
return {};
|
|
return len;
|
|
}
|
|
|
|
/// Detect the precondition that the value `str` does not reside in memory. Such
|
|
/// values will have a type `!fir.array<...x!fir.char<N>>` or `!fir.char<N>`.
|
|
LLVM_ATTRIBUTE_UNUSED static bool needToMaterialize(mlir::Value str) {
|
|
return str.getType().isa<fir::SequenceType>() || fir::isa_char(str.getType());
|
|
}
|
|
|
|
/// This is called only if `str` does not reside in memory. Such a bare string
|
|
/// value will be converted into a memory-based temporary and an extended
|
|
/// boxchar value returned.
|
|
fir::CharBoxValue
|
|
fir::factory::CharacterExprHelper::materializeValue(mlir::Value str) {
|
|
assert(needToMaterialize(str));
|
|
auto ty = str.getType();
|
|
assert(isCharacterScalar(ty) && "expected scalar character");
|
|
auto charTy = ty.dyn_cast<fir::CharacterType>();
|
|
if (!charTy || charTy.getLen() == fir::CharacterType::unknownLen()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "cannot materialize: " << str << '\n');
|
|
llvm_unreachable("must be a !fir.char<N> type");
|
|
}
|
|
auto len = builder.createIntegerConstant(
|
|
loc, builder.getCharacterLengthType(), charTy.getLen());
|
|
auto temp = builder.create<fir::AllocaOp>(loc, charTy);
|
|
builder.create<fir::StoreOp>(loc, str, temp);
|
|
LLVM_DEBUG(llvm::dbgs() << "materialized as local: " << str << " -> (" << temp
|
|
<< ", " << len << ")\n");
|
|
return {temp, len};
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
fir::factory::CharacterExprHelper::toExtendedValue(mlir::Value character,
|
|
mlir::Value len) {
|
|
auto lenType = builder.getCharacterLengthType();
|
|
auto type = character.getType();
|
|
auto base = fir::isa_passbyref_type(type) ? character : mlir::Value{};
|
|
auto resultLen = len;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
|
|
if (auto eleType = fir::dyn_cast_ptrEleTy(type))
|
|
type = eleType;
|
|
|
|
if (auto arrayType = type.dyn_cast<fir::SequenceType>()) {
|
|
type = arrayType.getEleTy();
|
|
auto indexType = builder.getIndexType();
|
|
for (auto extent : arrayType.getShape()) {
|
|
if (extent == fir::SequenceType::getUnknownExtent())
|
|
break;
|
|
extents.emplace_back(
|
|
builder.createIntegerConstant(loc, indexType, extent));
|
|
}
|
|
// Last extent might be missing in case of assumed-size. If more extents
|
|
// could not be deduced from type, that's an error (a fir.box should
|
|
// have been used in the interface).
|
|
if (extents.size() + 1 < arrayType.getShape().size())
|
|
mlir::emitError(loc, "cannot retrieve array extents from type");
|
|
}
|
|
|
|
if (auto charTy = type.dyn_cast<fir::CharacterType>()) {
|
|
if (!resultLen && charTy.getLen() != fir::CharacterType::unknownLen())
|
|
resultLen = builder.createIntegerConstant(loc, lenType, charTy.getLen());
|
|
} else if (auto boxCharType = type.dyn_cast<fir::BoxCharType>()) {
|
|
auto refType = builder.getRefType(boxCharType.getEleTy());
|
|
// If the embox is accessible, use its operand to avoid filling
|
|
// the generated fir with embox/unbox.
|
|
mlir::Value boxCharLen;
|
|
if (auto definingOp = character.getDefiningOp()) {
|
|
if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(definingOp)) {
|
|
base = box.getMemref();
|
|
boxCharLen = box.getLen();
|
|
}
|
|
}
|
|
if (!boxCharLen) {
|
|
auto unboxed =
|
|
builder.create<fir::UnboxCharOp>(loc, refType, lenType, character);
|
|
base = builder.createConvert(loc, refType, unboxed.getResult(0));
|
|
boxCharLen = unboxed.getResult(1);
|
|
}
|
|
if (!resultLen) {
|
|
resultLen = boxCharLen;
|
|
}
|
|
} else if (type.isa<fir::BoxType>()) {
|
|
mlir::emitError(loc, "descriptor or derived type not yet handled");
|
|
} else {
|
|
llvm_unreachable("Cannot translate mlir::Value to character ExtendedValue");
|
|
}
|
|
|
|
if (!base) {
|
|
if (auto load =
|
|
mlir::dyn_cast_or_null<fir::LoadOp>(character.getDefiningOp())) {
|
|
base = load.getOperand();
|
|
} else {
|
|
return materializeValue(fir::getBase(character));
|
|
}
|
|
}
|
|
if (!resultLen)
|
|
llvm::report_fatal_error("no dynamic length found for character");
|
|
if (!extents.empty())
|
|
return fir::CharArrayBoxValue{base, resultLen, extents};
|
|
return fir::CharBoxValue{base, resultLen};
|
|
}
|
|
|
|
static mlir::Type getSingletonCharType(mlir::MLIRContext *ctxt, int kind) {
|
|
return fir::CharacterType::getSingleton(ctxt, kind);
|
|
}
|
|
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createEmbox(const fir::CharBoxValue &box) {
|
|
// Base CharBoxValue of CharArrayBoxValue are ok here (do not require a scalar
|
|
// type)
|
|
auto charTy = recoverCharacterType(box.getBuffer().getType());
|
|
auto boxCharType =
|
|
fir::BoxCharType::get(builder.getContext(), charTy.getFKind());
|
|
auto refType = fir::ReferenceType::get(boxCharType.getEleTy());
|
|
mlir::Value buff = box.getBuffer();
|
|
// fir.boxchar requires a memory reference. Allocate temp if the character is
|
|
// not in memory.
|
|
if (!fir::isa_ref_type(buff.getType())) {
|
|
auto temp = builder.createTemporary(loc, buff.getType());
|
|
builder.create<fir::StoreOp>(loc, buff, temp);
|
|
buff = temp;
|
|
}
|
|
buff = builder.createConvert(loc, refType, buff);
|
|
// Convert in case the provided length is not of the integer type that must
|
|
// be used in boxchar.
|
|
auto len = builder.createConvert(loc, builder.getCharacterLengthType(),
|
|
box.getLen());
|
|
return builder.create<fir::EmboxCharOp>(loc, boxCharType, buff, len);
|
|
}
|
|
|
|
fir::CharBoxValue fir::factory::CharacterExprHelper::toScalarCharacter(
|
|
const fir::CharArrayBoxValue &box) {
|
|
if (box.getBuffer().getType().isa<fir::PointerType>())
|
|
TODO(loc, "concatenating non contiguous character array into a scalar");
|
|
|
|
// TODO: add a fast path multiplying new length at compile time if the info is
|
|
// in the array type.
|
|
auto lenType = builder.getCharacterLengthType();
|
|
auto len = builder.createConvert(loc, lenType, box.getLen());
|
|
for (auto extent : box.getExtents())
|
|
len = builder.create<mlir::arith::MulIOp>(
|
|
loc, len, builder.createConvert(loc, lenType, extent));
|
|
|
|
// TODO: typeLen can be improved in compiled constant cases
|
|
// TODO: allow bare fir.array<> (no ref) conversion here ?
|
|
auto typeLen = fir::CharacterType::unknownLen();
|
|
auto kind = recoverCharacterType(box.getBuffer().getType()).getFKind();
|
|
auto charTy = fir::CharacterType::get(builder.getContext(), kind, typeLen);
|
|
auto type = fir::ReferenceType::get(charTy);
|
|
auto buffer = builder.createConvert(loc, type, box.getBuffer());
|
|
return {buffer, len};
|
|
}
|
|
|
|
mlir::Value fir::factory::CharacterExprHelper::createEmbox(
|
|
const fir::CharArrayBoxValue &box) {
|
|
// Use same embox as for scalar. It's losing the actual data size information
|
|
// (We do not multiply the length by the array size), but that is what Fortran
|
|
// call interfaces using boxchar expect.
|
|
return createEmbox(static_cast<const fir::CharBoxValue &>(box));
|
|
}
|
|
|
|
/// Get the address of the element at position \p index of the scalar character
|
|
/// \p buffer.
|
|
/// \p buffer must be of type !fir.ref<fir.char<k, len>>. The length may be
|
|
/// unknown. \p index must have any integer type, and is zero based. The return
|
|
/// value is a singleton address (!fir.ref<!fir.char<kind>>)
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createElementAddr(mlir::Value buffer,
|
|
mlir::Value index) {
|
|
// The only way to address an element of a fir.ref<char<kind, len>> is to cast
|
|
// it to a fir.array<len x fir.char<kind>> and use fir.coordinate_of.
|
|
auto bufferType = buffer.getType();
|
|
assert(fir::isa_ref_type(bufferType));
|
|
assert(isCharacterScalar(bufferType));
|
|
auto charTy = recoverCharacterType(bufferType);
|
|
auto singleTy = getSingletonCharType(builder.getContext(), charTy.getFKind());
|
|
auto singleRefTy = builder.getRefType(singleTy);
|
|
auto extent = fir::SequenceType::getUnknownExtent();
|
|
if (charTy.getLen() != fir::CharacterType::unknownLen())
|
|
extent = charTy.getLen();
|
|
auto coorTy = builder.getRefType(fir::SequenceType::get({extent}, singleTy));
|
|
|
|
auto coor = builder.createConvert(loc, coorTy, buffer);
|
|
auto i = builder.createConvert(loc, builder.getIndexType(), index);
|
|
return builder.create<fir::CoordinateOp>(loc, singleRefTy, coor, i);
|
|
}
|
|
|
|
/// Load a character out of `buff` from offset `index`.
|
|
/// `buff` must be a reference to memory.
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createLoadCharAt(mlir::Value buff,
|
|
mlir::Value index) {
|
|
LLVM_DEBUG(llvm::dbgs() << "load a char: " << buff << " type: "
|
|
<< buff.getType() << " at: " << index << '\n');
|
|
return builder.create<fir::LoadOp>(loc, createElementAddr(buff, index));
|
|
}
|
|
|
|
/// Store the singleton character `c` to `str` at offset `index`.
|
|
/// `str` must be a reference to memory.
|
|
void fir::factory::CharacterExprHelper::createStoreCharAt(mlir::Value str,
|
|
mlir::Value index,
|
|
mlir::Value c) {
|
|
LLVM_DEBUG(llvm::dbgs() << "store the char: " << c << " into: " << str
|
|
<< " type: " << str.getType() << " at: " << index
|
|
<< '\n');
|
|
auto addr = createElementAddr(str, index);
|
|
builder.create<fir::StoreOp>(loc, c, addr);
|
|
}
|
|
|
|
// FIXME: this temp is useless... either fir.coordinate_of needs to
|
|
// work on "loaded" characters (!fir.array<len x fir.char<kind>>) or
|
|
// character should never be loaded.
|
|
// If this is a fir.array<>, allocate and store the value so that
|
|
// fir.cooridnate_of can be use on the value.
|
|
mlir::Value fir::factory::CharacterExprHelper::getCharBoxBuffer(
|
|
const fir::CharBoxValue &box) {
|
|
auto buff = box.getBuffer();
|
|
if (fir::isa_char(buff.getType())) {
|
|
auto newBuff = builder.create<fir::AllocaOp>(loc, buff.getType());
|
|
builder.create<fir::StoreOp>(loc, buff, newBuff);
|
|
return newBuff;
|
|
}
|
|
return buff;
|
|
}
|
|
|
|
/// Create a loop to copy `count` characters from `src` to `dest`. Note that the
|
|
/// KIND indicates the number of bits in a code point. (ASCII, UCS-2, or UCS-4.)
|
|
void fir::factory::CharacterExprHelper::createCopy(
|
|
const fir::CharBoxValue &dest, const fir::CharBoxValue &src,
|
|
mlir::Value count) {
|
|
auto fromBuff = getCharBoxBuffer(src);
|
|
auto toBuff = getCharBoxBuffer(dest);
|
|
LLVM_DEBUG(llvm::dbgs() << "create char copy from: "; src.dump();
|
|
llvm::dbgs() << " to: "; dest.dump();
|
|
llvm::dbgs() << " count: " << count << '\n');
|
|
auto kind = getCharacterKind(src.getBuffer().getType());
|
|
// If the src and dest are the same KIND, then use memmove to move the bits.
|
|
// We don't have to worry about overlapping ranges with memmove.
|
|
if (getCharacterKind(dest.getBuffer().getType()) == kind) {
|
|
auto bytes = builder.getKindMap().getCharacterBitsize(kind) / 8;
|
|
auto i64Ty = builder.getI64Type();
|
|
auto kindBytes = builder.createIntegerConstant(loc, i64Ty, bytes);
|
|
auto castCount = builder.createConvert(loc, i64Ty, count);
|
|
auto totalBytes =
|
|
builder.create<mlir::arith::MulIOp>(loc, kindBytes, castCount);
|
|
auto notVolatile = builder.createBool(loc, false);
|
|
auto memmv = getLlvmMemmove(builder);
|
|
auto argTys = memmv.getFunctionType().getInputs();
|
|
auto toPtr = builder.createConvert(loc, argTys[0], toBuff);
|
|
auto fromPtr = builder.createConvert(loc, argTys[1], fromBuff);
|
|
builder.create<fir::CallOp>(
|
|
loc, memmv, mlir::ValueRange{toPtr, fromPtr, totalBytes, notVolatile});
|
|
return;
|
|
}
|
|
|
|
// Convert a CHARACTER of one KIND into a CHARACTER of another KIND.
|
|
builder.create<fir::CharConvertOp>(loc, src.getBuffer(), count,
|
|
dest.getBuffer());
|
|
}
|
|
|
|
void fir::factory::CharacterExprHelper::createPadding(
|
|
const fir::CharBoxValue &str, mlir::Value lower, mlir::Value upper) {
|
|
auto blank = createBlankConstant(getCharacterType(str));
|
|
// Always create the loop, if upper < lower, no iteration will be
|
|
// executed.
|
|
auto toBuff = getCharBoxBuffer(str);
|
|
fir::factory::DoLoopHelper{builder, loc}.createLoop(
|
|
lower, upper, [&](fir::FirOpBuilder &, mlir::Value index) {
|
|
createStoreCharAt(toBuff, index, blank);
|
|
});
|
|
}
|
|
|
|
fir::CharBoxValue
|
|
fir::factory::CharacterExprHelper::createCharacterTemp(mlir::Type type,
|
|
mlir::Value len) {
|
|
auto kind = recoverCharacterType(type).getFKind();
|
|
auto typeLen = fir::CharacterType::unknownLen();
|
|
// If len is a constant, reflect the length in the type.
|
|
if (auto cstLen = getIntIfConstant(len))
|
|
typeLen = *cstLen;
|
|
auto *ctxt = builder.getContext();
|
|
auto charTy = fir::CharacterType::get(ctxt, kind, typeLen);
|
|
llvm::SmallVector<mlir::Value> lenParams;
|
|
if (typeLen == fir::CharacterType::unknownLen())
|
|
lenParams.push_back(len);
|
|
auto ref = builder.allocateLocal(loc, charTy, "", ".chrtmp",
|
|
/*shape=*/std::nullopt, lenParams);
|
|
return {ref, len};
|
|
}
|
|
|
|
fir::CharBoxValue fir::factory::CharacterExprHelper::createTempFrom(
|
|
const fir::ExtendedValue &source) {
|
|
const auto *charBox = source.getCharBox();
|
|
if (!charBox)
|
|
fir::emitFatalError(loc, "source must be a fir::CharBoxValue");
|
|
auto len = charBox->getLen();
|
|
auto sourceTy = charBox->getBuffer().getType();
|
|
auto temp = createCharacterTemp(sourceTy, len);
|
|
if (fir::isa_ref_type(sourceTy)) {
|
|
createCopy(temp, *charBox, len);
|
|
} else {
|
|
auto ref = builder.createConvert(loc, builder.getRefType(sourceTy),
|
|
temp.getBuffer());
|
|
builder.create<fir::StoreOp>(loc, charBox->getBuffer(), ref);
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
// Simple length one character assignment without loops.
|
|
void fir::factory::CharacterExprHelper::createLengthOneAssign(
|
|
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
|
|
auto addr = lhs.getBuffer();
|
|
auto toTy = fir::unwrapRefType(addr.getType());
|
|
mlir::Value val = rhs.getBuffer();
|
|
if (fir::isa_ref_type(val.getType()))
|
|
val = builder.create<fir::LoadOp>(loc, val);
|
|
val = builder.createConvert(loc, toTy, val);
|
|
builder.create<fir::StoreOp>(loc, val, addr);
|
|
}
|
|
|
|
/// Returns the minimum of integer mlir::Value \p a and \b.
|
|
mlir::Value genMin(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Value a, mlir::Value b) {
|
|
auto cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::slt, a, b);
|
|
return builder.create<mlir::arith::SelectOp>(loc, cmp, a, b);
|
|
}
|
|
|
|
void fir::factory::CharacterExprHelper::createAssign(
|
|
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
|
|
auto rhsCstLen = getCompileTimeLength(rhs);
|
|
auto lhsCstLen = getCompileTimeLength(lhs);
|
|
bool compileTimeSameLength =
|
|
(lhsCstLen && rhsCstLen && *lhsCstLen == *rhsCstLen) ||
|
|
(rhs.getLen() == lhs.getLen());
|
|
|
|
if (compileTimeSameLength && *lhsCstLen == 1) {
|
|
createLengthOneAssign(lhs, rhs);
|
|
return;
|
|
}
|
|
|
|
// Copy the minimum of the lhs and rhs lengths and pad the lhs remainder
|
|
// if needed.
|
|
auto copyCount = lhs.getLen();
|
|
auto idxTy = builder.getIndexType();
|
|
if (!compileTimeSameLength) {
|
|
auto lhsLen = builder.createConvert(loc, idxTy, lhs.getLen());
|
|
auto rhsLen = builder.createConvert(loc, idxTy, rhs.getLen());
|
|
copyCount = genMin(builder, loc, lhsLen, rhsLen);
|
|
}
|
|
|
|
// Actual copy
|
|
createCopy(lhs, rhs, copyCount);
|
|
|
|
// Pad if needed.
|
|
if (!compileTimeSameLength) {
|
|
auto one = builder.createIntegerConstant(loc, lhs.getLen().getType(), 1);
|
|
auto maxPadding =
|
|
builder.create<mlir::arith::SubIOp>(loc, lhs.getLen(), one);
|
|
createPadding(lhs, copyCount, maxPadding);
|
|
}
|
|
}
|
|
|
|
fir::CharBoxValue fir::factory::CharacterExprHelper::createConcatenate(
|
|
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
|
|
auto lhsLen = builder.createConvert(loc, builder.getCharacterLengthType(),
|
|
lhs.getLen());
|
|
auto rhsLen = builder.createConvert(loc, builder.getCharacterLengthType(),
|
|
rhs.getLen());
|
|
mlir::Value len = builder.create<mlir::arith::AddIOp>(loc, lhsLen, rhsLen);
|
|
auto temp = createCharacterTemp(getCharacterType(rhs), len);
|
|
createCopy(temp, lhs, lhsLen);
|
|
auto one = builder.createIntegerConstant(loc, len.getType(), 1);
|
|
auto upperBound = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
auto lhsLenIdx = builder.createConvert(loc, builder.getIndexType(), lhsLen);
|
|
auto fromBuff = getCharBoxBuffer(rhs);
|
|
auto toBuff = getCharBoxBuffer(temp);
|
|
fir::factory::DoLoopHelper{builder, loc}.createLoop(
|
|
lhsLenIdx, upperBound, one,
|
|
[&](fir::FirOpBuilder &bldr, mlir::Value index) {
|
|
auto rhsIndex = bldr.create<mlir::arith::SubIOp>(loc, index, lhsLenIdx);
|
|
auto charVal = createLoadCharAt(fromBuff, rhsIndex);
|
|
createStoreCharAt(toBuff, index, charVal);
|
|
});
|
|
return temp;
|
|
}
|
|
|
|
fir::CharBoxValue fir::factory::CharacterExprHelper::createSubstring(
|
|
const fir::CharBoxValue &box, llvm::ArrayRef<mlir::Value> bounds) {
|
|
// Constant need to be materialize in memory to use fir.coordinate_of.
|
|
auto nbounds = bounds.size();
|
|
if (nbounds < 1 || nbounds > 2) {
|
|
mlir::emitError(loc, "Incorrect number of bounds in substring");
|
|
return {mlir::Value{}, mlir::Value{}};
|
|
}
|
|
mlir::SmallVector<mlir::Value> castBounds;
|
|
// Convert bounds to length type to do safe arithmetic on it.
|
|
for (auto bound : bounds)
|
|
castBounds.push_back(
|
|
builder.createConvert(loc, builder.getCharacterLengthType(), bound));
|
|
auto lowerBound = castBounds[0];
|
|
// FIR CoordinateOp is zero based but Fortran substring are one based.
|
|
auto one = builder.createIntegerConstant(loc, lowerBound.getType(), 1);
|
|
auto offset =
|
|
builder.create<mlir::arith::SubIOp>(loc, lowerBound, one).getResult();
|
|
auto addr = createElementAddr(box.getBuffer(), offset);
|
|
auto kind = getCharacterKind(box.getBuffer().getType());
|
|
auto charTy = fir::CharacterType::getUnknownLen(builder.getContext(), kind);
|
|
auto resultType = builder.getRefType(charTy);
|
|
auto substringRef = builder.createConvert(loc, resultType, addr);
|
|
|
|
// Compute the length.
|
|
mlir::Value substringLen;
|
|
if (nbounds < 2) {
|
|
substringLen =
|
|
builder.create<mlir::arith::SubIOp>(loc, box.getLen(), castBounds[0]);
|
|
} else {
|
|
substringLen =
|
|
builder.create<mlir::arith::SubIOp>(loc, castBounds[1], castBounds[0]);
|
|
}
|
|
substringLen = builder.create<mlir::arith::AddIOp>(loc, substringLen, one);
|
|
|
|
// Set length to zero if bounds were reversed (Fortran 2018 9.4.1)
|
|
auto zero = builder.createIntegerConstant(loc, substringLen.getType(), 0);
|
|
auto cdt = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::slt, substringLen, zero);
|
|
substringLen =
|
|
builder.create<mlir::arith::SelectOp>(loc, cdt, zero, substringLen);
|
|
|
|
return {substringRef, substringLen};
|
|
}
|
|
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createLenTrim(const fir::CharBoxValue &str) {
|
|
// Note: Runtime for LEN_TRIM should also be available at some
|
|
// point. For now use an inlined implementation.
|
|
auto indexType = builder.getIndexType();
|
|
auto len = builder.createConvert(loc, indexType, str.getLen());
|
|
auto one = builder.createIntegerConstant(loc, indexType, 1);
|
|
auto minusOne = builder.createIntegerConstant(loc, indexType, -1);
|
|
auto zero = builder.createIntegerConstant(loc, indexType, 0);
|
|
auto trueVal = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
|
|
auto blank = createBlankConstantCode(getCharacterType(str));
|
|
mlir::Value lastChar = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
|
|
auto iterWhile =
|
|
builder.create<fir::IterWhileOp>(loc, lastChar, zero, minusOne, trueVal,
|
|
/*returnFinalCount=*/false, lastChar);
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(iterWhile.getBody());
|
|
auto index = iterWhile.getInductionVar();
|
|
// Look for first non-blank from the right of the character.
|
|
auto fromBuff = getCharBoxBuffer(str);
|
|
auto elemAddr = createElementAddr(fromBuff, index);
|
|
auto codeAddr =
|
|
builder.createConvert(loc, builder.getRefType(blank.getType()), elemAddr);
|
|
auto c = builder.create<fir::LoadOp>(loc, codeAddr);
|
|
auto isBlank = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::eq, blank, c);
|
|
llvm::SmallVector<mlir::Value> results = {isBlank, index};
|
|
builder.create<fir::ResultOp>(loc, results);
|
|
builder.restoreInsertionPoint(insPt);
|
|
// Compute length after iteration (zero if all blanks)
|
|
mlir::Value newLen =
|
|
builder.create<mlir::arith::AddIOp>(loc, iterWhile.getResult(1), one);
|
|
auto result = builder.create<mlir::arith::SelectOp>(
|
|
loc, iterWhile.getResult(0), zero, newLen);
|
|
return builder.createConvert(loc, builder.getCharacterLengthType(), result);
|
|
}
|
|
|
|
fir::CharBoxValue
|
|
fir::factory::CharacterExprHelper::createCharacterTemp(mlir::Type type,
|
|
int len) {
|
|
assert(len >= 0 && "expected positive length");
|
|
auto kind = recoverCharacterType(type).getFKind();
|
|
auto charType = fir::CharacterType::get(builder.getContext(), kind, len);
|
|
auto addr = builder.create<fir::AllocaOp>(loc, charType);
|
|
auto mlirLen =
|
|
builder.createIntegerConstant(loc, builder.getCharacterLengthType(), len);
|
|
return {addr, mlirLen};
|
|
}
|
|
|
|
// Returns integer with code for blank. The integer has the same
|
|
// size as the character. Blank has ascii space code for all kinds.
|
|
mlir::Value fir::factory::CharacterExprHelper::createBlankConstantCode(
|
|
fir::CharacterType type) {
|
|
auto bits = builder.getKindMap().getCharacterBitsize(type.getFKind());
|
|
auto intType = builder.getIntegerType(bits);
|
|
return builder.createIntegerConstant(loc, intType, ' ');
|
|
}
|
|
|
|
mlir::Value fir::factory::CharacterExprHelper::createBlankConstant(
|
|
fir::CharacterType type) {
|
|
return createSingletonFromCode(createBlankConstantCode(type),
|
|
type.getFKind());
|
|
}
|
|
|
|
void fir::factory::CharacterExprHelper::createAssign(
|
|
const fir::ExtendedValue &lhs, const fir::ExtendedValue &rhs) {
|
|
if (auto *str = rhs.getBoxOf<fir::CharBoxValue>()) {
|
|
if (auto *to = lhs.getBoxOf<fir::CharBoxValue>()) {
|
|
createAssign(*to, *str);
|
|
return;
|
|
}
|
|
}
|
|
TODO(loc, "character array assignment");
|
|
// Note that it is not sure the array aspect should be handled
|
|
// by this utility.
|
|
}
|
|
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createEmboxChar(mlir::Value addr,
|
|
mlir::Value len) {
|
|
return createEmbox(fir::CharBoxValue{addr, len});
|
|
}
|
|
|
|
std::pair<mlir::Value, mlir::Value>
|
|
fir::factory::CharacterExprHelper::createUnboxChar(mlir::Value boxChar) {
|
|
using T = std::pair<mlir::Value, mlir::Value>;
|
|
return toExtendedValue(boxChar).match(
|
|
[](const fir::CharBoxValue &b) -> T {
|
|
return {b.getBuffer(), b.getLen()};
|
|
},
|
|
[](const fir::CharArrayBoxValue &b) -> T {
|
|
return {b.getBuffer(), b.getLen()};
|
|
},
|
|
[](const auto &) -> T { llvm::report_fatal_error("not a character"); });
|
|
}
|
|
|
|
bool fir::factory::CharacterExprHelper::isCharacterLiteral(mlir::Type type) {
|
|
if (auto seqType = type.dyn_cast<fir::SequenceType>())
|
|
return (seqType.getShape().size() == 1) &&
|
|
fir::isa_char(seqType.getEleTy());
|
|
return false;
|
|
}
|
|
|
|
fir::KindTy
|
|
fir::factory::CharacterExprHelper::getCharacterKind(mlir::Type type) {
|
|
assert(isCharacterScalar(type) && "expected scalar character");
|
|
return recoverCharacterType(type).getFKind();
|
|
}
|
|
|
|
fir::KindTy
|
|
fir::factory::CharacterExprHelper::getCharacterOrSequenceKind(mlir::Type type) {
|
|
return recoverCharacterType(type).getFKind();
|
|
}
|
|
|
|
bool fir::factory::CharacterExprHelper::hasConstantLengthInType(
|
|
const fir::ExtendedValue &exv) {
|
|
auto charTy = recoverCharacterType(fir::getBase(exv).getType());
|
|
return charTy.hasConstantLen();
|
|
}
|
|
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::createSingletonFromCode(mlir::Value code,
|
|
int kind) {
|
|
auto charType = fir::CharacterType::get(builder.getContext(), kind, 1);
|
|
auto bits = builder.getKindMap().getCharacterBitsize(kind);
|
|
auto intType = builder.getIntegerType(bits);
|
|
auto cast = builder.createConvert(loc, intType, code);
|
|
auto undef = builder.create<fir::UndefOp>(loc, charType);
|
|
auto zero = builder.getIntegerAttr(builder.getIndexType(), 0);
|
|
return builder.create<fir::InsertValueOp>(loc, charType, undef, cast,
|
|
builder.getArrayAttr(zero));
|
|
}
|
|
|
|
mlir::Value fir::factory::CharacterExprHelper::extractCodeFromSingleton(
|
|
mlir::Value singleton) {
|
|
auto type = getCharacterType(singleton);
|
|
assert(type.getLen() == 1);
|
|
auto bits = builder.getKindMap().getCharacterBitsize(type.getFKind());
|
|
auto intType = builder.getIntegerType(bits);
|
|
auto zero = builder.getIntegerAttr(builder.getIndexType(), 0);
|
|
return builder.create<fir::ExtractValueOp>(loc, intType, singleton,
|
|
builder.getArrayAttr(zero));
|
|
}
|
|
|
|
mlir::Value
|
|
fir::factory::CharacterExprHelper::readLengthFromBox(mlir::Value box) {
|
|
auto charTy = recoverCharacterType(box.getType());
|
|
return readLengthFromBox(box, charTy);
|
|
}
|
|
|
|
mlir::Value fir::factory::CharacterExprHelper::readLengthFromBox(
|
|
mlir::Value box, fir::CharacterType charTy) {
|
|
auto lenTy = builder.getCharacterLengthType();
|
|
auto size = builder.create<fir::BoxEleSizeOp>(loc, lenTy, box);
|
|
auto bits = builder.getKindMap().getCharacterBitsize(charTy.getFKind());
|
|
auto width = bits / 8;
|
|
if (width > 1) {
|
|
auto widthVal = builder.createIntegerConstant(loc, lenTy, width);
|
|
return builder.create<mlir::arith::DivSIOp>(loc, size, widthVal);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
mlir::Value fir::factory::CharacterExprHelper::getLength(mlir::Value memref) {
|
|
auto memrefType = memref.getType();
|
|
auto charType = recoverCharacterType(memrefType);
|
|
assert(charType && "must be a character type");
|
|
if (charType.hasConstantLen())
|
|
return builder.createIntegerConstant(loc, builder.getCharacterLengthType(),
|
|
charType.getLen());
|
|
if (memrefType.isa<fir::BoxType>())
|
|
return readLengthFromBox(memref);
|
|
if (memrefType.isa<fir::BoxCharType>())
|
|
return createUnboxChar(memref).second;
|
|
|
|
// Length cannot be deduced from memref.
|
|
return {};
|
|
}
|
|
|
|
std::pair<mlir::Value, mlir::Value>
|
|
fir::factory::extractCharacterProcedureTuple(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::Value tuple) {
|
|
mlir::TupleType tupleType = tuple.getType().cast<mlir::TupleType>();
|
|
mlir::Value addr = builder.create<fir::ExtractValueOp>(
|
|
loc, tupleType.getType(0), tuple,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
|
|
mlir::Value proc = [&]() -> mlir::Value {
|
|
if (auto addrTy = addr.getType().dyn_cast<fir::BoxProcType>())
|
|
return builder.create<fir::BoxAddrOp>(loc, addrTy.getEleTy(), addr);
|
|
return addr;
|
|
}();
|
|
mlir::Value len = builder.create<fir::ExtractValueOp>(
|
|
loc, tupleType.getType(1), tuple,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
|
|
return {proc, len};
|
|
}
|
|
|
|
mlir::Value fir::factory::createCharacterProcedureTuple(
|
|
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type argTy,
|
|
mlir::Value addr, mlir::Value len) {
|
|
mlir::TupleType tupleType = argTy.cast<mlir::TupleType>();
|
|
addr = builder.createConvert(loc, tupleType.getType(0), addr);
|
|
if (len)
|
|
len = builder.createConvert(loc, tupleType.getType(1), len);
|
|
else
|
|
len = builder.create<fir::UndefOp>(loc, tupleType.getType(1));
|
|
mlir::Value tuple = builder.create<fir::UndefOp>(loc, tupleType);
|
|
tuple = builder.create<fir::InsertValueOp>(
|
|
loc, tupleType, tuple, addr,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
|
|
tuple = builder.create<fir::InsertValueOp>(
|
|
loc, tupleType, tuple, len,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
|
|
return tuple;
|
|
}
|
|
|
|
mlir::Type
|
|
fir::factory::getCharacterProcedureTupleType(mlir::Type funcPointerType) {
|
|
mlir::MLIRContext *context = funcPointerType.getContext();
|
|
mlir::Type lenType = mlir::IntegerType::get(context, 64);
|
|
return mlir::TupleType::get(context, {funcPointerType, lenType});
|
|
}
|