Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/BufferOptimizations.cpp
Nikhil Kalra 0ad6ac8c53 [NFC][MLIR] Fix: alloca promotion for AllocationOpInterface (#97672)
The std::optional returned by buildPromotedAlloc was directly
dereferenced and assumed to be non-null, even though the documentation
for AllocationOpInterface indicates that std::nullopt is a legal value
if buffer stack promotion is not supported (and is the default value
supplied by the TableGen interface file). This patch removes the direct
dereference so that the optional can be null-checked prior to use.

Co-authored-by: Nikhil Kalra <nkalra@apple.com>
2024-07-04 08:49:33 +02:00

500 lines
20 KiB
C++

//===- BufferOptimizations.cpp - pre-pass optimizations for bufferization -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic for three optimization passes. The first two
// passes try to move alloc nodes out of blocks to reduce the number of
// allocations and copies during buffer deallocation. The third pass tries to
// convert heap-based allocations to stack-based allocations, if possible.
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/AllocationOpInterface.h"
#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Pass/Pass.h"
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_BUFFERHOISTING
#define GEN_PASS_DEF_BUFFERLOOPHOISTING
#define GEN_PASS_DEF_PROMOTEBUFFERSTOSTACK
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
using namespace mlir;
using namespace mlir::bufferization;
/// Returns true if the given operation implements a known high-level region-
/// based control-flow interface.
static bool isKnownControlFlowInterface(Operation *op) {
return isa<LoopLikeOpInterface, RegionBranchOpInterface>(op);
}
/// Returns true if the given operation represents a loop by testing whether it
/// implements the `LoopLikeOpInterface` or the `RegionBranchOpInterface`. In
/// the case of a `RegionBranchOpInterface`, it checks all region-based control-
/// flow edges for cycles.
static bool isLoop(Operation *op) {
// If the operation implements the `LoopLikeOpInterface` it can be considered
// a loop.
if (isa<LoopLikeOpInterface>(op))
return true;
// If the operation does not implement the `RegionBranchOpInterface`, it is
// (currently) not possible to detect a loop.
auto regionInterface = dyn_cast<RegionBranchOpInterface>(op);
if (!regionInterface)
return false;
return regionInterface.hasLoop();
}
/// Return whether the given operation is a loop with sequential execution
/// semantics.
static bool isSequentialLoop(Operation *op) {
return !op->hasTrait<OpTrait::HasParallelRegion>() && isLoop(op);
}
/// Returns true if the given operation implements the AllocationOpInterface
/// and it supports the dominate block hoisting.
static bool allowAllocDominateBlockHoisting(Operation *op) {
auto allocOp = dyn_cast<AllocationOpInterface>(op);
return allocOp &&
static_cast<uint8_t>(allocOp.getHoistingKind() & HoistingKind::Block);
}
/// Returns true if the given operation implements the AllocationOpInterface
/// and it supports the loop hoisting.
static bool allowAllocLoopHoisting(Operation *op) {
auto allocOp = dyn_cast<AllocationOpInterface>(op);
return allocOp &&
static_cast<uint8_t>(allocOp.getHoistingKind() & HoistingKind::Loop);
}
/// Check if the size of the allocation is less than the given size. The
/// transformation is only applied to small buffers since large buffers could
/// exceed the stack space.
static bool defaultIsSmallAlloc(Value alloc, unsigned maximumSizeInBytes,
unsigned maxRankOfAllocatedMemRef) {
auto type = dyn_cast<ShapedType>(alloc.getType());
if (!type || !alloc.getDefiningOp<memref::AllocOp>())
return false;
if (!type.hasStaticShape()) {
// Check if the dynamic shape dimension of the alloc is produced by
// `memref.rank`. If this is the case, it is likely to be small.
// Furthermore, the dimension is limited to the maximum rank of the
// allocated memref to avoid large values by multiplying several small
// values.
if (type.getRank() <= maxRankOfAllocatedMemRef) {
return llvm::all_of(alloc.getDefiningOp()->getOperands(),
[&](Value operand) {
return operand.getDefiningOp<memref::RankOp>();
});
}
return false;
}
unsigned bitwidth = mlir::DataLayout::closest(alloc.getDefiningOp())
.getTypeSizeInBits(type.getElementType());
return type.getNumElements() * bitwidth <= maximumSizeInBytes * 8;
}
/// Checks whether the given aliases leave the allocation scope.
static bool
leavesAllocationScope(Region *parentRegion,
const BufferViewFlowAnalysis::ValueSetT &aliases) {
for (Value alias : aliases) {
for (auto *use : alias.getUsers()) {
// If there is at least one alias that leaves the parent region, we know
// that this alias escapes the whole region and hence the associated
// allocation leaves allocation scope.
if (isa<RegionBranchTerminatorOpInterface>(use) &&
use->getParentRegion() == parentRegion)
return true;
}
}
return false;
}
/// Checks, if an automated allocation scope for a given alloc value exists.
static bool hasAllocationScope(Value alloc,
const BufferViewFlowAnalysis &aliasAnalysis) {
Region *region = alloc.getParentRegion();
do {
if (Operation *parentOp = region->getParentOp()) {
// Check if the operation is an automatic allocation scope and whether an
// alias leaves the scope. This means, an allocation yields out of
// this scope and can not be transformed in a stack-based allocation.
if (parentOp->hasTrait<OpTrait::AutomaticAllocationScope>() &&
!leavesAllocationScope(region, aliasAnalysis.resolve(alloc)))
return true;
// Check if the operation is a known control flow interface and break the
// loop to avoid transformation in loops. Furthermore skip transformation
// if the operation does not implement a RegionBeanchOpInterface.
if (isLoop(parentOp) || !isKnownControlFlowInterface(parentOp))
break;
}
} while ((region = region->getParentRegion()));
return false;
}
namespace {
//===----------------------------------------------------------------------===//
// BufferAllocationHoisting
//===----------------------------------------------------------------------===//
/// A base implementation compatible with the `BufferAllocationHoisting` class.
struct BufferAllocationHoistingStateBase {
/// A pointer to the current dominance info.
DominanceInfo *dominators;
/// The current allocation value.
Value allocValue;
/// The current placement block (if any).
Block *placementBlock;
/// Initializes the state base.
BufferAllocationHoistingStateBase(DominanceInfo *dominators, Value allocValue,
Block *placementBlock)
: dominators(dominators), allocValue(allocValue),
placementBlock(placementBlock) {}
};
/// Implements the actual hoisting logic for allocation nodes.
template <typename StateT>
class BufferAllocationHoisting : public BufferPlacementTransformationBase {
public:
BufferAllocationHoisting(Operation *op)
: BufferPlacementTransformationBase(op), dominators(op),
postDominators(op), scopeOp(op) {}
/// Moves allocations upwards.
void hoist() {
SmallVector<Value> allocsAndAllocas;
for (BufferPlacementAllocs::AllocEntry &entry : allocs)
allocsAndAllocas.push_back(std::get<0>(entry));
scopeOp->walk([&](memref::AllocaOp op) {
allocsAndAllocas.push_back(op.getMemref());
});
for (auto allocValue : allocsAndAllocas) {
if (!StateT::shouldHoistOpType(allocValue.getDefiningOp()))
continue;
Operation *definingOp = allocValue.getDefiningOp();
assert(definingOp && "No defining op");
auto operands = definingOp->getOperands();
auto resultAliases = aliases.resolve(allocValue);
// Determine the common dominator block of all aliases.
Block *dominatorBlock =
findCommonDominator(allocValue, resultAliases, dominators);
// Init the initial hoisting state.
StateT state(&dominators, allocValue, allocValue.getParentBlock());
// Check for additional allocation dependencies to compute an upper bound
// for hoisting.
Block *dependencyBlock = nullptr;
// If this node has dependencies, check all dependent nodes. This ensures
// that all dependency values have been computed before allocating the
// buffer.
for (Value depValue : operands) {
Block *depBlock = depValue.getParentBlock();
if (!dependencyBlock || dominators.dominates(dependencyBlock, depBlock))
dependencyBlock = depBlock;
}
// Find the actual placement block and determine the start operation using
// an upper placement-block boundary. The idea is that placement block
// cannot be moved any further upwards than the given upper bound.
Block *placementBlock = findPlacementBlock(
state, state.computeUpperBound(dominatorBlock, dependencyBlock));
Operation *startOperation = BufferPlacementAllocs::getStartOperation(
allocValue, placementBlock, liveness);
// Move the alloc in front of the start operation.
Operation *allocOperation = allocValue.getDefiningOp();
allocOperation->moveBefore(startOperation);
}
}
private:
/// Finds a valid placement block by walking upwards in the CFG until we
/// either cannot continue our walk due to constraints (given by the StateT
/// implementation) or we have reached the upper-most dominator block.
Block *findPlacementBlock(StateT &state, Block *upperBound) {
Block *currentBlock = state.placementBlock;
// Walk from the innermost regions/loops to the outermost regions/loops and
// find an appropriate placement block that satisfies the constraint of the
// current StateT implementation. Walk until we reach the upperBound block
// (if any).
// If we are not able to find a valid parent operation or an associated
// parent block, break the walk loop.
Operation *parentOp;
Block *parentBlock;
while ((parentOp = currentBlock->getParentOp()) &&
(parentBlock = parentOp->getBlock()) &&
(!upperBound ||
dominators.properlyDominates(upperBound, currentBlock))) {
// Try to find an immediate dominator and check whether the parent block
// is above the immediate dominator (if any).
DominanceInfoNode *idom = nullptr;
// DominanceInfo doesn't support getNode queries for single-block regions.
if (!currentBlock->isEntryBlock())
idom = dominators.getNode(currentBlock)->getIDom();
if (idom && dominators.properlyDominates(parentBlock, idom->getBlock())) {
// If the current immediate dominator is below the placement block, move
// to the immediate dominator block.
currentBlock = idom->getBlock();
state.recordMoveToDominator(currentBlock);
} else {
// We have to move to our parent block since an immediate dominator does
// either not exist or is above our parent block. If we cannot move to
// our parent operation due to constraints given by the StateT
// implementation, break the walk loop. Furthermore, we should not move
// allocations out of unknown region-based control-flow operations.
if (!isKnownControlFlowInterface(parentOp) ||
!state.isLegalPlacement(parentOp))
break;
// Move to our parent block by notifying the current StateT
// implementation.
currentBlock = parentBlock;
state.recordMoveToParent(currentBlock);
}
}
// Return the finally determined placement block.
return state.placementBlock;
}
/// The dominator info to find the appropriate start operation to move the
/// allocs.
DominanceInfo dominators;
/// The post dominator info to move the dependent allocs in the right
/// position.
PostDominanceInfo postDominators;
/// The map storing the final placement blocks of a given alloc value.
llvm::DenseMap<Value, Block *> placementBlocks;
/// The operation that this transformation is working on. It is used to also
/// gather allocas.
Operation *scopeOp;
};
/// A state implementation compatible with the `BufferAllocationHoisting` class
/// that hoists allocations into dominator blocks while keeping them inside of
/// loops.
struct BufferAllocationHoistingState : BufferAllocationHoistingStateBase {
using BufferAllocationHoistingStateBase::BufferAllocationHoistingStateBase;
/// Computes the upper bound for the placement block search.
Block *computeUpperBound(Block *dominatorBlock, Block *dependencyBlock) {
// If we do not have a dependency block, the upper bound is given by the
// dominator block.
if (!dependencyBlock)
return dominatorBlock;
// Find the "lower" block of the dominator and the dependency block to
// ensure that we do not move allocations above this block.
return dominators->properlyDominates(dominatorBlock, dependencyBlock)
? dependencyBlock
: dominatorBlock;
}
/// Returns true if the given operation does not represent a loop.
bool isLegalPlacement(Operation *op) { return !isLoop(op); }
/// Returns true if the given operation should be considered for hoisting.
static bool shouldHoistOpType(Operation *op) {
return allowAllocDominateBlockHoisting(op);
}
/// Sets the current placement block to the given block.
void recordMoveToDominator(Block *block) { placementBlock = block; }
/// Sets the current placement block to the given block.
void recordMoveToParent(Block *block) { recordMoveToDominator(block); }
};
/// A state implementation compatible with the `BufferAllocationHoisting` class
/// that hoists allocations out of loops.
struct BufferAllocationLoopHoistingState : BufferAllocationHoistingStateBase {
using BufferAllocationHoistingStateBase::BufferAllocationHoistingStateBase;
/// Remembers the dominator block of all aliases.
Block *aliasDominatorBlock = nullptr;
/// Computes the upper bound for the placement block search.
Block *computeUpperBound(Block *dominatorBlock, Block *dependencyBlock) {
aliasDominatorBlock = dominatorBlock;
// If there is a dependency block, we have to use this block as an upper
// bound to satisfy all allocation value dependencies.
return dependencyBlock ? dependencyBlock : nullptr;
}
/// Returns true if the given operation represents a loop with sequential
/// execution semantics and one of the aliases caused the
/// `aliasDominatorBlock` to be "above" the block of the given loop operation.
/// If this is the case, it indicates that the allocation is passed via a back
/// edge.
bool isLegalPlacement(Operation *op) {
return isSequentialLoop(op) &&
!dominators->dominates(aliasDominatorBlock, op->getBlock());
}
/// Returns true if the given operation should be considered for hoisting.
static bool shouldHoistOpType(Operation *op) {
return allowAllocLoopHoisting(op);
}
/// Does not change the internal placement block, as we want to move
/// operations out of loops only.
void recordMoveToDominator(Block *block) {}
/// Sets the current placement block to the given block.
void recordMoveToParent(Block *block) { placementBlock = block; }
};
//===----------------------------------------------------------------------===//
// BufferPlacementPromotion
//===----------------------------------------------------------------------===//
/// Promotes heap-based allocations to stack-based allocations (if possible).
class BufferPlacementPromotion : BufferPlacementTransformationBase {
public:
BufferPlacementPromotion(Operation *op)
: BufferPlacementTransformationBase(op) {}
/// Promote buffers to stack-based allocations.
void promote(function_ref<bool(Value)> isSmallAlloc) {
for (BufferPlacementAllocs::AllocEntry &entry : allocs) {
Value alloc = std::get<0>(entry);
Operation *dealloc = std::get<1>(entry);
// Checking several requirements to transform an AllocOp into an AllocaOp.
// The transformation is done if the allocation is limited to a given
// size. Furthermore, a deallocation must not be defined for this
// allocation entry and a parent allocation scope must exist.
if (!isSmallAlloc(alloc) || dealloc ||
!hasAllocationScope(alloc, aliases))
continue;
Operation *startOperation = BufferPlacementAllocs::getStartOperation(
alloc, alloc.getParentBlock(), liveness);
// Build a new alloca that is associated with its parent
// `AutomaticAllocationScope` determined during the initialization phase.
OpBuilder builder(startOperation);
Operation *allocOp = alloc.getDefiningOp();
if (auto allocInterface = dyn_cast<AllocationOpInterface>(allocOp)) {
std::optional<Operation *> alloca =
allocInterface.buildPromotedAlloc(builder, alloc);
if (!alloca)
continue;
// Replace the original alloc by a newly created alloca.
allocOp->replaceAllUsesWith(alloca.value());
allocOp->erase();
}
}
}
};
//===----------------------------------------------------------------------===//
// BufferOptimizationPasses
//===----------------------------------------------------------------------===//
/// The buffer hoisting pass that hoists allocation nodes into dominating
/// blocks.
struct BufferHoistingPass
: public bufferization::impl::BufferHoistingBase<BufferHoistingPass> {
void runOnOperation() override {
// Hoist all allocations into dominator blocks.
BufferAllocationHoisting<BufferAllocationHoistingState> optimizer(
getOperation());
optimizer.hoist();
}
};
/// The buffer loop hoisting pass that hoists allocation nodes out of loops.
struct BufferLoopHoistingPass
: public bufferization::impl::BufferLoopHoistingBase<
BufferLoopHoistingPass> {
void runOnOperation() override {
// Hoist all allocations out of loops.
hoistBuffersFromLoops(getOperation());
}
};
/// The promote buffer to stack pass that tries to convert alloc nodes into
/// alloca nodes.
class PromoteBuffersToStackPass
: public bufferization::impl::PromoteBuffersToStackBase<
PromoteBuffersToStackPass> {
public:
PromoteBuffersToStackPass(unsigned maxAllocSizeInBytes,
unsigned maxRankOfAllocatedMemRef) {
this->maxAllocSizeInBytes = maxAllocSizeInBytes;
this->maxRankOfAllocatedMemRef = maxRankOfAllocatedMemRef;
}
explicit PromoteBuffersToStackPass(std::function<bool(Value)> isSmallAlloc)
: isSmallAlloc(std::move(isSmallAlloc)) {}
LogicalResult initialize(MLIRContext *context) override {
if (isSmallAlloc == nullptr) {
isSmallAlloc = [=](Value alloc) {
return defaultIsSmallAlloc(alloc, maxAllocSizeInBytes,
maxRankOfAllocatedMemRef);
};
}
return success();
}
void runOnOperation() override {
// Move all allocation nodes and convert candidates into allocas.
BufferPlacementPromotion optimizer(getOperation());
optimizer.promote(isSmallAlloc);
}
private:
std::function<bool(Value)> isSmallAlloc;
};
} // namespace
void mlir::bufferization::hoistBuffersFromLoops(Operation *op) {
BufferAllocationHoisting<BufferAllocationLoopHoistingState> optimizer(op);
optimizer.hoist();
}
std::unique_ptr<Pass> mlir::bufferization::createBufferHoistingPass() {
return std::make_unique<BufferHoistingPass>();
}
std::unique_ptr<Pass> mlir::bufferization::createBufferLoopHoistingPass() {
return std::make_unique<BufferLoopHoistingPass>();
}
std::unique_ptr<Pass> mlir::bufferization::createPromoteBuffersToStackPass(
unsigned maxAllocSizeInBytes, unsigned maxRankOfAllocatedMemRef) {
return std::make_unique<PromoteBuffersToStackPass>(maxAllocSizeInBytes,
maxRankOfAllocatedMemRef);
}
std::unique_ptr<Pass> mlir::bufferization::createPromoteBuffersToStackPass(
std::function<bool(Value)> isSmallAlloc) {
return std::make_unique<PromoteBuffersToStackPass>(std::move(isSmallAlloc));
}