Job Noorman 23c8d38258 [BOLT] Calculate input to output address map using BOLTLinker
BOLT uses MCAsmLayout to calculate the output values of basic blocks.
This means output values are calculated based on a pre-linking state and
any changes to symbol values during linking will cause incorrect values
to be used.

This issue was first addressed in D154604 by adding all basic block
symbols to the symbol table for the linker to resolve them. However, the
runtime overhead of handling this huge symbol table turned out to be
prohibitively large.

This patch solves the issue in a different way. First, a temporary
section containing [input address, output symbol] pairs is emitted to the
intermediary object file. The linker will resolve all these references
so we end up with a section of [input address, output address] pairs.
This section is then parsed and used to:
- Replace BinaryBasicBlock::OffsetTranslationTable
- Replace BinaryFunction::InputOffsetToAddressMap
- Update BinaryBasicBlock::OutputAddressRange

Note that the reason this is more performant than the previous attempt
is that these symbol references do not cause entries to be added to the
symbol table. Instead, section-relative references are used for the
relocations.

Reviewed By: maksfb

Differential Revision: https://reviews.llvm.org/D155604
2023-08-21 10:36:20 +02:00
2023-08-18 23:36:04 -07:00
2023-08-18 23:36:04 -07:00
2023-07-25 13:58:49 +02:00
2023-04-25 23:15:07 -07:00

The LLVM Compiler Infrastructure

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 2.4 GiB
Languages
LLVM 42%
C++ 31%
C 13%
Assembly 9.3%
MLIR 1.4%
Other 2.8%