This refactoring hoists the profitability check earlier in the pipeline, so that for loops that are not profitable to transform there is no iteration over the basic blocks or LoopStructure computation. Motivated by PR #104659 that tweaks how the profitability of individual branches is evaluated.
1097 lines
41 KiB
C++
1097 lines
41 KiB
C++
//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
|
|
// three disjoint ranges. It does that in a way such that the loop running in
|
|
// the middle loop provably does not need range checks. As an example, it will
|
|
// convert
|
|
//
|
|
// len = < known positive >
|
|
// for (i = 0; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//
|
|
// to
|
|
//
|
|
// len = < known positive >
|
|
// limit = smin(n, len)
|
|
// // no first segment
|
|
// for (i = 0; i < limit; i++) {
|
|
// if (0 <= i && i < len) { // this check is fully redundant
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
// for (i = limit; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/PriorityWorklist.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/LoopConstrainer.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
|
|
cl::init(64));
|
|
|
|
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
|
|
cl::Hidden, cl::init(10));
|
|
|
|
static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> AllowNarrowLatchCondition(
|
|
"irce-allow-narrow-latch", cl::Hidden, cl::init(true),
|
|
cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
|
|
"with narrow latch condition."));
|
|
|
|
static cl::opt<unsigned> MaxTypeSizeForOverflowCheck(
|
|
"irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32),
|
|
cl::desc(
|
|
"Maximum size of range check type for which can be produced runtime "
|
|
"overflow check of its limit's computation"));
|
|
|
|
static cl::opt<bool>
|
|
PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks",
|
|
cl::Hidden, cl::init(false));
|
|
|
|
#define DEBUG_TYPE "irce"
|
|
|
|
namespace {
|
|
|
|
/// An inductive range check is conditional branch in a loop with
|
|
///
|
|
/// 1. a very cold successor (i.e. the branch jumps to that successor very
|
|
/// rarely)
|
|
///
|
|
/// and
|
|
///
|
|
/// 2. a condition that is provably true for some contiguous range of values
|
|
/// taken by the containing loop's induction variable.
|
|
///
|
|
class InductiveRangeCheck {
|
|
|
|
const SCEV *Begin = nullptr;
|
|
const SCEV *Step = nullptr;
|
|
const SCEV *End = nullptr;
|
|
Use *CheckUse = nullptr;
|
|
|
|
static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *&Index,
|
|
const SCEV *&End);
|
|
|
|
static void
|
|
extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks,
|
|
SmallPtrSetImpl<Value *> &Visited);
|
|
|
|
static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
|
|
ICmpInst::Predicate Pred, ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *&Index,
|
|
const SCEV *&End);
|
|
|
|
static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS,
|
|
ICmpInst::Predicate Pred, ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *&Index, const SCEV *&End);
|
|
|
|
public:
|
|
const SCEV *getBegin() const { return Begin; }
|
|
const SCEV *getStep() const { return Step; }
|
|
const SCEV *getEnd() const { return End; }
|
|
|
|
void print(raw_ostream &OS) const {
|
|
OS << "InductiveRangeCheck:\n";
|
|
OS << " Begin: ";
|
|
Begin->print(OS);
|
|
OS << " Step: ";
|
|
Step->print(OS);
|
|
OS << " End: ";
|
|
End->print(OS);
|
|
OS << "\n CheckUse: ";
|
|
getCheckUse()->getUser()->print(OS);
|
|
OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void dump() {
|
|
print(dbgs());
|
|
}
|
|
|
|
Use *getCheckUse() const { return CheckUse; }
|
|
|
|
/// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
|
|
/// R.getEnd() le R.getBegin(), then R denotes the empty range.
|
|
|
|
class Range {
|
|
const SCEV *Begin;
|
|
const SCEV *End;
|
|
|
|
public:
|
|
Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
|
|
assert(Begin->getType() == End->getType() && "ill-typed range!");
|
|
}
|
|
|
|
Type *getType() const { return Begin->getType(); }
|
|
const SCEV *getBegin() const { return Begin; }
|
|
const SCEV *getEnd() const { return End; }
|
|
bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
|
|
if (Begin == End)
|
|
return true;
|
|
if (IsSigned)
|
|
return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
|
|
else
|
|
return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
|
|
}
|
|
};
|
|
|
|
/// This is the value the condition of the branch needs to evaluate to for the
|
|
/// branch to take the hot successor (see (1) above).
|
|
bool getPassingDirection() { return true; }
|
|
|
|
/// Computes a range for the induction variable (IndVar) in which the range
|
|
/// check is redundant and can be constant-folded away. The induction
|
|
/// variable is not required to be the canonical {0,+,1} induction variable.
|
|
std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *IndVar,
|
|
bool IsLatchSigned) const;
|
|
|
|
/// Parse out a set of inductive range checks from \p BI and append them to \p
|
|
/// Checks.
|
|
///
|
|
/// NB! There may be conditions feeding into \p BI that aren't inductive range
|
|
/// checks, and hence don't end up in \p Checks.
|
|
static void extractRangeChecksFromBranch(
|
|
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed);
|
|
};
|
|
|
|
class InductiveRangeCheckElimination {
|
|
ScalarEvolution &SE;
|
|
BranchProbabilityInfo *BPI;
|
|
DominatorTree &DT;
|
|
LoopInfo &LI;
|
|
|
|
using GetBFIFunc =
|
|
std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
|
|
GetBFIFunc GetBFI;
|
|
|
|
// Returns true if it is profitable to do a transform basing on estimation of
|
|
// number of iterations.
|
|
bool isProfitableToTransform(const Loop &L);
|
|
|
|
public:
|
|
InductiveRangeCheckElimination(ScalarEvolution &SE,
|
|
BranchProbabilityInfo *BPI, DominatorTree &DT,
|
|
LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
|
|
: SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
|
|
|
|
bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
|
|
/// be interpreted as a range check, return false. Otherwise set `Index` to the
|
|
/// SCEV being range checked, and set `End` to the upper or lower limit `Index`
|
|
/// is being range checked.
|
|
bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
|
|
ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *&Index,
|
|
const SCEV *&End) {
|
|
auto IsLoopInvariant = [&SE, L](Value *V) {
|
|
return SE.isLoopInvariant(SE.getSCEV(V), L);
|
|
};
|
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *LHS = ICI->getOperand(0);
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
if (!LHS->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
// Canonicalize to the `Index Pred Invariant` comparison
|
|
if (IsLoopInvariant(LHS)) {
|
|
std::swap(LHS, RHS);
|
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
|
} else if (!IsLoopInvariant(RHS))
|
|
// Both LHS and RHS are loop variant
|
|
return false;
|
|
|
|
if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End))
|
|
return true;
|
|
|
|
if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End))
|
|
return true;
|
|
|
|
// TODO: support ReassociateAddLHS
|
|
return false;
|
|
}
|
|
|
|
// Try to parse range check in the form of "IV vs Limit"
|
|
bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
|
|
ICmpInst::Predicate Pred,
|
|
ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *&Index,
|
|
const SCEV *&End) {
|
|
|
|
auto SIntMaxSCEV = [&](Type *T) {
|
|
unsigned BitWidth = cast<IntegerType>(T)->getBitWidth();
|
|
return SE.getConstant(APInt::getSignedMaxValue(BitWidth));
|
|
};
|
|
|
|
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS));
|
|
if (!AddRec)
|
|
return false;
|
|
|
|
// We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
|
|
// We can potentially do much better here.
|
|
// If we want to adjust upper bound for the unsigned range check as we do it
|
|
// for signed one, we will need to pick Unsigned max
|
|
switch (Pred) {
|
|
default:
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SGE:
|
|
if (match(RHS, m_ConstantInt<0>())) {
|
|
Index = AddRec;
|
|
End = SIntMaxSCEV(Index->getType());
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
if (match(RHS, m_ConstantInt<-1>())) {
|
|
Index = AddRec;
|
|
End = SIntMaxSCEV(Index->getType());
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
case ICmpInst::ICMP_ULT:
|
|
Index = AddRec;
|
|
End = SE.getSCEV(RHS);
|
|
return true;
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
case ICmpInst::ICMP_ULE:
|
|
const SCEV *One = SE.getOne(RHS->getType());
|
|
const SCEV *RHSS = SE.getSCEV(RHS);
|
|
bool Signed = Pred == ICmpInst::ICMP_SLE;
|
|
if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) {
|
|
Index = AddRec;
|
|
End = SE.getAddExpr(RHSS, One);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("default clause returns!");
|
|
}
|
|
|
|
// Try to parse range check in the form of "IV - Offset vs Limit" or "Offset -
|
|
// IV vs Limit"
|
|
bool InductiveRangeCheck::reassociateSubLHS(
|
|
Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred,
|
|
ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) {
|
|
Value *LHS, *RHS;
|
|
if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS))))
|
|
return false;
|
|
|
|
const SCEV *IV = SE.getSCEV(LHS);
|
|
const SCEV *Offset = SE.getSCEV(RHS);
|
|
const SCEV *Limit = SE.getSCEV(InvariantRHS);
|
|
|
|
bool OffsetSubtracted = false;
|
|
if (SE.isLoopInvariant(IV, L))
|
|
// "Offset - IV vs Limit"
|
|
std::swap(IV, Offset);
|
|
else if (SE.isLoopInvariant(Offset, L))
|
|
// "IV - Offset vs Limit"
|
|
OffsetSubtracted = true;
|
|
else
|
|
return false;
|
|
|
|
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV);
|
|
if (!AddRec)
|
|
return false;
|
|
|
|
// In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need
|
|
// to be able to freely move values from left side of inequality to right side
|
|
// (just as in normal linear arithmetics). Overflows make things much more
|
|
// complicated, so we want to avoid this.
|
|
//
|
|
// Let's prove that the initial subtraction doesn't overflow with all IV's
|
|
// values from the safe range constructed for that check.
|
|
//
|
|
// [Case 1] IV - Offset < Limit
|
|
// It doesn't overflow if:
|
|
// SINT_MIN <= IV - Offset <= SINT_MAX
|
|
// In terms of scaled SINT we need to prove:
|
|
// SINT_MIN + Offset <= IV <= SINT_MAX + Offset
|
|
// Safe range will be constructed:
|
|
// 0 <= IV < Limit + Offset
|
|
// It means that 'IV - Offset' doesn't underflow, because:
|
|
// SINT_MIN + Offset < 0 <= IV
|
|
// and doesn't overflow:
|
|
// IV < Limit + Offset <= SINT_MAX + Offset
|
|
//
|
|
// [Case 2] Offset - IV > Limit
|
|
// It doesn't overflow if:
|
|
// SINT_MIN <= Offset - IV <= SINT_MAX
|
|
// In terms of scaled SINT we need to prove:
|
|
// -SINT_MIN >= IV - Offset >= -SINT_MAX
|
|
// Offset - SINT_MIN >= IV >= Offset - SINT_MAX
|
|
// Safe range will be constructed:
|
|
// 0 <= IV < Offset - Limit
|
|
// It means that 'Offset - IV' doesn't underflow, because
|
|
// Offset - SINT_MAX < 0 <= IV
|
|
// and doesn't overflow:
|
|
// IV < Offset - Limit <= Offset - SINT_MIN
|
|
//
|
|
// For the computed upper boundary of the IV's range (Offset +/- Limit) we
|
|
// don't know exactly whether it overflows or not. So if we can't prove this
|
|
// fact at compile time, we scale boundary computations to a wider type with
|
|
// the intention to add runtime overflow check.
|
|
|
|
auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp,
|
|
const SCEV *LHS,
|
|
const SCEV *RHS) -> const SCEV * {
|
|
const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
|
|
SCEV::NoWrapFlags, unsigned);
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unsupported binary op");
|
|
case Instruction::Add:
|
|
Operation = &ScalarEvolution::getAddExpr;
|
|
break;
|
|
case Instruction::Sub:
|
|
Operation = &ScalarEvolution::getMinusSCEV;
|
|
break;
|
|
}
|
|
|
|
if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS,
|
|
cast<Instruction>(VariantLHS)))
|
|
return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0);
|
|
|
|
// We couldn't prove that the expression does not overflow.
|
|
// Than scale it to a wider type to check overflow at runtime.
|
|
auto *Ty = cast<IntegerType>(LHS->getType());
|
|
if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck)
|
|
return nullptr;
|
|
|
|
auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
|
|
return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy),
|
|
SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap,
|
|
0);
|
|
};
|
|
|
|
if (OffsetSubtracted)
|
|
// "IV - Offset < Limit" -> "IV" < Offset + Limit
|
|
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit);
|
|
else {
|
|
// "Offset - IV > Limit" -> "IV" < Offset - Limit
|
|
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
|
|
// "Expr <= Limit" -> "Expr < Limit + 1"
|
|
if (Pred == ICmpInst::ICMP_SLE && Limit)
|
|
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit,
|
|
SE.getOne(Limit->getType()));
|
|
if (Limit) {
|
|
Index = AddRec;
|
|
End = Limit;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InductiveRangeCheck::extractRangeChecksFromCond(
|
|
Loop *L, ScalarEvolution &SE, Use &ConditionUse,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks,
|
|
SmallPtrSetImpl<Value *> &Visited) {
|
|
Value *Condition = ConditionUse.get();
|
|
if (!Visited.insert(Condition).second)
|
|
return;
|
|
|
|
// TODO: Do the same for OR, XOR, NOT etc?
|
|
if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
|
|
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
|
|
Checks, Visited);
|
|
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
|
|
Checks, Visited);
|
|
return;
|
|
}
|
|
|
|
ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
|
|
if (!ICI)
|
|
return;
|
|
|
|
const SCEV *End = nullptr;
|
|
const SCEVAddRecExpr *IndexAddRec = nullptr;
|
|
if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End))
|
|
return;
|
|
|
|
assert(IndexAddRec && "IndexAddRec was not computed");
|
|
assert(End && "End was not computed");
|
|
|
|
if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine())
|
|
return;
|
|
|
|
InductiveRangeCheck IRC;
|
|
IRC.End = End;
|
|
IRC.Begin = IndexAddRec->getStart();
|
|
IRC.Step = IndexAddRec->getStepRecurrence(SE);
|
|
IRC.CheckUse = &ConditionUse;
|
|
Checks.push_back(IRC);
|
|
}
|
|
|
|
void InductiveRangeCheck::extractRangeChecksFromBranch(
|
|
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) {
|
|
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
|
|
return;
|
|
|
|
unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1;
|
|
assert(L->contains(BI->getSuccessor(IndexLoopSucc)) &&
|
|
"No edges coming to loop?");
|
|
BranchProbability LikelyTaken(15, 16);
|
|
|
|
if (!SkipProfitabilityChecks && BPI &&
|
|
BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc) < LikelyTaken)
|
|
return;
|
|
|
|
// IRCE expects branch's true edge comes to loop. Invert branch for opposite
|
|
// case.
|
|
if (IndexLoopSucc != 0) {
|
|
IRBuilder<> Builder(BI);
|
|
InvertBranch(BI, Builder);
|
|
if (BPI)
|
|
BPI->swapSuccEdgesProbabilities(BI->getParent());
|
|
Changed = true;
|
|
}
|
|
|
|
SmallPtrSet<Value *, 8> Visited;
|
|
InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
|
|
Checks, Visited);
|
|
}
|
|
|
|
/// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
|
|
/// signed or unsigned extension of \p S to type \p Ty.
|
|
static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
|
|
bool Signed) {
|
|
return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
|
|
}
|
|
|
|
// Compute a safe set of limits for the main loop to run in -- effectively the
|
|
// intersection of `Range' and the iteration space of the original loop.
|
|
// Return std::nullopt if unable to compute the set of subranges.
|
|
static std::optional<LoopConstrainer::SubRanges>
|
|
calculateSubRanges(ScalarEvolution &SE, const Loop &L,
|
|
InductiveRangeCheck::Range &Range,
|
|
const LoopStructure &MainLoopStructure) {
|
|
auto *RTy = cast<IntegerType>(Range.getType());
|
|
// We only support wide range checks and narrow latches.
|
|
if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy)
|
|
return std::nullopt;
|
|
if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth())
|
|
return std::nullopt;
|
|
|
|
LoopConstrainer::SubRanges Result;
|
|
|
|
bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
|
|
// I think we can be more aggressive here and make this nuw / nsw if the
|
|
// addition that feeds into the icmp for the latch's terminating branch is nuw
|
|
// / nsw. In any case, a wrapping 2's complement addition is safe.
|
|
const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
|
|
RTy, SE, IsSignedPredicate);
|
|
const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
|
|
SE, IsSignedPredicate);
|
|
|
|
bool Increasing = MainLoopStructure.IndVarIncreasing;
|
|
|
|
// We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
|
|
// [Smallest, GreatestSeen] is the range of values the induction variable
|
|
// takes.
|
|
|
|
const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
|
|
|
|
const SCEV *One = SE.getOne(RTy);
|
|
if (Increasing) {
|
|
Smallest = Start;
|
|
Greatest = End;
|
|
// No overflow, because the range [Smallest, GreatestSeen] is not empty.
|
|
GreatestSeen = SE.getMinusSCEV(End, One);
|
|
} else {
|
|
// These two computations may sign-overflow. Here is why that is okay:
|
|
//
|
|
// We know that the induction variable does not sign-overflow on any
|
|
// iteration except the last one, and it starts at `Start` and ends at
|
|
// `End`, decrementing by one every time.
|
|
//
|
|
// * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
|
|
// induction variable is decreasing we know that the smallest value
|
|
// the loop body is actually executed with is `INT_SMIN` == `Smallest`.
|
|
//
|
|
// * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
|
|
// that case, `Clamp` will always return `Smallest` and
|
|
// [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
|
|
// will be an empty range. Returning an empty range is always safe.
|
|
|
|
Smallest = SE.getAddExpr(End, One);
|
|
Greatest = SE.getAddExpr(Start, One);
|
|
GreatestSeen = Start;
|
|
}
|
|
|
|
auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
|
|
return IsSignedPredicate
|
|
? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
|
|
: SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
|
|
};
|
|
|
|
// In some cases we can prove that we don't need a pre or post loop.
|
|
ICmpInst::Predicate PredLE =
|
|
IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
|
|
ICmpInst::Predicate PredLT =
|
|
IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
|
|
bool ProvablyNoPreloop =
|
|
SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
|
|
if (!ProvablyNoPreloop)
|
|
Result.LowLimit = Clamp(Range.getBegin());
|
|
|
|
bool ProvablyNoPostLoop =
|
|
SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
|
|
if (!ProvablyNoPostLoop)
|
|
Result.HighLimit = Clamp(Range.getEnd());
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Computes and returns a range of values for the induction variable (IndVar)
|
|
/// in which the range check can be safely elided. If it cannot compute such a
|
|
/// range, returns std::nullopt.
|
|
std::optional<InductiveRangeCheck::Range>
|
|
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *IndVar,
|
|
bool IsLatchSigned) const {
|
|
// We can deal when types of latch check and range checks don't match in case
|
|
// if latch check is more narrow.
|
|
auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
|
|
auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
|
|
auto *EndType = dyn_cast<IntegerType>(getEnd()->getType());
|
|
// Do not work with pointer types.
|
|
if (!IVType || !RCType)
|
|
return std::nullopt;
|
|
if (IVType->getBitWidth() > RCType->getBitWidth())
|
|
return std::nullopt;
|
|
|
|
// IndVar is of the form "A + B * I" (where "I" is the canonical induction
|
|
// variable, that may or may not exist as a real llvm::Value in the loop) and
|
|
// this inductive range check is a range check on the "C + D * I" ("C" is
|
|
// getBegin() and "D" is getStep()). We rewrite the value being range
|
|
// checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
|
|
//
|
|
// The actual inequalities we solve are of the form
|
|
//
|
|
// 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
|
|
//
|
|
// Here L stands for upper limit of the safe iteration space.
|
|
// The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
|
|
// overflows when calculating (0 - M) and (L - M) we, depending on type of
|
|
// IV's iteration space, limit the calculations by borders of the iteration
|
|
// space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
|
|
// If we figured out that "anything greater than (-M) is safe", we strengthen
|
|
// this to "everything greater than 0 is safe", assuming that values between
|
|
// -M and 0 just do not exist in unsigned iteration space, and we don't want
|
|
// to deal with overflown values.
|
|
|
|
if (!IndVar->isAffine())
|
|
return std::nullopt;
|
|
|
|
const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
|
|
const SCEVConstant *B = dyn_cast<SCEVConstant>(
|
|
NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
|
|
if (!B)
|
|
return std::nullopt;
|
|
assert(!B->isZero() && "Recurrence with zero step?");
|
|
|
|
const SCEV *C = getBegin();
|
|
const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
|
|
if (D != B)
|
|
return std::nullopt;
|
|
|
|
assert(!D->getValue()->isZero() && "Recurrence with zero step?");
|
|
unsigned BitWidth = RCType->getBitWidth();
|
|
const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
|
|
const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth));
|
|
|
|
// Subtract Y from X so that it does not go through border of the IV
|
|
// iteration space. Mathematically, it is equivalent to:
|
|
//
|
|
// ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
|
|
//
|
|
// In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
|
|
// any width of bit grid). But after we take min/max, the result is
|
|
// guaranteed to be within [INT_MIN, INT_MAX].
|
|
//
|
|
// In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
|
|
// values, depending on type of latch condition that defines IV iteration
|
|
// space.
|
|
auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
|
|
// FIXME: The current implementation assumes that X is in [0, SINT_MAX].
|
|
// This is required to ensure that SINT_MAX - X does not overflow signed and
|
|
// that X - Y does not overflow unsigned if Y is negative. Can we lift this
|
|
// restriction and make it work for negative X either?
|
|
if (IsLatchSigned) {
|
|
// X is a number from signed range, Y is interpreted as signed.
|
|
// Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
|
|
// thing we should care about is that we didn't cross SINT_MAX.
|
|
// So, if Y is positive, we subtract Y safely.
|
|
// Rule 1: Y > 0 ---> Y.
|
|
// If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
|
|
// Rule 2: Y >=s (X - SINT_MAX) ---> Y.
|
|
// If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
|
|
// Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
|
|
// It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
|
|
const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
|
|
return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
|
|
SCEV::FlagNSW);
|
|
} else
|
|
// X is a number from unsigned range, Y is interpreted as signed.
|
|
// Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
|
|
// thing we should care about is that we didn't cross zero.
|
|
// So, if Y is negative, we subtract Y safely.
|
|
// Rule 1: Y <s 0 ---> Y.
|
|
// If 0 <= Y <= X, we subtract Y safely.
|
|
// Rule 2: Y <=s X ---> Y.
|
|
// If 0 <= X < Y, we should stop at 0 and can only subtract X.
|
|
// Rule 3: Y >s X ---> X.
|
|
// It gives us smin(X, Y) to subtract in all cases.
|
|
return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
|
|
};
|
|
const SCEV *M = SE.getMinusSCEV(C, A);
|
|
const SCEV *Zero = SE.getZero(M->getType());
|
|
|
|
// This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
|
|
auto SCEVCheckNonNegative = [&](const SCEV *X) {
|
|
const Loop *L = IndVar->getLoop();
|
|
const SCEV *Zero = SE.getZero(X->getType());
|
|
const SCEV *One = SE.getOne(X->getType());
|
|
// Can we trivially prove that X is a non-negative or negative value?
|
|
if (isKnownNonNegativeInLoop(X, L, SE))
|
|
return One;
|
|
else if (isKnownNegativeInLoop(X, L, SE))
|
|
return Zero;
|
|
// If not, we will have to figure it out during the execution.
|
|
// Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
|
|
const SCEV *NegOne = SE.getNegativeSCEV(One);
|
|
return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
|
|
};
|
|
|
|
// This function returns SCEV equal to 1 if X will not overflow in terms of
|
|
// range check type, 0 otherwise.
|
|
auto SCEVCheckWillNotOverflow = [&](const SCEV *X) {
|
|
// X doesn't overflow if SINT_MAX >= X.
|
|
// Then if (SINT_MAX - X) >= 0, X doesn't overflow
|
|
const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType());
|
|
const SCEV *OverflowCheck =
|
|
SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X));
|
|
|
|
// X doesn't underflow if X >= SINT_MIN.
|
|
// Then if (X - SINT_MIN) >= 0, X doesn't underflow
|
|
const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType());
|
|
const SCEV *UnderflowCheck =
|
|
SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt));
|
|
|
|
return SE.getMulExpr(OverflowCheck, UnderflowCheck);
|
|
};
|
|
|
|
// FIXME: Current implementation of ClampedSubtract implicitly assumes that
|
|
// X is non-negative (in sense of a signed value). We need to re-implement
|
|
// this function in a way that it will correctly handle negative X as well.
|
|
// We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
|
|
// end up with a negative X and produce wrong results. So currently we ensure
|
|
// that if getEnd() is negative then both ends of the safe range are zero.
|
|
// Note that this may pessimize elimination of unsigned range checks against
|
|
// negative values.
|
|
const SCEV *REnd = getEnd();
|
|
const SCEV *EndWillNotOverflow = SE.getOne(RCType);
|
|
|
|
auto PrintRangeCheck = [&](raw_ostream &OS) {
|
|
auto L = IndVar->getLoop();
|
|
OS << "irce: in function ";
|
|
OS << L->getHeader()->getParent()->getName();
|
|
OS << ", in ";
|
|
L->print(OS);
|
|
OS << "there is range check with scaled boundary:\n";
|
|
print(OS);
|
|
};
|
|
|
|
if (EndType->getBitWidth() > RCType->getBitWidth()) {
|
|
assert(EndType->getBitWidth() == RCType->getBitWidth() * 2);
|
|
if (PrintScaledBoundaryRangeChecks)
|
|
PrintRangeCheck(errs());
|
|
// End is computed with extended type but will be truncated to a narrow one
|
|
// type of range check. Therefore we need a check that the result will not
|
|
// overflow in terms of narrow type.
|
|
EndWillNotOverflow =
|
|
SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType);
|
|
REnd = SE.getTruncateExpr(REnd, RCType);
|
|
}
|
|
|
|
const SCEV *RuntimeChecks =
|
|
SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow);
|
|
const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks);
|
|
const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks);
|
|
|
|
return InductiveRangeCheck::Range(Begin, End);
|
|
}
|
|
|
|
static std::optional<InductiveRangeCheck::Range>
|
|
IntersectSignedRange(ScalarEvolution &SE,
|
|
const std::optional<InductiveRangeCheck::Range> &R1,
|
|
const InductiveRangeCheck::Range &R2) {
|
|
if (R2.isEmpty(SE, /* IsSigned */ true))
|
|
return std::nullopt;
|
|
if (!R1)
|
|
return R2;
|
|
auto &R1Value = *R1;
|
|
// We never return empty ranges from this function, and R1 is supposed to be
|
|
// a result of intersection. Thus, R1 is never empty.
|
|
assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
|
|
"We should never have empty R1!");
|
|
|
|
// TODO: we could widen the smaller range and have this work; but for now we
|
|
// bail out to keep things simple.
|
|
if (R1Value.getType() != R2.getType())
|
|
return std::nullopt;
|
|
|
|
const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
|
|
const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
|
|
|
|
// If the resulting range is empty, just return std::nullopt.
|
|
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
|
|
if (Ret.isEmpty(SE, /* IsSigned */ true))
|
|
return std::nullopt;
|
|
return Ret;
|
|
}
|
|
|
|
static std::optional<InductiveRangeCheck::Range>
|
|
IntersectUnsignedRange(ScalarEvolution &SE,
|
|
const std::optional<InductiveRangeCheck::Range> &R1,
|
|
const InductiveRangeCheck::Range &R2) {
|
|
if (R2.isEmpty(SE, /* IsSigned */ false))
|
|
return std::nullopt;
|
|
if (!R1)
|
|
return R2;
|
|
auto &R1Value = *R1;
|
|
// We never return empty ranges from this function, and R1 is supposed to be
|
|
// a result of intersection. Thus, R1 is never empty.
|
|
assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
|
|
"We should never have empty R1!");
|
|
|
|
// TODO: we could widen the smaller range and have this work; but for now we
|
|
// bail out to keep things simple.
|
|
if (R1Value.getType() != R2.getType())
|
|
return std::nullopt;
|
|
|
|
const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
|
|
const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
|
|
|
|
// If the resulting range is empty, just return std::nullopt.
|
|
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
|
|
if (Ret.isEmpty(SE, /* IsSigned */ false))
|
|
return std::nullopt;
|
|
return Ret;
|
|
}
|
|
|
|
PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
|
|
// There are no loops in the function. Return before computing other expensive
|
|
// analyses.
|
|
if (LI.empty())
|
|
return PreservedAnalyses::all();
|
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
|
|
|
|
// Get BFI analysis result on demand. Please note that modification of
|
|
// CFG invalidates this analysis and we should handle it.
|
|
auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
|
|
return AM.getResult<BlockFrequencyAnalysis>(F);
|
|
};
|
|
InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
|
|
|
|
bool Changed = false;
|
|
{
|
|
bool CFGChanged = false;
|
|
for (const auto &L : LI) {
|
|
CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
|
|
/*PreserveLCSSA=*/false);
|
|
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
|
|
}
|
|
Changed |= CFGChanged;
|
|
|
|
if (CFGChanged && !SkipProfitabilityChecks) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
PA.abandon<BlockFrequencyAnalysis>();
|
|
AM.invalidate(F, PA);
|
|
}
|
|
}
|
|
|
|
SmallPriorityWorklist<Loop *, 4> Worklist;
|
|
appendLoopsToWorklist(LI, Worklist);
|
|
auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
|
|
if (!IsSubloop)
|
|
appendLoopsToWorklist(*NL, Worklist);
|
|
};
|
|
|
|
while (!Worklist.empty()) {
|
|
Loop *L = Worklist.pop_back_val();
|
|
if (IRCE.run(L, LPMAddNewLoop)) {
|
|
Changed = true;
|
|
if (!SkipProfitabilityChecks) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
PA.abandon<BlockFrequencyAnalysis>();
|
|
AM.invalidate(F, PA);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
bool InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L) {
|
|
if (SkipProfitabilityChecks)
|
|
return true;
|
|
if (GetBFI) {
|
|
BlockFrequencyInfo &BFI = (*GetBFI)();
|
|
uint64_t hFreq = BFI.getBlockFreq(L.getHeader()).getFrequency();
|
|
uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
|
|
if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
|
|
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
|
|
<< "the estimated number of iterations basing on "
|
|
"frequency info is " << (hFreq / phFreq) << "\n";);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (!BPI)
|
|
return true;
|
|
|
|
auto *Latch = L.getLoopLatch();
|
|
if (!Latch)
|
|
return true;
|
|
auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!LatchBr)
|
|
return true;
|
|
auto LatchBrExitIdx = LatchBr->getSuccessor(0) == L.getHeader() ? 1 : 0;
|
|
|
|
BranchProbability ExitProbability =
|
|
BPI->getEdgeProbability(Latch, LatchBrExitIdx);
|
|
if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
|
|
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
|
|
<< "the exit probability is too big " << ExitProbability
|
|
<< "\n";);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InductiveRangeCheckElimination::run(
|
|
Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
|
|
if (L->getBlocks().size() >= LoopSizeCutoff) {
|
|
LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
|
|
return false;
|
|
}
|
|
|
|
if (!isProfitableToTransform(*L))
|
|
return false;
|
|
|
|
LLVMContext &Context = Preheader->getContext();
|
|
SmallVector<InductiveRangeCheck, 16> RangeChecks;
|
|
bool Changed = false;
|
|
|
|
for (auto *BBI : L->getBlocks())
|
|
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
|
|
InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
|
|
RangeChecks, Changed);
|
|
|
|
if (RangeChecks.empty())
|
|
return Changed;
|
|
|
|
auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
|
|
OS << "irce: looking at loop "; L->print(OS);
|
|
OS << "irce: loop has " << RangeChecks.size()
|
|
<< " inductive range checks: \n";
|
|
for (InductiveRangeCheck &IRC : RangeChecks)
|
|
IRC.print(OS);
|
|
};
|
|
|
|
LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
|
|
|
|
if (PrintRangeChecks)
|
|
PrintRecognizedRangeChecks(errs());
|
|
|
|
const char *FailureReason = nullptr;
|
|
std::optional<LoopStructure> MaybeLoopStructure =
|
|
LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition,
|
|
FailureReason);
|
|
if (!MaybeLoopStructure) {
|
|
LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
|
|
<< FailureReason << "\n";);
|
|
return Changed;
|
|
}
|
|
LoopStructure LS = *MaybeLoopStructure;
|
|
const SCEVAddRecExpr *IndVar =
|
|
cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
|
|
|
|
std::optional<InductiveRangeCheck::Range> SafeIterRange;
|
|
|
|
SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
|
|
// Basing on the type of latch predicate, we interpret the IV iteration range
|
|
// as signed or unsigned range. We use different min/max functions (signed or
|
|
// unsigned) when intersecting this range with safe iteration ranges implied
|
|
// by range checks.
|
|
auto IntersectRange =
|
|
LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
|
|
|
|
for (InductiveRangeCheck &IRC : RangeChecks) {
|
|
auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
|
|
LS.IsSignedPredicate);
|
|
if (Result) {
|
|
auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
|
|
if (MaybeSafeIterRange) {
|
|
assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
|
|
"We should never return empty ranges!");
|
|
RangeChecksToEliminate.push_back(IRC);
|
|
SafeIterRange = *MaybeSafeIterRange;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!SafeIterRange)
|
|
return Changed;
|
|
|
|
std::optional<LoopConstrainer::SubRanges> MaybeSR =
|
|
calculateSubRanges(SE, *L, *SafeIterRange, LS);
|
|
if (!MaybeSR) {
|
|
LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
|
|
return false;
|
|
}
|
|
|
|
LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
|
|
SafeIterRange->getBegin()->getType(), *MaybeSR);
|
|
|
|
if (LC.run()) {
|
|
Changed = true;
|
|
|
|
auto PrintConstrainedLoopInfo = [L]() {
|
|
dbgs() << "irce: in function ";
|
|
dbgs() << L->getHeader()->getParent()->getName() << ": ";
|
|
dbgs() << "constrained ";
|
|
L->print(dbgs());
|
|
};
|
|
|
|
LLVM_DEBUG(PrintConstrainedLoopInfo());
|
|
|
|
if (PrintChangedLoops)
|
|
PrintConstrainedLoopInfo();
|
|
|
|
// Optimize away the now-redundant range checks.
|
|
|
|
for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
|
|
ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
|
|
? ConstantInt::getTrue(Context)
|
|
: ConstantInt::getFalse(Context);
|
|
IRC.getCheckUse()->set(FoldedRangeCheck);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|